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Abstract

The words separation problem, originally formulated by Goralcik and Koubek
(1986), is stated as follows. Let Sep(n) be the minimum number such that for
any two words of length 6 n there is a deterministic finite automaton with Sep(n)
states, accepting exactly one of them. The problem is to find the asymptotics of the
function Sep. This problem is inverse to finding the asymptotics of the length of
the shortest identity in full transformation semigroups Tk. The known lower bound
on Sep stems from the unary identity in Tk. We find the first series of identities
in Tk which are shorter than the corresponding unary identity for infinitely many
values of k, and thus slightly improve the lower bound on Sep(n). Then we present
some short positive identities in symmetric groups, improving the lower bound on
separating words by permutational automata by a multiplicative constant. Finally,
we present the results of computer search for short identities for small k.
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1 Introduction

Telling two inputs apart is one of the simplest computational problems one can imagine.
As usual, the inputs are thought of as two finite words u, v over a finite alphabet Σ. Both
u and v are known in advance; then one of them is fed to the algorithm which should
decide whether this is u or v. For a powerful computational model, such as the RAM
model, the problem can be solved with constant space (in the length of the words): we
need just one register to scan the input word until we reach a position in which u and v
differ and look at the symbol at this position to decide whether we see u or v (a word can
be supposed to end with a unique sentinel symbol). However, if the computational model
is weak, like the finite automaton, the situation changes drastically, and distinguishing
two words can no longer be done with constant space. The problem of determining the
minimal size of a finite automaton separating two given words is NP-hard, as follows from
some known algebraic results (see the discussion below). Moreover, even if we look at the
maximal possible size of such automaton for words of a given length, very little is known
about the asymptotics of this value. To make it more precise, we need some definitions.

We use the array notation w = w[1..n] to represent finite words over finite alphabet Σ
when appropriate, and also the standard notions of factors, prefixes, suffixes. We write
|w| for the length of w and |w|x for the number of occurrences of the letter x in w. We
treat a deterministic finite automaton (dfa) as a quadruple A = {Σ, Q, δ, s}, consisting
of a finite alphabet, a finite set of states, a transition function, and an initial state. We
write q.w for the state of A obtained by reading the word w ∈ Σ∗ starting in the state
q ∈ Q. The dfa A separates words u, v ∈ Σ∗ if s.u 6= s.v. (Equivalently, there exists a
set T ⊂ Q of accepting states such that exactly one of the words u, v is accepted.) Let
Sep(u, v) be the minimum number of states in a dfa separating u and v.

Let Tk denote the semigroup of all selfmaps of the set {1, . . . , k} under the composition
of maps; it is called the full transformation semigroup on k elements. An identity in a
semigroup T is a pair of words (u, v) over an alphabet Σ such that the images of u and v
under any map Σ→ T are equal as the elements of T . By the length of the identity (u, v)
we mean the maximum of |u|, |v|. We write u ≡k v to indicate the fact that (u, v) is an
identity in Tk. The transition semigroup of a dfa A is a subsemigroup of T|Q| consisting
of all maps w : q → q.w, where w ∈ Σ∗. The following simple fact connects identities and
separation:

Fact 1. For any words u, v, the identity u ≡k v holds if and only if Sep(u, v) > k.

Indeed, if u ≡k v, then this identity holds for the transition semigroup of any k-state
dfa A, implying q.u = q.v in it for any state q. If otherwise ρ(u) 6= ρ(v) in Tk for some
map ρ : Σ → Tk, then the transformations ρ(a), a ∈ Σ can be used to define transitions
in the k-state dfa separating u and v.

It is known that the problem of checking whether u ≡k v is coNP-complete for any
k > 2 [1, 8]. So by Fact 1, it is NP-complete to check whether Sep(u, v) 6 k.

Let Sep(n) = maxu,v∈Σ6n Sep(u, v). The problem of describing the asymptotics of
Sep(n) was first posed by Goralcik and Koubek [5]. Due to Fact 1, this problem is
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equivalent to finding the asymptotics of the minimum length of an identity in Tk. For the
existing results on the identities in Tk see, e.g., [11] and the references therein. Up to now
the shortest known identity in Tk has been the unary identity

xk−1 ≡k x
k−1+lcm(k), (1)

where lcm(k) denotes the least common multiple of the integers 1, . . . , k. Hence, Sep(n) >
k for n > lcm(k)+k−1. Since log(lcm(k)) = k+o(k) by the Prime Number Theorem1, this
inequality can be rewritten as Sep(n) > log n + o(log(n)). The logarithmic lower bound
was presented already in [5], while the best known upper bound for Sep(n), obtained by
Robson [12], is O(n2/5 log3/5 n). Such a huge gap suggests that either of these bounds can
be very loose. In this paper we present a new series of identities in Tk. These identities
are shorter than (1) whenever k is a prime or a power of an odd prime. (More precisely,
if k = pi for a prime p, then our identities are approximately p/2 times shorter than (1).)
As far as we know, this is the first example of identities in Tk that are shorter than (1).

There are several variations of the words separation problem; see, e.g., [4]. One varia-
tion requires a separating dfa to be permutational, which means that every letter acts on
the set of states as a permutation (i.e., |Q.a| = |Q| for any a ∈ Σ). We denote the analog
of the function Sep for permutational automata by Sepp. Similar to Fact 1, Sepp(u, v) > k
if and only if the pair (u, v) is an identity of the symmetric group Sk. Such group identities
in semigroup signature are called positive and denoted below by u ∼=k v. The best known
upper bound for Sepp(n) is also due to Robson [13] and is O(n1/2). To get reasonable
lower bounds on Sepp(n), one should find positive identities in Sk which are shorter than
the unary identity xlcm(k) = 1. In general, the problem of finding short identities in finite
symmetric groups has drawn some attention in the literature. The existence of an identity
of length O(e

√
n logn) was proved in [3] based on Landau’s bound on the maximum order

of a permutation [10]. Very recently, the existence of identities of length O(elog4 n log logn)
was established by Kozma and Thom [9] based on a new result on the diameter of the
Cayley graph of Sk [6]. However, the method of finding short identities in Sk uses chains of
iterated commutators and thus cannot be translated to produce short positive identities.
So the problem of the existence of short positive identities remains open. Here we present
some series of such identities, showing that Sepp(n) > 3

2
log n+ o(log n). Besides this, we

present the results of computer-assisted studies for small k, providing, in particular, some
exact values for the functions Sep and Sepp.

The rest of the paper consists of two sections. In Section 2 we present our results on
Sep and the identities in Tk, while in Section 3 we consider Sepp and positive identities in
Sk, together with the connection between Sep and Sepp.

2 Identities in Tk

An identity (u, v) of a semigroup T is reducible if there is an identity (u′, v′) of T and
a nonempty word w such that either u = wu′, v = wv′, or u = u′w, v = v′w; otherwise,

1In this paper, (a) the notation log stands for the natural logarithm; (b) the small-o-expressions can
have any sign, so we always write ’+’ before them.
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the identity is said to be irreducible. Since we are interested in short identities, we will
consider only irreducible ones. As was already observed, the shortest irreducible unary
identity of any semigroup Tk is identity (1). The following easy fact is well known; a proof
can be found in [4].

Fact 2. For any pair of distinct non-unary words (u, v) such that u ≡k v there is a pair
(u′, v′) of distinct binary words such that |u′| = |u|, |v′| = |v|, and u′ ≡k v

′.

Hence, in the quest for short non-unary identities in Tk we restrict ourselves to identi-
ties and dfa’s over the binary alphabet {x, y}. The following necessary conditions for an
identity in Tk are known from [4,5, 12].

Fact 3. If u ≡k v, then the words u, v have (i) the same prefix of length k−2, (ii) the
same suffix of length k−1, and (iii) the same set of factors of length k−12.

We illustrate this fact with Fig. 1, showing the dfa’s separating u and v in the case of
violation of the conditions (i)–(iii).

a)

1 2 · · · l+1

l+2

l+3

x

y

x,y

x,y· · ·

︷ ︸︸ ︷common prefix

b)

1 2 3 4 5 6 7x y y x x y

y x

x
y

y
x

x

y

c)

1 2 3 4 5 6 7x y y x x y

y x

x
y

y
x

x, y

Figure 1: Separation by prefixes, suffixes, and factors: (a) such a dfa with with l+3 states separates
two words having the common prefix of length exactly l; (b) this example of the Aho-Corasick automaton
finishes its work in the rightmost state if and only if the input word has the suffix xyyxxy; such a dfa
can be built for any suffix; (c) this variation of the previous automaton reaches the rightmost state if and
only if the input word contains the factor xyyxxy; again, such a dfa can be built for any factor.

Recall that, given a word w ∈ Σ∗ and a dfa A, w can be viewed as a transformation
of the set of states of A. The digraph of this transformation has one or more cycles (see
an example in Fig. 2). Each such cycle is referred to as a w-cycle.

An identity (u, v) is uniform if |u| = |v|. Let us first consider non-uniform identities.

2This is related, but not equivalent, to the (k−1)-Abelian equivalence of u and v. The notion of k-
Abelian equivalence is popular in modern combinatorics of words; see, e.g., [7] and the references therein.
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1 2 3 4 5 6w w
w

w w

w

Figure 2: An example of the transformation of the set of states by a word.

Proposition 4. A unique shortest binary non-uniform irreducible identity is

xk−2yxk−1 ≡k x
k−2+lcm(k)yxk−1 (2)

Proof. First we use Fact 1 to check that (2) is an identity. Consider any binary dfa
A = ({x, y}, Q, δ, s), |Q| = k, and prove that A does not separate the parts of (2). To
separate them, A should separate xk−2 from xk−2+lcm(k). If the state s.xk−2 ∈ Q belongs
to an x-cycle, no separation is possible, because the length of this cycle divides lcm(k).
Hence s.xk−2 does not belong to an x-cycle. Then Q = {s, s.x, . . . , s.xk−1} and the only
x-cycle is the loop on the state s.xk−1. Therefore, xk−1 acts on Q as a constant, implying
that A is unable to separate the parts of (2).

Now assume that u ≡k v and |u| < |v| 6 lcm(k) + 2k− 2 (this number is the length of
identity (2)). By Fact 1, Sep(u, v) > k. Let |u|x = l, |v|x = l +m, and w.l.o.g. m > 0. If
m is not divisible by lcm(k), then some i 6 k does not divide m. In this case u and v are
separated by the i-state dfa in which y is the identity map and x is a cyclic permutation.
Therefore the restriction on the length of v implies m = lcm(k). By the same argument,
|u|y = |v|y. So |v| − |u| = lcm(k), as in (2). In addition, u and v satisfy the conditions
(i)–(iii) of Fact 3. Let |u| < 2k − 2. Then u is completely covered by its prefix from
(i) and its suffix from (ii). Then all y’s in v occur in this prefix and/or suffix. Hence v
contains xk−1; by (iii), so does u. Let u = zxk−1w for some words z, w. Since u is short, z
(resp., w) is a part of the common prefix (resp., suffix) of u and v. So v = zxk−1+lcm(k)w.
But this means that the identity u ≡k v is reducible to (1). This contradiction proves the
assumption |u| < 2k − 2 false.

Finally, let |u| = 2k − 2, z = u[1..k−2], a = u[k−1], w = u[k..2k−2]. Then u = zaw
and v = zv′w for some word v′ of length lcm(k) + 1. The equality |u|y = |v|y implies
that v′ contains exactly one y if a = y and v′ = xlcm(k)+1 otherwise. Either way, v′ is long
enough to contain the factor xk−1, so u contains it as well. If this factor is not a suffix
of u, then u ≡k v is reducible to (1) as in the previous paragraph. Hence w = xk−1. If v
has the prefix za, then this prefix contains all y’s in v; so u = zaxk−1, v = zaxlcm(k)+k−1,
and again our identity is reducible to (1). Therefore u begins with zy and v begins with
zx (the opposite case is impossible since |u|y = |v|y). Note that zy is a factor of v by
Fact 3(iii). Since v has a unique y outside its prefix z (it is in v′), this y is preceded by
z. So v has two occurrences of z, and they together contain the same number of y’s as
the prefix z of u. This is possible only if z = xk−2. Thus, each of u = xk−2yxk−1 and v
contain a single occurrence of y; say, v[l] = y. We have l > k − 1, because v begins with
zx = xk−1. If l and k − 1 are distinct modulo i for some i 6 k, then a dfa separating
u and v is easy to construct: an x-cycle of length i contains the initial vertex, and the
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y-edges from s.xk−1 and s.xl lead to the same vertex of this cycle, so that the remaining
x’s will be read to different vertices. Therefore, l = k − 1 + lcm(k), implying that the
identity u ≡k v coincides with (2).

Next we switch to uniform identities. An identity (u, v) is balanced if |u|a = |v|a for
every letter a.

Proposition 5. A unique shortest binary uniform unbalanced identity is

xk−1+lcm(k)yk−1 ≡k x
k−1yk−1+lcm(k) (3)

Proof. Since (3) is obtained by multiplying two copies of (1), it is obviously an identity.
Now consider any uniform unbalanced identity u ≡k v of length at most lcm(k) + 2k − 2,
which is the length of (3). Similar to the proof of Proposition 4, we obtain that |u|x > |v|x
implies |u|x = |v|x + lcm(k) and |v|y = |u|y + lcm(k). Let u = zu′w, v = zv′w, where
z (resp. w) is the longest common prefix (resp., suffix) of u and v. By Fact 3 we have
|z| > k − 2, |w| > k − 1, and thus |u′| 6 lcm(k) + 1. If |u′| = lcm(k) + 1, we can assume
u′ = xlcm(k)+1, v′ = yixyj, where i, j > 0 (if u′ contains fewer x’s, then v′ = ylcm(k)+1, so
we get a symmetric case). Then xk−1 is a factor of v by Fact 3, implying w = xk−1. Now
all factors of u of length k − 1 end with x, which is not the case for v; again by Fact 3, u
and v cannot form an identity. Hence, |u′| 6 lcm(k). So we have u′ = xlcm(k), v′ = ylcm(k).
Since xk−1 is a factor of v, yk−1 is a factor of u, we immediately get the identity (3) up to
renaming the letters.

Proposition 6. Every Tk satisfies the binary uniform balanced identity

xk−2+lcm(k)yxk−1 ≡k x
k−2yxk−1+lcm(k) (4)

Proof. The same argument as in Proposition 4 works: for any dfa with k states either
s.xk−2 = s.xk−2+lcm(k) or xk−1 is a constant map.

The summary of the proved statements is as follows: the shortest non-unary unbal-
anced identities in the semigroup Tk have exactly the same length lcm(k)+2k−2 as some
binary balanced identity, and are slightly longer than the unary identity of this semigroup.
The question is whether there exist shorter balanced binary identities.

Remark 7. An exhaustive computer search reveals that identities (4) are the shortest
binary identities in the semigroups Tk for k 6 4. For k = 5, such a search is beyond
capabilities of any computer. However, below we show that T5 does have a shorter identity
as well as infinitely many other semigroups Tk.

Theorem 8. Semigroup Tk satisfies the following identity of length 2lcm(k−1)+6(k−1):

(xy)k−2+lcm(k−1)(yx)k(xy)k−1 ≡k (xy)k−2(yx)k(xy)k−1+lcm(k−1) (5)

Corollary 9. If k > 5 is either a prime or an odd prime power, the semigroup Tk satisfies
an identity which is shorter than the unary identity (1).
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Proof of Theorem 8. Let us take a k-state dfa A and consider the transformation xy in
it. As usual, s stands for the initial state of A. If the state s.(xy)k−2 does not belong
to any (xy)-cycle, then we see, similar to Proposition 4, that (xy)k−1 is a constant map.
So in this case A does not separate the sides of (5). Assume that s.(xy)k−2 belongs to
an (xy)-cycle of length m. If m < k, then all (xy)-cycles in A have length < k. Since
q.(xy)k−1 belongs to some (xy)-cycle for any state q and the lengths of all (xy)-cycles
divide lcm(k−1), both sides of (5) move s to the same state. Finally, let m = k. Then
xy is a permutation (namely, a cycle of length k), and (xy)k = 1. Hence x, y and yx
are permutations, and clearly (yx)k = 1. Deleting (yx)k from both sides of (5), we get a
graphical equality, so once again we see that A is not separating.

Conjecture 10. Identity (5) for k = 5 is the shortest identity of T5.

This conjecture is partially verified by the computations described in the next section.

3 Positive Identities in Sk

The symmetric group Sk satisfies the positive identity xlcm(k) = 1 and its binary counter-
part xlcm(k) = ylcm(k). By the same argument, as the one used in Propositions 4 and 5,
these are the shortest unbalanced identities in Sk, so all shorter positive identities are
balanced. It is known that the shortest positive identity in S3 is x2y2 = y2x2 (folklore).
The shortest such identity in S4 has length 11: x6y2xy2 = y2xy2x6 [4]. We ran a computer
search for the positive identities in S5. Using an optimized search based on hash functions,
we checked all balanced pairs (u, v) of length at most 33, arriving at the following result.

Proposition 11. The shortest positive identities in S5 have length 32. Up to symmetry,
there are two such identities of length 32:

(xy)(xyyx)3(yxxy)2(yx)(yxxy)2 = (yxxy)2(xy)(yxxy)2(xyyx)3(yx) (6a)

(xy)4(yx)5(xy)6(yx) = (yx)(xy)6(yx)5(xy)4 (6b)

Also, S5 satisfies no irreducible positive identity of length 33.

Further, we checked the identities (6) in S6.

Proposition 12. A unique, up to symmetry, shortest positive identity of S6 is (6b).

Naturally enough, (6b) is not an identity in S7: these words are separated by a dfa in
which xy and yx are different cycles of length 7. Hence, the function Sepp(n) never takes
the value 6:

Proposition 13. One has

Sepp(1) = 2;
Sepp(2) = Sepp(3) = 3;
Sepp(4) = . . . = Sepp(10) = 4;
Sepp(11) = . . . = Sepp(31) = 5;
Sepp(32) = Sepp(33) = 7.

the electronic journal of combinatorics 24(3) (2017), #P3.35 7



Since for Sk is a subset of Tk for any k, we can derive some initial values of Sep from
Propositions 11–13 and Fact 3(i,ii).

Proposition 14. One has

Sep(1) = Sep(2) = 2;
Sep(3) = . . . = Sep(7) = 3;
Sep(8) = . . . = Sep(14) = 4;
Sep(15) = . . . = Sep(40) = 5;
Sep(48) > 5.

Proof. Since identity (4) is longer than (1), Remark 7 implies the values of Sep up to
n = 14 and the fact that Sep(15) > 4.

Let u ≡5 v. Then u ∼=5 v and, by Fact 3, u and v have a common prefix of length 3
and a common suffix of length 4. A direct computer check shows that the identities (6)
cannot produce an identity in T5 of length 39 or 40, so Sep(n) equals 5 for n = 15, . . . , 40
by Proposition 11. The last result follows from Theorem 8.

Identities (6) possess interesting properties. First, in both cases u, v ∈ {xy, yx}∗.
Second, (6a) is a palindrome (v is the reversal of u), while (6b) is a palindrome if considered
over {xy, yx}. Having observed this, we performed a further search for identities in S5

up to length 40, examining all pairs (u, v) such that either u, v ∈ {xy, yx}∗ or v is the
reversal of u. The search revealed eight more identities; they are presented in Table 1.
Note that some of them hold in S6 but none holds in S7.

Table 1: More short positive identities in S5.

no. |u| Identity Type Hold in S6?

1 34 (xy)12(yx)5 = (yx)5(xy)12 {xy, yx}-pal. Yes

2 38 (xy)4(yx)5(xy)6(yx)(xy)2(yx) = (yx)(xy)2(yx)(xy)6(yx)5(xy)4 {xy, yx}-pal. Yes

3 38 (xy)2(yx)3(xyyx)2(xy)2(yxxy)2(xyyx)2 =

(yxxy)2(xyyx)2(xy)2(yxxy)2(yx)3(xy)2 {xy, yx}-pal. No

4 39 (x2y2)2y(x2y2)4x2y(x2y2)2x2y = yx2(y2x2)2yx2(y2x2)4y(y2x2)2 palindrome No

5 39 (x2y2)3y(x2y2)4x2y(x2y2)x2y = yx2(y2x2)yx2(y2x2)4y(y2x2)3 palindrome No

6 40 (xyyx)3(yxxy)5(xyyx)2 = (yxxy)2(xyyx)5(yxxy)3 {xy, yx}-pal. No

7 40 (xy)6(yx)10(xy)4 = (yx)4(xy)10(yx)6 palindrome Yes

8 40 (x2y2)3(y2x2)5(x2y2)2 = (y2x2)2(x2y2)5(y2x2)3 palindrome No

Note that if zuw ≡k zvw, where z (resp., w) is the longest common prefix (resp.,
suffix) of both sides, then u ∼=k v. So, the search for the identities in T5 can be performed
by iterating over the identities of S5, using an exhaustive search for the candidates for z
and w. Such a search, based on the identities listed in (6) and Table 1, gave us exactly
one identity of T5, namely, the identity (5) for k = 5, that has length 48. The result of
this search supports Conjecture 10.
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The analysis of the identities listed in (6) and Table 1 results in finding some general
classes of identities in Sk. The simplest class, described in the following proposition,
allows us to move up the lower bound on the function Sepp by a multiplicative constant.

Proposition 15. Let a, b be such that the order of any element of Sk divides either a or
b. Then

(xy)a(yx)b ∼=k (yx)b(xy)a . (7)

Proof. For any x, y ∈ Sk the elements (xy) and (yx) have the same order. Then by the
choice of a, b either (xy)a = 1 or (yx)b = 1, implying the result.

Theorem 16. The symmetric group Sk satisfies a positive identity (7) of length

e
2
3
k+O( k

log k
).

Corollary 17. Sepp(n) > 3
2

log n+O
(

logn
log logn

)
.

Proof of Theorem 16. Take a number α, 0 < α < 1. Let m = bαkc and P (m) be the
product of all primes and prime powers from the range {m+1, . . . , k}. Choose a = lcm(m),
b = lcm(k − m) · P (m), and apply Proposition 15. Indeed, the order of a permutation
is the least common multiple of the length of its cycles; if a permutation has no cycle of
length greater than m, than its order divides a; if such a cycle exists, than all other cycles
are shorter than k −m, so the order divides b. Thus we get an identity of type (7) with
the a and b chosen3. Since the length of this identity is 2(a+ b), we want to find the value
of α which delivers the minimum for a+b. Clearly, α > 1/2, implying m > k/2. We use

standard asymptotic formulas (see, e.g., [2]) lcm(t) = et+O( t
log t

) and π(t) = t
log t

+O( t
log2 t

),

where π(t) is the number of primes smaller than t. To estimate P (m), we note that the
product of i factors equals their geometric mean taken to the ith power. Since all factors
are between m and k, their mean is k/β for some β between 1 and 2. To compute the
number of factors, we can use the asymptotics for π(m) (the number of prime powers
smaller than t is O(π(

√
t)) and thus does not affect the asymptotics). So we have

a =em+O( m
logm

) = em+O( k
log k

),

b =ek−m+O( k−m
log(k−m)

) ·
(k
β

) k
log k
− m

logm
+O( k

log2 k
)

= e2k−2m+O( k
log k

)

Thus the minimum of a+b is reached at α = 2/3 so that m = 2k/3, and this minimum is

e
2
3
k+O( k

log k
), as required.

A more involved class of identities is defined in the following proposition. The cor-
responding conditions can be easily extended to get identities with any even number of
blocks of the form (xy)a and (yx)b, but it is not clear if it is possible to build short
identities of this type for any k.

3It is easy to see that one can take a smaller number as b, replacing k−m with k−m−1 and the
product of lcm and P with their least common multiple. However, such an improvement does not change
the asymptotics: its effect is covered by the O-term in the asymptotic formula.
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Proposition 18. Let a, b, c, d be such that every order q of an element of Sk satisfies at
least one the following conditions or their counterparts obtained by swapping b with c, and
a with d: (i) q divides both a and c, (ii) q divides both a + c and b, (iii) q divides a and
b ≡ d (mod q). Then Sk satisfies the identity

(xy)a(yx)b(xy)c(yx)d ∼=k (yx)d(xy)c(yx)b(xy)a . (8)

Proof. We again use the fact that for any x, y ∈ Sk the elements (xy) and (yx) have
the same order. It is easy to see that each of the conditions (i)–(iii) forces some terms to
vanish from both sides of (8) in a way that the remaining words are graphically equal.

We have used Propositions 15 and 18 to run further computer experiments; in Table 2
we present the parameters of the shortest identities of types (7) and (8), obtained by
exhaustive search, and compare their lengths to the length lcm(k) of the unary identity.
Note that the parameters a and b of the shortest identity of type (7) in most cases are
equal to those chosen by the rule described in the proof of Theorem 16. For example, for
k = 23 we have a = lcm(16), b = lcm(6) · 17 · 19 · 23. So it looks probable that no other
way of choosing the pair (a, b) can improve the result of Theorem 16. The identities of
type (8) for small k are shorter than the identities of type (7), but it is unclear whether
this is true for all k.

Table 2: Parameters of the shortest positive identities of types (7),(8).

Identities of type (8) Identities of type (7)

k a b c d Len a b Len lcm(k)

5,6 1 6 5 4 32 12 5 34 60

7 2 14 12 10 76 60 7 134 420

8 23 60 7 24 228 60 56 232 840

9 18 60 42 24 288 180 56 472 2520

10 18 60 42 24 288 120 126 492 2520

11 48 180 132 84 888 840 198 2076 27720

12 24 222 420 198 1728 840 198 2076 27720

13 2520 286 5612 360360

14 2520 858 6756 360360

15 2520 1716 8472 360360

16 5040 8580 27240 720720

17 27720 10608 76656 12252240

18 55440 13260 137400 12252240

19 55440 251940 614760 232792560

20 360360 15504 751728 232792560

21 360360 77520 875760 232792560

22 360360 77520 875760 232792560

23 720720 445740 2332920 5354228880
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4 Conclusion

In this paper, we did the very first step in improving the lower bound on words separation
(or, from the other point of view, improving the upper bound on the shortest identity in
full transformation semigroups and the shortest positive identity in symmetric groups).
Apart from the experimentally obtained values of the separation functions Sep and Sepp
for small arguments, we obtained two asymptotic results:

• the logarithmic lower bound for Sep(n) is improved by an additive sublogarithmic
term for infinitely many values of n;

• the logarithmic lower bound for Sepp(n) is improved by a factor of 3/2.

The obvious next step should be an attempt to improve the function Sep by some factor
and prove a superlogarithmic lower bound for Sepp. Our general impression is that both
such improvements are possible. On the other hand, we are not so optimistic about the
existence of a superlogarithmic lower bound for Sep.
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