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Abstract

We investigate the lower asymptotic density of sumsets in N2 by proving cer-
tain Plünnecke type inequalities for various notions of lower density in N2. More
specifically, we introduce a notion of lower tableaux density in N2 which involves
averaging over convex tableaux-shaped regions in N2 which contain the origin. This
generalizes the well known Plünnecke type inequality for the lower asymptotic den-
sity of sumsets in N. We also provide a conjectural Plünnecke inequality for the
more basic notion of lower rectangular asymtpotic density in N2 and prove certain
partial results.
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1 Introduction

1.1 Background

Plünnecke’s classical work [6] provided influential techniques for studying the cardinality
of sumsets and iterated sumsets. We recall that for subsets A,B of an abelian group
(G,+) we can define the sumset

A+B = {a+ b | a ∈ A, b ∈ B}

and, for positive integers k, the k-fold iterated sumset

kA = {a1 + · · ·+ ak | a1, . . . , ak ∈ A}.

Theorem 1.1 (Plünnecke [6]). Suppose that A,B are finite subsets of some abelian group
(G,+) and k > 1. Then

|A+B| > |A|1−
1
k |kB|1/k.

Plünnecke used these techniques to improve a result of Erdős concerning lower bounds
for the Schnirelmann density of a sumset A + B, where A,B ⊂ Z>0 and B is a basis of
order k (that is, kB = N = {0, 1, 2, . . .}). We define the Schnirelmann density of a subset
A ⊂ N = {0, 1, . . .} to be

σ(A) = inf
n∈N

|A ∩ [0, n]|
n+ 1

. (1.1)

Note that the usual definition is σ(A) = infn>1
|A∩[1,n]|

n
, which is necessary for some ap-

plications such as Mann’s Theorem, but the results of interest to us remain valid when
using our definition. Erdős proved that

σ(A+B) >

(
1 +

1− σ(A)

2k

)
σ(A)

for A,B ⊂ N such that kB = N for some positive integer k [3]. Plünnecke greatly
improved this lower bound by proving the following extension of his cardinality estimate
(Theorem 1.1) to Schnirelmann density.
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Theorem 1.2 (Plünnecke’s inequality for Schnirelmann density [6]). For positive integers
k and A,B ⊂ N with 0 ∈ B, we have that

σ(A+B) > σ(A)1−
1
kσ(kB)1/k.

A good account of this as well as a proof of Theorem 1.1 and related results can be
found in Ruzsa’s book [7]. Although Schnirelmann density has played an important role
in additive number theory (see, for instance, Schnirelmann’s proof that the primes are an
asymptotic basis [8]), it lacks many asymptotic features such as translation invariance.
From a combinatorial perspective, the lower asymptotic density, given by

d(A) = lim inf
n→∞

|A ∩ [0, n]|
n+ 1

,

is a more natural notion of the asymptotic size of a set A ⊂ N. It turns out that
Theorem 1.2 is also true with d in place of σ.

Theorem 1.3 (See [4], [5] and [7]). Suppose that A,B ⊂ N and k > 1. Then

d(A+B) > d(A)1−
1
kd(kB)1/k.

This was first obtained by Ruzsa [7] and an alternative proof, which the author has
found insightful, was given by Jin in [4] and [5].

1.2 Density Plünnecke inequalites in (semi)groups

It is natural to ask whether density versions of Plünnecke’s inequality hold in other count-
able abelian (semi)groups with certain notions of asymptotic density. Let us briefly men-
tion some recently established results in this direction. We first recall a standard way of
extending the notion of density to other groups that involves replacing the sequence of
intervals ([0, N) ∩ Z)∞N=1 with a sequence of asymptotically invariant finite sets.

Definition 1.4 (Densities along Følner sequences). Let (G,+) be a countable abelian
semigroup. A Følner sequence is a sequence F1, F2, . . . of finite subsets of G that is
asymptotically invariant, i.e., for each g ∈ G we have that

lim
n→∞

|Fn ∩ (g + Fn)|
|Fn|

= 1.

Moreover, if A ⊂ G then we define the lower asymptotic density along (Fn) as

d(Fn)(A) = lim inf
n→∞

|Fn ∩ A|
|Fn|

.

Similairly, we may define the upper asymptotic density along (Fn) as

d(Fn)(A) = lim sup
n→∞

|Fn ∩ A|
|Fn|

.
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If F is a collection of Følner sequences in G then we can define the lower and upper
densities with respect to this collection as

dF(A) = inf
{
d(Fn)(A) | (Fn) ∈ F

}
and

dF(A) = sup
{
d(Fn)(A) | (Fn) ∈ F

}
.

Finally, the lower and upper Banach densities in G may be defined, respectively, as

d∗ = dFølner(G) and d∗ = dFølner(G)

where Følner(G) denotes the collection of all Følner sequences in G.

Theorem 1.5 ([2]; k′ = 1 case obtained in [1]). Suppose that (G,+) is a countable
abelian group and A,B ⊂ G. Then for integers 0 < k′ < k we have

d∗(A+ k′B) > d∗(kB)
k′
k d∗(A)1−

k′
k

and
d∗(A+ k′B) > d∗(kB)

k′
k d∗(A)1−

k′
k .

For the semigroup G = N, the k′ = 1 cases of these inequalities were obtained by
Jin in [5]. We remark that the proofs of Theorem 1.5 (for arbitrary countable abelian
groups G) use ergodic theory and it is unclear whether such techniques can be applied
to densities associated to smaller classes of Følner sequences, such as lower asymptotic
density. The purpose of this paper is to extend the Plünnecke type inequality for lower
asymptotic density to the semigroup N2.

1.3 Følner sequences and lower asymptotic density in N2

A natural candidate for lower asymptotic density in N2 arises from considering the family

Rect =
{(

[0,Wk]× [0, Hk] ∩ N2
)∞
k=1
| Wk, Hk →∞ as k →∞

}
⊂ Følner(N2),

as the corresponding lower density is a product density in the sense that

dRect(A×B) = d(A)d(B),

for A,B ⊂ N2. In the one-dimensional case, the collection {[0,Wk]∩N2 | Wk →∞ as k →
∞} of sequences of intervals which gives rise to the lower density d in N satisfies the
desirable property of being closed under pointwise unions1. Unfortunately, Rect does not
satisfy this property, so it seems natural to consider

Tab =
∞⋃
L=1

{(
R

(1)
k ∪R

(2)
k ∪ . . . ∪R

(L)
k

)∞
k=1
|
(
R

(i)
k

)∞
k=1
∈ Rect for i = 1, 2 . . . , L

}
,

(1.2)

1The pointwise union of two Følner sequences (Fn)n and (Gn)n is the Følner sequence (Fn ∪Gn)n.
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which is the smallest subset of Følner(G) that contains Rect and is closed under point-
wise unions. The corresponding lower density dTab has the curious property that it is also
a product density as above and hence agrees with dRect on cartesian products, i.e.,

dTab(A×B) = d(A)d(B) = dRect(A×B),

for A,B ⊂ N (See Appendix B). In fact, this property is also satisfied by the collection

Tab(L) =
{(
R

(1)
k ∪R

(2)
k ∪ . . . ∪R

(L)
k

)∞
k=1
|
(
R

(i)
k

)∞
k=1
∈ Rect for i = 1, 2 . . . , L

}
for all L ∈ N, which is itself a family of Følner sequences that we will be interested in.

1.4 Lower density versions of Plünnecke’s inequality in N2

The main goal of this paper is to address the following question.

Question 1.6. For A,B ⊂ N2, with (0, 0) ∈ B, and positive integers k′ < k, is it true
that

dRect(A+ k′B) > dRect(A)1−
k′
k dRect(kB)

k′
k ?

Our first partial result is an affirmative answer to this question when A ⊂ N2 is such
that the density dRect(A) exists, by which we mean that

dRect(A) = dRect(A).

In this case, we denote this common value by dRect(A).

Proposition 1.7 (Plünnecke inequalities for dRect when density of A exists). Suppose
that A ⊂ N2 is such that dRect(A) exists. Then for all B ⊂ N2 with (0, 0) ∈ B and
integers 0 < k′ < k we have that

dRect(A+ k′B) > dRect(A)1−
k′
k dRect(kB)

k′
k .

Remark 1.8. Note that it is very easy to affirmatively answer Question 1.6 up to a
constant by using the fact that (A ∩ [0, N ]× [0,M ]) + (B ∩ [0, N ]× [0,M ]) ⊂ (A+B) ∩
[0, 2N ] × [0, 2M ]. For instance, one may use this fact to immediately deduce that for
A,B ⊂ N2 and positive integers k, we have that

dRect(A+B) >
1

4
dRect(A)1−

1
kdRect(kB)

1
k .

The constant becomes much worse than 1
4

if one applies this method to estimate the
lower densities of A+ k′B for k′ < k large; more precisely, one gets

dRect(A+ k′B) >
1

(1 + k′)2
dRect(A)1−

k′
k dRect(kB)

k′
k .
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1.5 Statements of main results and applications

We are able to affirmatively answer Question 1.6 if we replace Rect with the collection
Tab introduced above in (1.2). An element of Tab will be refered to as a tableau Følner
sequence and we will refer to the corresponding notion of lower density dTab (as per
Definition 1.4) as the lower tableau density.

Theorem 1.9. Let A,B ⊂ N2 such that (0, 0) ∈ B. Then

dTab(A+ k′B) > dTab(A)1−k
′/kdTab(kB)k

′/k

for integers 0 < k′ < k.

In fact, our techniques also give the following partial answer to Question 1.6.

Theorem 1.10. Suppose that 0 < k′ < k are integers and A,B ⊂ N2 such that (0, 0) ∈ B,
then

dRect(A+ k′B) > dTab(A)1−
k′
k dRect(kB)

k′
k .

This enables us to affirmatively answer Question 1.6 for a broader class of examples
not covered by Proposition 1.7.

Corollary 1.11. Suppose that 0 < k′ < k are integers and A,B ⊂ N2 such that (0, 0) ∈
B, dTab(A) = dRect(A). Then

dRect(A+ k′B) > dRect(A)1−
k′
k dRect(kB)

k′
k .

In particular, since dTab(A) = dRect(A) whenever dRect(A) exists, we get Proposi-
tion 1.7. Theorems 1.9 and 1.10 are both immediate consequences of the following general
result.

Theorem 1.12. Suppose that 0 < k′ < k are integers and A,B ⊂ N2 such that (0, 0) ∈ B,
then

dTab(L)(A+ k′B) > dTab(A)1−
k′
k dTab(L)(kB)

k′
k

for all L ∈ N.

1.6 Examples: Fractal Sets

We now turn to constructing some examples of subsets of N2 which demonstrate the
novelty of our main result and its corollary. We are able to give lower bounds for dRect(A+
k′B) in the case where A possesses a certain fractal structure and B is a rectangular
asymptotic basis of order k > k′ (that is, dRect(kB) = 1). We give an example of such a
fractal set before giving a broad definition.
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Example 1.13 (A fractal set and an application of Theorem 1.9). In this example, by
[a, b) we mean {x ∈ N|a 6 x < b} for a < b ∈ N. Choose a sequence 0 < u1 < u2 < . . . in
N such that uk > 2uk−1 for k > 1 and limk→∞

uk
uk−1

= ∞. Let A ⊂ N be the set given in

Figure 1, more precisely

A = [0, u1)
2 ∪ [u1, 2u1)

2 ∪
∞⋃
k=2

[uk, 2uk)
2 ∪
(
[0, uk)

2 \ [0, 2uk−1)
2
)
.

Figure 1: The set A in Example 1.13.

One sees that dRect(A) = 1
2

and dRect(A) = 1 (for details, see Proposition 1.15).
However one may still give a lower bound for dRect(A + B) (which is greater than the
trivial lower bound dRec(A)) for arbitrary B ⊂ N2 such that B+B = N2, as follows. It is
not hard to see (Proposition 1.15) that dTab(A) = 1

3
. Thus by Theorem 1.9 we have that

dRect(A+B) > dTab(A+B) > dTab(A)1/2dTab(B +B)1/2 =
1√
3
.

One can generalise the example above to construct more general sets that are asymp-
totically finite unions of translates of a large square.
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Definition 1.14 (Fractal set generated by a pattern). As before, we will use the conven-
tion [a, b) = {x ∈ N | a 6 x < b}. Let N ∈ N and

P ⊂ {0, 1, . . . , N} × {0, 1, . . . , N}

be a set such that (0, 0) ∈ P . We call such a P a pattern. Choose a sequence u1, u2, . . . of
positive integers such that uk > (N + 1)uk−1 and limk→∞

uk
uk−1

=∞. Define

Pk = {ukp | p ∈ P}+ [0, uk)
2

and let
Ak = Pk \ [0, (N + 1)uk−1)

2

where u0 = 0 (in other words A1 = P1). Finally, we define A(P,N) =
⋃∞
k=1Ak to be the

fractal set generated by the pattern P of degree N .

Figure 2: Definition 1.14 for the case N = 2, P = {(0, 0), (0, 2), (2, 2)}. Note that Ak
is contained in [0, 3uk)

2 \ [0, 3uk−1)
2; while Pj and Aj are contained in the small square

[0, 3uk−1)
2, for all j < k.

Note that the set A given in Example 1.13 is A(P, 1) for P = {(0, 0), (1, 1)}. We now
give a combinatorial formula for dTab and dRect of fractal sets generated by a pattern.

Proposition 1.15. Suppose that N ∈ N and P ⊂ {0, 1, . . . , N} × {0, 1, . . . , N} and let
A = A(P,N). Then

dRect(A) = min

{
|P ∩ I|
|I|

| I = [0,m]× [0, n] ∩ N2 for some m,n ∈ {0, 1, . . . , N}
}
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and

dTabA = min

{
|P ∩ T |
|T |

| T ⊂ {0, . . . , N} × {0, . . . ,M} is a tableau.

}
where we define a tableau to be a set of the form⋃

(n,m)∈F

{0, 1, . . . , n} × {0, 1, . . . ,m}

for some finite F ⊂ N2.

Proof. See Appendix A.

Thus dRect(A) < 1 = dRect(A) for all fractal sets other than N2, which leads to many
applications of our results that do not follow from Proposition 1.7.

Example 1.16. Let P = {(0, 0), (0, 2), (2, 2)} and let A = A(P, 2) (as depicted in Fig-
ure 2). Then

dRect(A) = dTab(A) =
1

6
.

Thus if (0, 0) ∈ B ⊂ N2 and k > 0 is an integer then by Theorem 1.10 we have

dRect(A+ k′B) > dRect(A)1−
k′
k dRect(kB)

k′
k

for integers 0 < k′ < k. Many such special cases of Question 1.6 may be constructed,
which are not covered by Proposition 1.7.

1.7 A remark about higher dimensions

When B is an asymptotic basis of order k (i.e., kB = N2), the natural analogue of
Theorem 1.12 (and hence also its consequences) holds in higher dimensions, as the reader
may observe in the equation (6.13) found in the proof of Theorem 1.12 in Section 6.
However, it is yet unclear whether the higher dimensional analogue of Theorem 1.12
holds in full generality, the main obstacle lies in finding the right higher dimensional
extension of Lemma 5.7.

1.8 Organization of the paper

In Section 2 we review some classical Plünnecke inequalities for cardinalities of truncated
sumsets (i.e., sets of the form (A+ B) \ C), as well as the less well known but crucial δ-
heavy Plünnecke inequality. In Section 3 we introduce the main definitions, notations and
conventions. In particular, we introduce the notion of a tableau, the main combinatorial
object in this paper, and we establish some basic properties of the lower tableau density
dTab. Sections 4 and 5 include some technical combinatorial lemmata involving tableaux
that will be put together in Section 6 to conclude the proof of Theorem 1.12. In Section 7
we state some related open problems; more specifically, some conjectural multidimensional
Plünnecke inequalities for various densities. Finally, Appendix A is devoted to proving
Proposition 1.15.
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2 Plünnecke inequalities for truncated sumsets

One of the key tools used in the proof of our results, as well as Jin’s proofs in [4] and [5],
is the following Plünnecke inequality for truncated sumsets.

Theorem 2.1 (See [7]). Let A,B,C be finite subsets of an abelian group and define

Dn = Dn(A,B,C) = min
∅6=A′⊂A

|(A′ + nB) \ (C + (n− 1)B)|
|A′|

.

Then D
1/n
n is decreasing in n.

We will need (unlike Jin in [4] and [5]) the following δ-heavy version of this inequality.
We will include a proof for the sake of completeness as this version, to the best of the
author’s knowledge, rarely appears in the literature (cf. [1]).

Theorem 2.2. Let A,B,C be finite subsets of an abelian group and let 0 < δ < 1. Then
for positive integers k′ < k, there exists A′ ⊂ A such that |A′| > δ|A| and

|(A′ + kB) \ (C + (k − 1)B)|
|A′|

6 (1− δ)−k/k′
(
|(A+ k′B) \ (C + (k′ − 1)B)|

|A|

)k/k′
.

Proof. Using Theorem 2.1 and the fact that (1− δ)−k/k′ > 1, take non-empty A′ ⊂ A of
maximal cardinality such that

|(A′ + kB) \ (C + (k − 1)B)| 6 (1− δ)−k/k′
(
|(A+ k′B) \ (C + (k′ − 1)B)|

|A|

)k/k′
|A′|.

(2.1)

Suppose for contradiction that |A′| 6 δ|A|, thus |A \ A′| > (1 − δ)|A|. Now apply
Theorem 2.1, with A \ A′ playing the role of A, to obtain a non-empty A′′ ⊂ A \ A′ such
that

|(A′′ + kB) \ (C + (k − 1)B)| 6
(
|((A \ A′) + k′B) \ (C + (k′ − 1)B)|

|A \ A′|

)k/k′
|A′′|.

We deduce from this inequality, using the fact that A\A′ ⊂ A and |A\A′| > (1−δ)|A|,
the estimate

|(A′′ + kB) \ (C + (k − 1)B)| 6 (1− δ)−k/k′
(
|(A+ k′B) \ (C + (k′ − 1)B)|

|A|

)k/k′
|A′′|.

(2.2)
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Now by adding the estimates (2.1) and (2.2) we get

|((A′∪A′′)+kB)\(C+(k−1)B)| 6 (1−δ)−k/k′
(
|(A+ k′B) \ (C + (k′ − 1)B)|

|A|

)k/k′
|A′∪A′′|.

But since A′′ is non-empty, this contradicts the maximality of A′.

3 Tableaux

We stress that throughout this paper we use (and already have used) the convention
N = {0, 1, . . .}. A tableau is a set of the form⋃

(N,M)∈F

{0, 1, . . . , N} × {0, 1, . . .M}

where F ⊂ N2 is a finite set. It will also be convenient to define a tableau region to be
a set of the form ⋃

(N,M)∈F

[0, N)× [0,M)

for some finite F ⊂ N2. Thus a tableau is precisely the set of lattice points of some
tableau region.

Important note on notation: If A is a union of rectangles of the form [N,N +
1) × [M,M + 1) where N,M ∈ Z (such as a tableau region), then by |A| we mean the
Lebesgue measure of A, which is also the number of integer points in A. For most of our
arguments, it is more conceptual to consider the more geometric and continuous notion
of Lebesgue measure. Unless otherwise specified, by [a, b) we mean {x ∈ R | a 6 x < b}
(very rarely it will mean {x ∈ Z | a 6 x < b}, in fact only in the definition of fractal sets
in the Introduction above and Appendix A).

We note the following simple but useful additive characterization of tableaux.

Lemma 3.1. If T ⊂ N2 is finite and non-empty, then the following are equivalent:

(i) T is a tableau.

(ii) N2 \ T is invariant under addition by elements of N2, i.e.,

(N2 \ T ) + a ⊂ N2 \ T for all a ∈ N2.

This means that if T is a tableau and B ⊂ N2 contains (0, 0), then (N2\T )+B = N2\T .
As a consequence, we may apply Theorem 2.2 with C = N2 \ T to obtain the following
crucial proposition.
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Proposition 3.2. Let T ⊂ N be a tableau and suppose that A,B ⊂ N2 with (0, 0) ∈ B.
Then for positive integers k′ < k and 0 < δ < 1, there exists A′ ⊂ A such that |A′| > δ|A|
and

|(A′ + kB) ∩ T |
|A′|

6 (1− δ)−k/k′
(
|(A+ k′B) ∩ T |

|A|

)k/k′
.

We now turn to explicating some basic properties of the densities dTab and dTab(L)

that were introduced above. The following simple lemma will be convenient as it shows
that we may, without loss of generality, assume that the side lengths of our rectangles are
divisible by a chosen integer.

Lemma 3.3. Let D,L be positive integers and A ⊂ N2. Then there exists a sequence of
the form

Fn =

`(n)⋃
j=1

[0,Wj,n)× [0, Hj,n)

with each `(n) 6 L, such that

(i) For each j ∈ {1, . . . , `(n)}, we have

Wj,n ≡ Hj,n ≡ 0 mod D.

(ii) The Wi,n and Hi,n tend to ∞, more precisely

lim
n→∞

min
i∈{1,...,`(n)}

Wi,n = lim
n→∞

min
i∈{1,...,`(n)}

Hi,n =∞.

(iii)

lim inf
n→∞

|A ∩ Fn|
|Fn|

= dTab(L)(A).

Proof Sketch. The idea is that if one replaces Wi,n with Wi,n +O(1) then

lim inf
n→∞

|A ∩ Fn|
|Fn|

remains unchanged. Applying this finitely many times, we can adjust a sequence satisfying
(iii) (which exists by a simple diagonalization argument) to one which satisfies the desired
properties.

Let us spell out a useful characterization of the lower tableaux density.

Lemma 3.4. Let A ⊂ N2 with α = dTab(A). Then for each ε > 0 and positive integer L,
there exists anR = Rε,L > 0 such that wheneverMi, Ni > R are integers, for i = 1, 2, . . . L,
we have

|A ∩ F |
|F |

> α− ε

where

F =
L⋃
i=1

[0, Ni)× [0,Mi) ∩ Z2.

Moreover, dTab(A) is the largest choice of α which makes this statement true.
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4 Trimming lemma

In this section we formulate and prove the Trimming Lemma, one of the main combina-
torial tricks of this paper. It will be most convenient to state and prove it in a rather
abstract setting. If X is a set equipped with a measure µ, then we will use the averaging
notation

Aµ(f, U) =
1

µ(U)

∫
U

fdµ

for f : X → R and U ⊂ X. If the measure µ is clear, we simply use the shorthand
A(f,X).

Lemma 4.1. Let I ⊂ N2 be a tableau equipped with a positive measure µ (on the set of
all subsets of I). Suppose that

ρ : I → [0, 1]

is a function and α > 0 is such that

A(ρ, S) > α

for all non-empty tableaux S ⊂ I. Then there exists

ρ′ : I → [0, 1]

such that

(i) ρ′ 6 ρ

(ii) A(ρ′, I) > α

(iii) For all tableaux S $ I, we have

A(ρ′, I \ S) 6 α.

Example 4.2. Let I = {0, 1, 2}×{0, 1}, µ be the counting measure and ρ be given as on
the left of Figure 3. A choice of α = 1

3
satisfies the hypothesis of the theorem. In fact, the

shaded tableaux shows that it is the largest choice of α. On the right we have a possible
choice of ρ′.

Figure 3: Example of the theorem. The shaded tableaux shows that α = 1/3 is the
maximal choice of α in the hypothesis. The rightmost column has average value of ρ
equal to 1/2, so we must have ρ′ 6= ρ for all suitable ρ′.
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Remark 4.3. Equality actually occurs in (ii) since S may taken to be empty in (iii).

Proof of Lemma 4.1: We proceed by induction on |I|. The case I = {(0, 0)} is clear,
one can just set ρ′((0, 0)) = α. Now suppose the theorem holds for all tableaux with
cardinality strictly less than |I|. Suppose that (iii) fails for some tableau S $ I with
ρ′ = ρ (otherwise, we may take ρ′ = ρ). Let Smax $ I be a maximal tableau contained in
I such that

A(ρ, I \ Smax) > α.

For x ∈ I \ Smax we define

ρ′(x) =
α

A(ρ, I \ Smax)
ρ(x). (4.1)

To define ρ′ on Smax, we use the induction hypothesis as follows. Let ρ0 = ρ|Smax . Since
|Smax| < |I| we apply the induction hypothesis to ρ0 to obtain a map ρ′0 : Smax → [0, 1]
such that

(a) ρ′0 6 ρ0.

(b) A(ρ′0, Smax) > α.

(c) For all tableau S $ Smax we have

A(ρ′0, Smax \ S) 6 α.

We define ρ′(x) = ρ′0(x) for x ∈ Smax. Let us now check that ρ′ : I → [0, 1] satisfies
the desired conclusions. We have ρ′ 6 ρ since ρ′0 6 ρ0 and

α

A(ρ, I \ Smax)
< 1.

By (4.1) we have
A(ρ′, I \ Smax) = α

which together with (b) implies that (ii) holds. Now suppose that S $ I is a tableau.
Then we may decompose

I \ S = (Smax \ (S ∩ Smax))
⊔

(I \ (Smax ∪ S)).

It is enough to show that
A(ρ′, X) 6 α

when X is one of these parts. If

Smax \ (S ∩ Smax) 6= ∅

then, by (c), we do indeed have

A(ρ′, Smax \ (S ∩ Smax)) 6 α
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since S ∩ Smax ⊂ Smax is a tableau. Now suppose that

I \ (Smax ∪ S) 6= ∅

and consider the following two cases.
Case 1: I \ (Smax ∪ S) = I \ Smax

Then we have

A(ρ′, I \ (Smax ∪ S)) = A(ρ′, I \ Smax) =
α

A(ρ, I \ Smax)
A(ρ, I \ Smax) = α.

Case 2: I \ (Smax ∪ S) $ I \ Smax

This means that Smax $ Smax ∪ S and thus, by the maximality of Smax, we have that

A(ρ′, I \ (Smax ∪ S)) 6 A(ρ, I \ (Smax ∪ S)) 6 α.

This verifies (iii) and thus completes the proof.

5 Q2-tilings and approximating subtableaux regions

We now turn to studying tableau regions obtained by subdividing a tableau region. We
will consider subdivisions that are equally spaced, thus it is convenient to define following
the notion.

Definition 5.1 (D-tableau region). If D is a positive integer, then we define a D-tableau
region to be a tableau region where all side lengths are divisible by D. More precisely, a
D-tableau is a set of the form ⋃

(N,M)∈F

[0, N)× [0,M)

for some finite F ⊂ DN2.

Lemma 5.2. Fix a positive integer Q. Let F = [0, N ]× [0,M ], where N,M are positive
integers divisible by Q, and suppose that S = F \ S ′ for some tableaux region S ′ ⊂ F .
Let

C0 =

{[
Ni

Q
,
N(i+ 1)

Q

)
×
[
Mj

Q
,
M(j + 1)

Q

)
|i, j ∈ {0, 1 . . . , Q− 1}

}
.

Let
Ŝ =

⋃
C∈C0,C∩S 6=∅

C

be the smallest set that contains S and is in the σ-algebra generated by the partition C0.
Then

|Ŝ| − |S|
NM

6
2

Q
.
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Proof. There are at most 2Q elements of C that intersect both S and F \ S, since these
elements form a path consisting of right and down steps. In fact, there are at most 2Q−1.
See Figure 4.

Figure 4: An example, with Q = 4 of Lemma 5.2. We can cover Ŝ \ S with 7 of the 16
square tiles.

Definition 5.3. (Q2-tiling and its refinement) Let Q be a positive integer and suppose
that

F =
⋃̀
m=1

[0,Wm)× [0, Hm)

with
H1 > H2 > . . . > H` > 0,

0 < W1 < W2 < . . . < W`

and
Wm ≡ Hm ≡ 0 mod Q2

for all m ∈ {1, . . . , `}. Then we define the Q2-tiling

C0 = C0(F,Q) =
{
Cm
i,j | i, j ∈ {0, . . . , Q− 1} and m ∈ {1, . . . , `}

}
where

Cm
i,j =

[
Wm−1 +

i

Q
(Wm −Wm−1),Wm−1 +

i+ 1

Q
(Wm −Wm−1)

)
×
[
j

Q
Hm,

j + 1

Q
Hm

)
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where W0 = 0. We may refine C0 as follows: Let Y = Y(F,Q) be the set of integers which
appear as a y ordinate of some corner of a cell Cm

i,j, in other words

Y =

{
j

Q
Hm | m ∈ {1, . . . , `}, j ∈ {0, 1, . . . , Q}

}
.

Now write
Y = {0 = y1 < y2 < . . . < y|Y|}

and let H = {F ∩(R× [yr, yr+1)) | r ∈ {0, 1, . . . , Q−1}} which is a partition of F . Define
the refined Q2-tiling of F to be the common refinement

C = C(F,Q) = C0 ∨H

of the partitions C0 and H of F . More explicitly,

C = C(F,Q) =
{
Cm
i,j ∩ R× [yr, yr+1) | Cm

i,j ∈ C0 and r ∈ {1, . . . , |Y| − 1}
}
\ {∅}.

Figure 5: An example, with Q = 4, of refining C0 to C.

Note that the elements of C are rectangles with both side lengths integers divisible by
Q, and thus contain at least Q2 elements of N2.

Naturally, we may identify C with a tableau T = T (F,Q) ⊂ N2 by constructing a
bijection ψ : C → T as follows:

(i) ψ−1(0, 0) is the unique element of C which contains (0, 0).

(ii) ψ−1(i+ 1, j) is the element to the right of ψ−1(i, j) and ψ−1(i, j + 1) is the element
just above ψ−1(i, j). (Note: We refined C0 to C precisely so that the notion of right
is well defined.)

A set of the form
⋃
ψ−1(T ′) (we use the notation

⋃
X =

⋃
x∈X x), for some tableau

T ′ ⊂ T , will be called a C-measurable subtableau region. In general, a union of
elements of C will be called a C-measurable set.
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Remark 5.4. All C-measurable subtableau regions contain the element of C that contains
(0, 0). This element is precisely

[0,
1

Q
W1)× [0,

1

Q
H`).

Hence, each C-measurable subtableau region is a union of rectangles of width at least
1
Q
W1 and height 1

Q
H`.

Lemma 5.5. (C-measurable approximations) Fix a positive integer Q and a Q2-tableau
region F . Suppose that S ⊂ F is of the form

S = F \ F ′

where F ′ ⊂ F is a tableau region. Let

S̃ =
⋃

C∈C,C∩S 6=∅

C

be the smallest subset of F that contains S and may be written as a union of elements of
C = C(F,Q). Then

|S̃ \ S|
|F |

6
2

Q
.

Proof. We will use the setup from Definition 5.3 above (i.e. the parameters m, Hi, Wi

etc.). For each m ∈ {1, . . . , `} define

Um = [Wm−1,Wm)× [0, Hm) =
⋃

(i,j)∈{0,1,...Q−1}2
Cm
i,j.

Apply Lemma 5.2 to S ∩ Um ⊂ Um to get

|(S̃ \ S) ∩ Um| 6 |(Ŝ \ S) ∩ Um| 6
2|Um|
Q

where Ŝ ⊃ S̃ is the smallest subset of F that contains S and may be written as a union
of elements of C0. Since F =

⊔`
m=1 Um we are done by summing this estimate over

m ∈ {1, . . . , `}.

Lemma 5.6 (Trimming a set of points). Fix a positive integer Q, a Q2-tableaux region
F and A ⊂ F ∩ N2. Let C = C(F,Q). Define

α = inf

{
|A ∩ F ′|
|F ′|

| F ′ ⊂ F is a non-empty C-measurable subtableau region

}
.

Then there exists A′ ⊂ A such that
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(a) For C-measurable subtableau regions F ′ $ F we have

|A′ ∩ (F \ F ′)|
|F \ F ′|

6 α +
1

Q2
.

(b)
|A′ ∩ F |
|F |

> α.

Proof. T = T (F,Q) ⊂ N2 be the corresponding subtableau and let ψ : C → T be the
bijection constructed in Definition 5.3. Apply the Trimming Lemma (Lemma 4.1) to the
tableaux T , the measure given by µ({t}) = |ψ−1(t)| for t ∈ T and the map ρ : T → [0, 1]
given by

ρ(t) =
|A ∩ ψ−1(t)|
|ψ−1(t)|

to obtain ρ′ : T → [0, 1] such that

(i) ρ′ 6 ρ

(ii) For all tableaux T ′ $ T , we have

1

|
⋃
ψ−1(T \ T ′)|

∑
t∈T\T ′

|ψ−1(t)|ρ′(t) 6 α.

(iii)
1

|F |
∑
t∈T

|ψ−1(t)|ρ′(t) > α.

Since each element of C is a rectangle with both side lengths multiples of Q, we may
find A′ ⊂ A such that, for all t ∈ T ,

ρ′(t) 6
|A′ ∩ ψ−1(t)|
|ψ−1(t)|

6 ρ′(t) +
1

Q2
.

We use the notation y(a, b) = b.

Lemma 5.7. Fix a positive integer Q, a Q2-tableaux region F and A ⊂ F ∩ N2 and let

S =
⋃
a∈A

(a+ [0,∞)2) ∩ F.

Then there exists a positive integer J and a sequence a1, a2, . . . , aJ ∈ A such that

y(aj) 6 y(aj−1)−Q
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and

G :=
J⋃
j=1

(aj + [0,∞)2) ∩ F

satisfies
|S| − |G|
|F |

6
3

Q
.

Proof. Note that S = F \ F ′ for some tableau region F ′. As in Lemma 5.5 we let

S̃ =
⋃

C∈C,C∩S 6=∅

C

be the smallest subset of F that contains S and may be written as a union of elements of
C = C(F,Q). So

S̃ =
⊔
C∈C′

C

for some C ′ ⊂ C and C ′ = ψ−1(T \ T ′) for some tableau T ′ ⊂ T , where T = T (F,Q) and
ψ are as constructed in Definition 5.3. Now let

E =
{
ψ−1(t1, t2) | (t1, t2) ∈ T \ T ′ and (t1 − 1, t2) /∈ T \ T ′ and (t1, t2 − 1) /∈ T \ T ′

}
denote the bottom-left corners of C ′. Note that the element of E may be ordered vertically:
we say E is higher than E ′ if t2 > t′2 where E = ψ−1(t1, t2) and E ′ = ψ−1(t′1, t

′
2). We

now construct the aj recursively. Choose a1 ∈ E1 ∩ A, where E1 is the highest element
of E . Now suppose we have chosen a1, . . . , aj with each aj ∈ A ∩ Ej for some Ej ∈ E (by

minimality of S̃, A∩E is non-empty for all E ∈ E). We have that yr 6 aj < yr+1 for some
r = rj ∈ {1, . . . , |Y| − 1} where Y = Y(F,Q) = {y1 < y2 < . . . < y|Y|} is as constructed
in Definition 5.3. In fact yr and yr+1 are the y ordinates of the corners of the element of
E that contains aj. Now let Ej+1 be the highest element of E below the horizontal line
y = yr−1 and choose aj+1 ∈ Ej+1, and if such Ej+1 does not exist then j = J and we are
done with our construction. Now let

G1 = (a1 + [0,∞)2) ∩ F

and
Gj = (aj + [0,∞)2) ∩ F ∩ {(x, y) ∈ R|y < y(aj−1)},

for 1 < j 6 J . Note that Gj is a tableau region translated by aj.
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Figure 6: The tile E ′j south-east of Ej is an element of E , but it is not Ej+1 since it is in
the row of C just below Ej. This ensures the desired condition that y(aj+1) 6 y(aj)−Q.

Now we let

G =
J⊔
j=1

Gj =
J⋃
j=1

(
aj + [0,∞)2

)
∩ F.

As desired, we have that (cf. Figure 6)

y(aj+1) 6 yr−1 6 yr −Q 6 y(aj)−Q.

It now remains to estimate |S \ G|. To this end, let G̃ denote the smallest set that
contains G and may be written as a union of elements of C. We have by Lemma 5.5 that

|G̃ \G| 6 2|F |
Q

(5.1)

One may argue (see Figure 7 and its caption below) that

|S̃ \ G̃| 6 |F |
Q
. (5.2)

Combining (5.1) with (5.2) we get that

|S \G| 6 |S̃ \G| = |S̃ \ G̃|+ |G̃ \G| 6 3|F |
Q

as desired.
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Figure 7: There is at most one element of E below Ej and above Ej+1, which we call
(assuming it exists) E ′j. The row of elements of C to the right of E ′j that do not intersect

G is a subset of S̃n \ G̃. The union of such rows is in fact exactly S̃ \ G̃. These rows
have disjoint projections onto the x-axis (one can see that the projection of Ej+1 onto the
x-axis separates the projections of the two rows shown in the figure). Thus we get that
the union of all such rows has Lebesgue measure at most 1

Q
|F |.

We finish this section with a simple lemma which will allow us to remove a negligible
set of integral points which lie too closely to the boundary of a tableaux region.

Definition 5.8 (Bad Rows and Bad Columns). Fix the setup in Definition 5.3 and par-
tition

F =
⊔̀
m=1

Um

where
Um = [Wm−1,Wm)× [0, Hm)

for m = 1, 2, . . . , ` with the convention W0 = 0. Define (see Figure 8) for m = 1, . . . , `
the bad rows

BadRowm = (U1 ∪ . . . ∪ Um) ∩
(
R×

[
Q− 1

Q
Hm, Hm

))
and bad columns

BadColm =

Q−1⊔
j=0

Cm
Q,j =

[
Wm−1 +

Q− 1

Q
(Wm −Wm−1),Wm

)
× [0, Hm).
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Lemma 5.9 (Bad Rows and Columns removal). Fix the setup in Definition 5.8 and
suppose A′ ⊂ F ∩ N2. Let

A0 = A′ \

( ⋃̀
m=1

BadRowm ∪BadColm

)
.

Then
|A0| > |A′| − (`+ 1)Q−1|F |.

Proof. We have that |BadRowm ∩ Uj| 6 1
Q
|Uj| for all m, j ∈ {1, . . . , `} (see Figure 8)

and hence |BadRowm| 6 1
Q
|F |, which means that

|
⋃̀
m=1

BadRowm| 6
`

Q
|F |.

On the other hand, |BadColm| = 1
Q
|Um|.

Figure 8: An example of BadRow2 and BadCol3 with Q = 4 and ` = 3. Note that
BadRow2 intersects exactly 1

4
of U2, strictly less than 1

4
of U1 and none of U3.

6 Proof of Theorem 1.12

As in the hypothesis of Theorem 1.12, fix A,B ⊂ N2 with α := dTab(A) > 0 and (0, 0) ∈ B
together with integers 0 < k′ < k and L > 0. Now fix an integer

Q > 4(L+ 1)α−1 (6.1)

and choose (by Lemma 3.3) a sequence

Fn =

`(n)⋃
m=1

[0,Wn,m)× [0, Hn,m)

with `(n) 6 L such that
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(i)

lim
n→∞

|(A+ kB) ∩ Fn|
|Fn|

= dTab(L)(A+ kB)

(ii) For all n > 1 and 1 6 m 6 `(n) we have

Hn,m ≡ Wn,m ≡ 0 mod Q2

(iii)
lim
n→∞

inf
m∈{1,...,`(n)}

Wn,m = lim
n→∞

inf
m∈{1,...,`(m)}

Hn,m =∞.

We also assume, by reordering rectangles and deleting redundant rectangles if neces-
sary, that

Hn,1 > Hn,2 > . . . > Hn,`(n)

Wn,1 < Wn,2 < . . . < Wn,`(n).

We now apply the techniques developed in Section 5 to the tableau regions Fn. Note
that the C(Fn, Q)-measurable subtableau regions of Fn are a union of at most Q2L2 (and
thus a bounded function of n) rectangles with side lengths tending to ∞ as n→∞ (see
Remark 5.4), we thus have that

lim inf
n→∞

αn > α (6.2)

where

αn := inf

{
|A ∩ F ′|
|F ′|

|F ′ is a C(Fn, Q)-measurable subtableau region

}
.

Thus there exists Ñ (which depends on Q and the sequence Fn, which we have fixed) such
that

αn >
3

4
α for all n > Ñ.

From here on, we fix n > Ñ and let ` = `(n), Wm = Wn,m, Hm = Hn,m for m ∈ {1, . . . , `}.
Applying Lemma 5.6 to Fn we obtain a subset A′ ⊂ A ∩ Fn such that

|A′ ∩ (Fn \ F ′)|
|Fn \ F ′|

6 αn +
1

Q2
for all C(Fn, Q)-measurable tableau F ′ $ Fn. (6.3)

and
|A′|
|Fn|

> αn.

Now let

A0 = A′ \

( ⋃̀
m=1

BadRowm ∪BadColm

)
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where we have used the language of Definition 5.8. We have by Lemma 5.9 that

|A0| > |A′| − (L+ 1)Q−1|Fn| > (αn − (L+ 1)Q−1)|Fn|. (6.4)

So from αn >
3
4
α and (6.1) we get that

|A0|
|Fn|

>
1

2
α (6.5)

is bounded away from zero.
Applying the δ-heavy truncated Plünnecke’s inequality (Proposition 3.2) with δ =

Q−1/2 to the finite set A0 ⊂ Fn, we get

|(A+ k′B) ∩ Fn|
|A0|

>
|(A0 + k′B) ∩ Fn|

|A0|
> (1−Q−1/2)

(
|(A′0 + kB) ∩ Fn|

|A′0|

)k′/k
(6.6)

for some nonempty A′0 ⊂ A0 with

|A′0| > Q−1/2|A0|.

Now let
Sn =

⋃
v∈A′0

(v + [0,∞)2) ∩ Fn

be the smallest set that contains A′0 and is the complement (in Fn) of a tableau region
contained in Fn. We have by Lemma 5.5 that

|S̃n \ Sn|
|Fn|

6
2

Q
(6.7)

where S̃n is the smallest C-measurable set that contains Sn. Now note that

|Sn|
|Fn|

>
|A′0|
|Fn|

>
Q−1/2|A0|
|Fn|

>
1

2
αQ−1/2 (6.8)

by (6.5). Combining these two estimates gives

|S̃n|
|Sn|

6 1 + 4α−1Q−1/2. (6.9)

Also notice that S̃n is the complement of a C(Fn, Q)-measurable tableau, and thus we
may apply (6.3) to obtain

|A′0|
|S̃n|

6
|A′ ∩ S̃n|
|S̃n|

6 αn +
1

Q2
. (6.10)
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Now applying the inequalities (6.6), followed by (6.4), followed by (6.10) and then
finally (6.9) we obtain

(
|(A+ k′B) ∩ Fn|

|Fn|

)k/k′
>

(
|A0|
|Fn|

(1−Q−1/2)
)k/k′ |(A′0 + kB) ∩ Fn|

|A′0|

>
(
(αn − (L+ 1)Q−1)(1−Q−1/2)

)k/k′ |(A′0 + kB) ∩ Fn|
|A′0|

=
(
(αn − (L+ 1)Q−1)(1−Q−1/2)

)k/k′ |S̃n|
|A′0|
|(A′0 + kB) ∩ Fn|

|S̃n|

>
(
(αn − (L+ 1)Q−1)(1−Q−1/2)

)k/k′
(αn +Q−2)−1

|(A′0 + kB) ∩ Fn|
|S̃n|

>
(
(αn − (L+ 1)Q−1)(1−Q−1/2)

)k/k′
(αn +Q−2)−1(1 + 4α−1Q−1/2)−1

|(A′0 + kB) ∩ Fn|
|Sn|

which, by letting λ(n,Q) denote the factor before
|(A′0+kB)∩Fn|

|Sn| , we rewrite as

(
|(A+ k′B) ∩ Fn|

|Fn|

)k/k′
> λ(n,Q)

|(A′0 + kB) ∩ Fn|
|Sn|

. (6.11)

Using lim infn→∞ αn > α (justified in (6.2)) it is an easy calculation to show that2

lim inf
Q→∞

lim inf
n→∞

λ(n,Q) > α
k
k′−1. (6.12)

We now wish to show that

lim inf
Q→∞

lim inf
n→∞

|(A′0 + kB) ∩ Fn|
|Sn|

> dTab(L)(kB).

Note that this holds trivially in the case that kB = N2, as in this case we have that
|(A′0 + kB) ∩ Fn| = |Sn ∩ Z2| and thus

|(A′0 + kB) ∩ Fn|
|Sn|

= 1. (6.13)

We now return to the general case. Apply Lemma 5.7 toA′0 and Sn to obtain a1, a2, . . . , aJ ∈
A with3

y(aj) 6 y(aj−1)−Q
2We cannot reverse these limits, since the definiton of αn depends on Q and we also chose n > Ñ(Q).
3Recall the notation y(a, b) = b.
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such that the set

G :=
J⋃
j=1

(
aj + [0,∞)2

)
∩ Fn

satisfies

|Sn \G|
|Fn|

6
3

Q
. (6.14)

Now decompose

G =
J⊔
j=1

Gj

where
G1 = (a1 + [0,∞)2) ∩ Fn

and
Gj = (aj + [0,∞)2) ∩ Fn ∩ {(x, y) ∈ R|y < y(aj−1)},

for 1 < j 6 J . Note that Gj is a tableau region translated by aj (cf. Figure 6 in the proof
of Lemma 5.7).

Claim: Each Gj is a union of at most L rectangles with bottom corner aj, each with
side lengths at least Q.

Proof of Claim: Writing aj = (x, y), we can write (see Figure 6)

Gj =
⋃
m

[x,Wm)× [y,min{y(aj−1), Hm})

where the union is over m ∈ {1, . . . , `} such that x < Wm and y < Hm (for j = 1, we omit
the y(aj−1)). For such m, we have that Wm − x > Q and Hm − y > Q since aj avoids
BadRowm and BadColm, respectively. We also have y(aj−1) − y > Q by construction
of the aj. This completes the proof of the Claim.

This claim implies that

|(A′0 + kB) ∩Gj|
|Gj|

>
|(aj + kB) ∩Gj|

|Gj|
> dTab(L)(kB)− δ(Q)

where
δ : N→ [0,∞)

is a map (it depends on kB, but not n) such that4 limQ→∞ δ(Q) = 0. We thus have that

|(A′0 + kB) ∩G|
|G|

> dTab(L)(kB)− δ(Q).

4To see this, apply Lemma 3.4 to kB with R = Q and ε = δ(Q).
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Now combining (6.14) with (6.8) gives

|G|
|Sn|

> 1− 6α−1Q−1/2

and so we have that

|(A′0 + kB) ∩ Sn|
|Sn|

>
|(A′0 + kB) ∩G|

|Sn|

>
|G|
|Sn|

(dTab(L)(kB)− δ(Q))

>
(
1− 6α−1Q−1/2

)
(dTab(L)(kB)− δ(Q)).

So in summary, we have (see (6.11)) that(
|(A+ k′B) ∩ Fn|

|Fn|

)k/k′
> λ(n,Q)

(
1− 6α−1Q−1/2

)
(dTab(L)(kB)− δ(Q)).

Finally, this completes the proof as

dTab(L)(A+ k′B) = lim inf
n→∞

|(A+ k′B) ∩ Fn|
|Fn|

> lim inf
n→∞

λ(n,Q)k
′/k
(
1− 6α−1Q−1/2

)k′/k
(dTab(L)(kB)− δ(Q))k

′/k

from which we deduce Theorem 1.12 by letting Q→∞ and using (6.12).

7 Further questions

We now list some related open problems. We start by recalling the main motivating
question of this paper.

Question 7.1. For A,B ⊂ N2 and positive integers k′ < k, is it true that

dRect(A+ k′B) > dRect(A)1−
k′
k dRect(kB)

k′
k ?

One may state a finitistic version of this problem by considering the finitistic and
multidimensional analogue of the classical Schnirelmann density given by

σN,M(A) = min
06n6N,06m6M

A ∩ ([0, n]× [0,m])

(n+ 1)(m+ 1)

for A ⊂ N2 ∩ ([0, N ]× [0,M ]).

Question 7.2 (Multidimensional Schnirelmann density Plünnecke inequality). Fix posi-
tive integers N and M . If A,B ⊂ N2 ∩ ([0, N ] × [0,M ]), with (0, 0) ∈ B, then is it true
that

σN,M(A+ k′B) > σN,M(A)1−
k′
k σN,M(kB)

k′
k

for positive integers k′ < k ?
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We note that theM = 0 case is precisely Plünnecke’s classical inequality for Schnirelmann
density in N (Theorem 1.2). Even the following special case is not clear.

Question 7.3. What is the answer to Question 7.2 in the case M = 1?

A Densities of fractal sets

We will now prove our formulae for dTab(A) and dRect(A) (Proposition 1.15) for fractal
sets A. We will use the notation [a, b) = {x ∈ Z|a 6 x < b}. So let us fix in this section
A = A(P,N) a fractal set, where N ∈ N and P ⊂ {0, 1, . . . , N}2 is a pattern. We also fix
the data Ak ⊂ Pk and uk ∈ N given in Definition 1.14.

A.1 Rectangular density

We first deal with the rectangular case; so in this subsection we fix a Følner sequence of
the form Fn = [0,Wn)× [0, Hn) ∩ N2, n = 1, 2, 3 . . . where Wn, Hn →∞. It is enough to
show that

lim inf
n→∞

|A ∩ Fn|
|Fn|

> α := min

{
|P ∩ I|
|I|

| I = [0, x]× [0, y] ∩ N2 for some x, y ∈ {0, 1, . . . , N}
}

(A.1)

as it is easy to see that
α > dTab(A)

by considering the Følner sequence

Fk = [0, (x+ 1)uk)× [0, (y + 1)uk)

where (x, y) ∈ {0, 1 . . . , N}2 attain the minimum in (A.1).
Define the core of Fn to be the set

F o
n = Fn ∩ [0, (N + 1)ukn)2

where kn is the largest positive integer such that [0, ukn)2 ⊂ Fn. Our goal is to show the
following two inequalities

lim inf
n→∞

|F o
n ∩ A|
|F o
n |

> α (A.2)

lim inf
n→∞

|(Fn \ F o
n) ∩ A|

|Fn \ F o
n |

> α (A.3)

which will imply the formula for rectangular density. The key ingredient is the follow-
ing Perturbation Lemma.
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Lemma A.1 (Perturbation Lemma). Suppose F = [0,W )× [0, H)∩N2 where (W,H) ∈
N2. Suppose that for some k ∈ N we have that uk 6 H 6 uk+1 and W 6 uk+1. Then
there exists H̃ ∈ {iuk|i ∈ {1, 2, . . . N + 1}} such that

|F̃ ∩ A|
|F̃ |

6
|F ∩ A|
|F |

where
F̃ = [0,W )× [0, H̃) ∩ N2.

Proof. Since F \ [0, (N + 1)uk)
2 ⊂ A, it suffices to consider the case where W,H 6

(N + 1)uk. Write H = quk + r where r ∈ {0, 1, . . . uk − 1} and q ∈ {1, . . . , (N + 1)}. If
q = N + 1 then we must have r = 0, which means that we can set H̃ := H = (N + 1)uk
and we are done with the proof, so let us now assume q < N + 1. The quantity

|A ∩ ([0,W )× {t})|
|W |

is constant for t ∈ {0, 1, . . . uk − 1} since the sets A ∩ ([0,W )× {t}) all have the same
projection onto the x-axis (see Figure 9). We denote this constant by C.

Figure 9: The cross sections A∩ ([0,W )×{t}) and A∩ ([0,W )×{t′}) are the same upto
a vertical translation.

It will be convenient to use the notation

d(X|Y ) =
|X ∩ Y |
|Y |
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where X, Y are finite sets. Hence if we define, for t = 0, 1, . . . uk, the expression

g(t) := d (A|[0,W )× [0, quk + t)) =
|A ∩ [0,W )× [0, quk + t)|

W (quk + t)

then we can rewrite it as a convex combination

g(t) = λ · d (A|[0,W )× [0, quk)) + (1− λ)C (A.4)

where

λ =
Wquk

W (quk + t)
.

Now notice that g(t) is a monotonic function of λ, and thus a monotonic function of t.
Hence the minimum of g(t) occurs at either t = 0 or t = uk. If it occurs at t = 0, we set
H̃ = quk while if it occurs at t = uk, we set H̃ = (q + 1)uk. We thus get that

|A ∩ F̃ |
|F̃ |

6
|F ∩ A|
|F |

where F̃ = [0,W )× [0, H̃).

Remark A.2. In Lemma A.1 one may drop the hypothesis that uk+1 > H if one replaces
A with Pk. The reason is that this hypothesis was only used to show that the cross section
density C was constant with respect to t, which is not an issue if one replaces A with Pk.
This variation of the lemma will also be useful.

Lemma A.3 (Perturbing both sides). In the situation of Lemma A.1 if it is also the case
that W > uk, then there exists H̃, W̃ ∈ {iuk | i ∈ {1, 2, . . . N + 1}} such that

|F̃ ∩ A|
|F̃ |

6
|F ∩ A|
|F |

where
F̃ = [0, W̃ )× [0, H̃) ∩ N2.

Proof. After applying Lemma A.1, apply it again with dimensions reversed.

We may apply Lemma A.3 with F = F o
n (and k = kn) to obtain the corresponding

rectangle F̃ o
n which satisfies

|F̃ o
n ∩ A|
|F̃ o
n |

6
|F o
n ∩ A|
|F o
n |

.

However, by definition of α, it is clear that

|F̃ o
n ∩ Pkn|
|F̃ o
n |

> α.
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But since uk
uk−1
→∞, we have that

| |F̃
o
n ∩ Pkn|
|F̃ o
n |

− |F̃
o
n ∩ A|
|F̃ o
n |
| → 0 as n→∞,

which shows (A.2). Now we turn to showing (A.3). Suppose, WLOG, that Hn > Wn,
thus

Fn \ F o
n = [0,Wn)× [(n+ 1)ukn , Hn).

Now if we are in the degenerate case where Hn 6 ukn+1 then in fact Fn \ F o
n = ∅ and so

we are done. If however Hn > ukn+1 then |Fn\F o
n |

|Fn| > 1− εn, for some εn → 0, which means

that we may replace Fn \ F o
n with Fn in (A.3) to get a logically equivalent statement. So

we apply Lemma A.1 (with k being the largest integer such that Hn > uk and F = Fn)
and argue as before.

Remark A.4. We did not really need to consider the definition of a core, but this notion
will be useful in establishing the formula for Tableaux density in the next subsection.

A.2 Tableaux density

We will now prove the formula for dTab(A) for the fractal set A = A(N,P ). In this
subsection we fix an integer L > 1 and a Følner sequence

Fn =
L⋃
j=1

[0,Wn,j)× [0, Hn,j) .

Now let

β = min

{
|P ∩ T |
|T |

| T ⊂ {0, 1, . . . , N}2 is a tableaux

}
.

We wish to show that

β 6 lim inf
n→∞

|A ∩ Fn|
|Fn|

,

where Hn,j is decreasing and Wn,j is increasing in j, for each fixed n.
Exactly as in Section A.1, we define the core of Fn to be the set

F o
n = Fn ∩ [0, u1+kn)2

where kn is the largest positive integer such that [0, ukn)2 ⊂ Fn. As before, we start with
a perturbation lemma. We note again that (since uk

uk−1
→∞)

lim
n→∞

∣∣∣∣ |A ∩ Fn||Fn|
− |Pkn ∩ Fn|

|Fn|

∣∣∣∣ = 0. (A.5)
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Lemma A.5 (Order L perturbation lemma). Let

F =
L⋃
j=1

[0,Wj)× [0, Hj)

for some positive integers H1 > · · · > HL and W1 6 · · · 6 WL. Now suppose that there
exists a positive integer such that k be the largest positive integer such that [0, uk)

2 ⊂ F ⊂
[0, uk+1)

2. Then, for each j = 1, . . . , L, there exists W̃j, H̃j ∈ {iuk | i ∈ {1, . . . , N + 1}}
such that

|Pk ∩ F̃ |
|F̃ |

6
|Pk ∩ F |
|F |

where

F̃ =
L⋃
j=1

[0, W̃j)× [0, H̃j)

and H̃1 > · · · > H̃L and W̃1 6 · · · 6 W̃L

Proof (Sketch): The L = 1 case is essentially Lemma A.3 (see Remark A.2. In fact, in
this proof we always use the formulation given in that remark). For L > 1 we proceed by
induction as follows. Let H = H1,W = W1 and apply Lemma A.1 to [0, H) × [0,W ) to
produce H̃. Now if H̃ > H2 then set H̃1 = H̃. However if H̃1 < H2 then we see, by the
same convexity argument as in Lemma A.1, that

|Pk ∩ F ′|
|F ′|

6
|Pk ∩ F |
|F |

where

F ′ =
L−1⋃
i=1

[0,Wi+1)× [0, Hi+1)

and so we are done (in this case) by applying the induction hypothesis to F ′. We construct
H̃2, . . . H̃L by continuing in this way (for example, to get H̃2 one applies the same technique
to [W1,W2)× [0, H2)).

The formula for the tableaux density of A now follows by applying Lemma A.5 to the
core of Fn (with k = kn) and arguing as we did in the case of rectangular density.

B Density of cartesian products

We now prove the property

dTab(L)(A×B) = d(A)d(B) (B.1)

for A,B ⊂ N and L ∈ Z>0. It is clear that

dTab(L)(A×B) 6 d(A)d(B)
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and so we focus on proving the reverse inequality. We do this by induction on L. The
L = 1 case is clear, so let us suppose that L > 1 and that the property holds for Tab(L−1).
Let A,B ⊂ N and let

Fn = N2 ∩
L⋃
i=1

[0,Wn,i)× [0, Hn,i)

be a sequence (where Wn,1 < · · · < Wn,L and Hn,1 > · · · > Hn,L are positive integers with
Wn,i, Hn,i →∞ as n→∞ for each i) such that

dTab(L)(A×B) = lim
n→∞

|(A×B) ∩ Fn|
|Fn|

.

Now we assume, by passing to a subsequence if necessary, that the limit

αi := lim
n→∞

|A ∩ [Wn,i,Wn,i+1)|
Wn,i+1 −Wn,i

exists for i = 0, . . . , L− 1 (where Wn,0 = 0). Likewise, we assume that

βj := lim
n→∞

|B ∩ [Hn,j+1, Hn,j+2)|
Hn,j+2 −Hn,j+1

exists for j = 0, . . . , L − 1 (where Hn,L+1 = 0). Using the fact that α0 > d(A) and
βL−1 > d(B) we can easily deduce that one of the following must occur:

(a) There exists r ∈ {0, . . . , L− 1} such that αr > d(A) and βr > d(B).

(b) There exists r ∈ {0, . . . , L− 2} such that αr+1 < d(A) and βr < d(B).

Let us first consider the case where (a) occurs. Hence

lim
n→∞

|(A×B) ∩ ([Wn,r,Wn,r+1)× [Hn,r+2, Hn,r+1)) |
|[Wn,r,Wn,r+1)× [Hn,r+2, Hn,r+1)|

= αrβr > d(A)d(B). (B.2)

Now consider the sequence

F ′n = Fn \ ([Wn,r,Wn,r+1)× [Hn,r+2, Hn,r+1)) = N2 ∩
⋃
i 6=r

[0,Wn,i)× [0, Hn,i)

and observe that it is in Tab(L− 1). Thus the induction hypothesis implies that

lim inf
n→∞

|(A×B) ∩ F ′n|
|F ′n|

> dTab(L−1) = d(A)d(B). (B.3)

Combining (B.2) and (B.3) give

lim inf
n→∞

|(A×B) ∩ Fn|
|Fn|

> d(A)d(B),
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which completes the induction step in this case.
Now suppose that (b) occurs. Hence

lim
n→∞

|(A×B) ∩ ([Wn,r+1,Wn,r+2)× [Hn,r+2, Hn,r+1)) |
|[Wn,r+1,Wn,r+2)× [Hn,r+2, Hn,r+1)|

= αr+1βr < d(A)d(B). (B.4)

Now, let
F ′′n = Fn t ([Wn,r+1,Wn,r+2)× [Hn,r+2, Hn,r+1)) ∩ N2,

and observe that the sequence (F ′′n )n is an element of Tab(L − 1). Hence the induction
hypothesis implies that

lim inf
n→∞

|(A×B) ∩ F ′′n |
|F ′′n |

> d(A)d(B). (B.5)

Combining the estimates (B.4) and (B.5) gives

lim inf
n→∞

|(A×B) ∩ Fn|
|Fn|

> d(A)d(B),

which completes the induction step in this case.
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