
The Spectral Gap of Graphs

Arising From Substring Reversals

Fan Chung Josh Tobin
Department of Mathematics

University of California, San Diego, U.S.A.

{fan,rjtobin}@ucsd.edu

Submitted: Mar 15, 2017; Accepted: Jun 29, 2017; Published: Jul 14, 2017

Mathematics Subject Classifications: 05C50

Abstract

The substring reversal graph Rn is the graph whose vertices are the permutations
Sn, and where two permutations are adjacent if one is obtained from a substring
reversal of the other. We determine the spectral gap of Rn, and show that its
spectrum contains many integer values. Further we consider a family of graphs that
generalize the prefix reversal (or pancake flipping) graph, and show that every graph
in this family has adjacency spectral gap equal to one.

1 Introduction

Consider a permutation τ in the symmetric group Sn, which we will write in word no-
tation (τ1, τ2, · · · , τn), where we denote τ(i) = τi. A substring is a subsequence of τ ,
(τi, . . . , τj), for some 1 6 i < j 6 n, and reversing this substring yields (τj, τj−1, . . . , τi).
A substring reversal of τ is any permutation obtained from τ by reversing a substring in
τ . Substring reversal is a well-studied operation on permutations, and often appears in
metrics on permutations, edit distances and permutation statistics. There are numerous
applications involving many variations of substring reversal, such as genome arrangements
and sequencing (see [2], [15], [18]).

The reversal graph Rn is the graph whose vertex set is the permutation group Sn,
where two vertices are adjacent if they are substring reversals of each other. Thus, Rn

has n! vertices and is regular with degree
(
n
2

)
. Many properties of the reversal graph Rn

have long been studied. One interesting problem is to determine the minimum number of
substring reversals needed to transform one given permutation in Sn to another, which is
equivalent to finding a shortest path in Rn. The smallest number of reversals required to
turn any permutation into any other is exactly the diameter of Rn, and it was shown in [2]
that the diameter of the reversal graph is exactly n−1. The connectivity and hamiltonicity
of Rn were investigated in [19]. There are still many questions concerning Rn that remain
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unresolved. In this paper, we examine the eigenvalues of Rn, and determine the second
largest eigenvalue of the adjacency matrix of Rn. Note that the second largest adjacency
eigenvalue of a regular graph is intimately related to the rate of convergence for random
walks on a graph. We use methods from graph coverings to determine the second largest
eigenvalue of Rn, although our techniques cannot be used to determine the whole spectrum
of Rn.

An intriguing variation of substring reversal is prefix reversal (or pancake flipping)
where only substrings of the form (τ1, . . . , τj) are allowed to be reversed. The prefix
reversal graph, or the pancake graph, Pn is a special subgraph of Rn. Pn also has vertex
set Sn but the edge set is restricted. In Pn, the neighbors of τ are the permutations of
the form

(τk, τk−1, · · · , τ1, τk+1, · · · , τn)

for 1 < k 6 n. In contrast to the reversal graph where the exact value of the diameter
is known, the problem of determining the diameter of the pancake graph has a long
history and still remains open. This problem was first posed by Jacob Goodman, under
the pseudonym Harry Dweighter, as a Monthly problem in 1975 [1]. If we denote the
diameter of the pancake graph on n vertices by f(n), then the current best upper bound
is f(n) 6 18

11
n, due to Chitturi et al. [5], improving on a previous bound of 5

3
n given

by Gates and Papadimitriou [11] in 1979. The best lower bound is f(n) > 15
⌊
n
14

⌉
,

which is due to Heydari and Sudborough [16]. Recently it was shown that the problem
of determining the exact minimum number of flips to transform one permutation τ1 into
another permutation τ2, for two given permutations τ1 and τ2, is NP–hard [3]. In [4], it
was determined that the spectral gap of Pn is one, answering a question posed in [14].
We will determine the spectral gaps for a family of graphs which contains certain Cayley
graphs including Pn, giving an alternative proof in that case. We then use the spectral
gap of Pn, together with a decomposition of Rn into Pn and copies of Rn−1, to determine
the second largest eigenvalue of Rn.

Theorem 1. If µ1, µ2 are the two largest eigenvalues of the adjacency matrix of Rn, then

µ1 =

(
n

2

)
, and µ2 =

(
n

2

)
− n.

We will consider a family of graphs that generalizes the pancake graph, and show that
for every graph in this family the spectral gap is one.

Theorem 2. Let Fn be the set of all graphs whose vertex set is the symmetric group Sn,
and where for each vertex τ and each 2 6 i 6 n, τ is adjacent to exactly one vertex of the
form

(τi, α2, α3, · · · , αi−1, τ1, τi+1, · · · , τn).

That is, the first and ith entries are swapped, and the entries in between are possibly
rearranged. Then for any graph G ∈ Fn, the two largest eigenvalues of the adjacency
matrix of G are n− 1 and n− 2. In particular, the adjacency spectral gap of G is 1.
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The graphs Rn and Pn, as well as many of the graphs in Fn, are Cayley graphs of
the symmetric group Sn. Indeed, Cayley graphs of the symmetric group have been the
subject of extensive study, with particular interest in their spectral gap. In [20], Lubotzky
posed the problem of finding a family of k-regular Cayley graphs of Sn with spectral gap
bounded away from zero; an explicit construction of such a family was found in [17].
For many particular Cayley graphs of Sn, the spectral gap has been computed [10, 9, 4],
and the case when S consists of transpositions is particularly well-studied. Of particular
relevance here, the Cayley graph with generating set

S = {(1 k) : 2 6 k 6 n}

belongs to the family Fn, and the spectral gap was determined to be 1 in [9].
The remainder of the paper is organized as follows. In Section 2 we review the nec-

essary background and establish notation. In Section 3 we recall the notions of graph
coverings and projections, which we will use frequently in our proofs. In Section 4 we
introduce a graph which is a projection of every graph in the family Fn, which provides
a lower bound of one on the spectral gap of every graph in this family. We establish the
corresponding upper bound in Section 5. In Section 6 we prove Theorem 1 and further
investigate the spectrum of Rn. We conclude with some problems and remarks.

2 Preliminaries

Before proceeding to define the graph spectra of interest here, we note that the definitions
of eigenvalues and eigenvectors are much simpler and cleaner for regular graphs than those
of weighted irregular graphs. Although the graphs Rn and the graphs in Fn, are regular,
we will consider various associated graphs which are irregular and weighted in order to
determine the spectral gap that we need. Furthermore, we remark that the spectral gap
of the adjacency matrix of a weighted or unweighted graph often depends on a few of
the largest degrees and therefore the spectral gap of the adjacency matrix can not be
used to determine the rate of convergence for random walks on irregular graphs. Instead
it is more appropriate to study the combinatorial Laplacian and normalized Laplacian.
In this section, we consider general weighted graphs and define the eigenvalues of the
normalized Laplacian, which will be important when we define graph covers. For undefined
terminology, the reader is referred to [7].

Let G denote a weighted undirected graph with edge weight wu,v = wv,u. The adja-
cency matrix of G, denoted by AG, has entries AG(u, v) = wu,v for vertices u and v. For
any vertex v ∈ V (G), the set of vertices adjacent to v is denoted by N(v). The degree dv
of a vertex v is defined to be

dv =
∑
u

wu,v.

We will only consider weighted graphs without isolated vertices, i.e., dv > 0 for all v.
Let DG be the diagonal degree matrix whose ith diagonal entry is equal to the degree
of the ith vertex. Then the combinatorial Laplacian of G is LG = DG − AG, and the
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normalized Laplacian is LG = D
−1/2
G LGD

−1/2
G . For a d-regular graph, we have LG =

1− 1
d
AG. The eigenvalues of the normalized Laplacian LG are denoted by 0 = λ0 6 λ1 6

. . . 6 λn−1 where n is the number of vertices in G. λ1 is called the spectral gap of the
normalized Laplacian, and the rate of convergence of random walks on G with transition
probability matrix P = D−1G AG is exactly λ−11 (see [7]). We will denote the eigenvalues of
the adjacency matrix of G by µ1 > µ2 > · · · > µn, and µ1 − µ2 is the spectral gap of the
adjacency matrix. For a regular graph of degree d, µ1 = d and µ2 = d(1− λ1).

Let φi denote the orthonormal eigenvector associated with λi. It can easily be shown
that φ0 = D

1/2
G /

√
vol(G) where vol(G) =

∑
v dv. Instead of dealing with eigenvectors φi

of LG, it is often convenient to consider the corresponding harmonic eigenfunction defined
by fi = D

−1/2
G φi which satisfies

λifi(u)du =
∑
v

wu,v(f(u)− f(v))

for all vertices u. Note that for regular graphs, harmonic eigenfunctions are exactly
eigenfunctions. Moreover, for regular graphs the eigenfunctions of L, L and A are the
same, and the corresponding spectra are translations of each other.

We will frequently deal with permutations, so we establish the notation that we will
use. The symmetric group is denoted as Sn throughout. Every permutation will be
given in word notation, that is, as a list of numbers (τ1, τ2, · · · , τn), which indicates that
permutation τ maps i to τi. We will sometimes refer to the value τi as the ith entry or
position of the permutation τ . When we write the product of two permutations, such as
πσ, we take this to mean: first apply permutation σ, then apply permutation π.

As discussed in Section 1, Rn and many of the graphs in the family Fn are Cayley
graphs. We briefly recall the definition here. Let H be a finite group, and S a subset of
H. We say that S is a symmetric set if whenever s ∈ S, we also have s−1 ∈ S. Given a
symmetric set S that generates the group H, the right-Cayley graph CayR(H,S) is the
graph with vertex set equal to H, and edges of the form {x, xs} for all x ∈ H, s ∈ S.
This is an undirected |S|-regular graph. A left-Cayley graph is defined similarly, with
edges of the form {x, sx}. For example, let S be the set of permutations corresponding
to substring reversals. That is, S consists of the permutations obtained from taking the
identity permutation (1, 2, 3, · · · , n) and reversing a substring. Then Rn = CayR(Sn, S).

3 Graph coverings

In proving Theorem 2 and Theorem 1, we will rely heavily on graph coverings, an idea
developed in [6]. A short overview is presented here. Let G and G̃ be two weighted
graphs. Then G̃ is a covering of G if there is a surjection π : V (G̃) → V (G) satisfying
the following two properties:

(1) For x, y ∈ V (G̃), where π(x) = π(y), and for any v ∈ V (G)∑
z∈π−1(v)

w(z, x) =
∑

z∈π−1(v)

w(z, y).
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(2) There is a fixed m ∈ R+ ∪ {∞}, the index of π, such that for all u, v ∈ V (G)∑
x∈π−1(u)
y∈π−1(v)

w(x, y) = mw(u, v). (1)

As π is a surjection, it can alternatively be viewed as a partition of the vertices of V (G̃) into
|V (G)| sets. With this interpretation, the above definition can be seen as a generalization
of an equitable partition; see, for example, [12]. We say that G is a projection of G̃ via
the mapping π if G̃ is a covering of G under π.

The virtue of a graph covering is that there is a strong correspondence between the
eigenvalues of a covering graph and the eigenvalues of the projection. This correspondence
is the content of the following theorem, which is proved in [6].

Theorem 3. (Covering-Correspondence)
Let G, G̃ be two weighted undirected graphs, and π : V (G̃) → V (G) be a covering map.
For any function f : V (G̃)→ C, define pf : V (G)→ C by

pf (v) =
∑

x∈π−1(v)

f(x)dx
dv

.

For any function f : V (G)→ C, define the lift of f , lf : V (G̃)→ C by

lf (x) = f(u), where π(x) = u.

(i) If λ is an eigenvalue of G with harmonic eigenfunction f , then λ is an eigenvalue
of G̃ with harmonic eigenfunction lf .

(ii) If λ is an eigenvalue of G̃ with harmonic eigenfunction f , then if pf 6= 0, λ is an
eigenvalue of G with harmonic eigenfunction pf .

We will use this theorem in the form of the following corollary.

Corollary 4. Let G be a graph with cover G̃, under covering map π, where G̃ is a regular
graph. Then the eigenvalues of the normalized Laplacian of G are eigenvalues of the
normalized Laplacian of G̃. For any eigenvalue λ of the normalized Laplacian of G̃ that
is not an eigenvalue of G, the corresponding eigenfunction f satisfies∑

x∈π−1(u)

f(x) = 0 (2)

for all u ∈ V (G).
Furthermore, if G, G̃ are both regular graphs with the same degree d, then this holds

for their adjacency matrices as well.
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Proof. It follows directly from Theorem 3 that if λ is an eigenvalue of the normalized
Laplacian of G, then it is an eigenvalue of G̃. Now let λ be an eigenvalue of G̃ with
eigenfunction f , where λ is not an eigenvalue of G. By regularity of G̃, f is also a
harmonic eigenfunction, and by part (ii) of Theorem 3 it must be the case that pf = 0.
Hence, for all u ∈ V (G),

0 = pf (u) =
1

du

∑
x∈π−1(u)

f(x)dx.

By regularity, dx is constant, and so dividing by a constant gives equation 2.
If G, G̃ are both d-regular graphs, then their adjacency eigenvalues satisfy µi =

d(1 − λi−1), and the corresponding eigenfunctions are the same. It follows that adja-
cency eigenvalues of G are also adjacency eigenvalues of G̃, and for any other adjacency
eigenvalue of G̃ the corresponding eigenfunction satisfies equation 2.

Example. Let G be the Petersen graph. We compute the eigenvalues of G by finding
a graph G′ for which G is a cover. Define G′ to be the weighted graph with vertex set
{v1, v2, v3}, and edges and edge weights as shown in Figure 1. The adjacency matrix and
normalized Laplacian of G′ are

AG′ =

0 1 0
1 0 2
0 2 4

 ,LG′ =

 1 − 1√
3

0

− 1√
3

1 −
√
2
3

0 −
√
2
3

1
3


Now fix any vertex x ∈ V (G), and define a map π : V (G)→ V (G′) by

π(y) =


v1 y = x

v2 y ∼ x

v3 otherwise

It is easy to check that π satisfies the definition of a graph covering (with index m = 3),
and so the eigenvalues of LG′ , which are 0, 2

3
, 5
3
, are eigenvalues of LG.

Furthermore these must be the only eigenvalues of LG. Otherwise, let f be a harmonic
eigenfunction corresponding to some other eigenvalue. By vertex transitivity of G, we can
assume f(x) 6= 0. By the covering-correspondence theorem, since f does not correspond
to an eigenvalue of G′ we have that pf = 0. Hence

0 = pf (v1) =
∑

y∈π−1(v1)

f(y)
dy
dv1

= f(x)dx

since by construction of π, x is the only vertex mapped to v1. It follows that f(x) = 0
which is a contradiction, and this shows that all of the eigenvalues of LG are eigenvalues
of LG′ .
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(a) Petersen graph G

v1 v2 v3

1 2 4

(b) Graph G′

Figure 1: The Petersen graph G and a three vertex weighted graph which it covers. In
the covering map, vertices in G are sent to the vertex with same color in G′.

4 A projection of graphs in Fn

We begin by constructing a weighted graph Gn on three vertices, which is a projection
of every graph in Fn. Then we compute the eigenvalues of Gn, and by Corollary 4,
these will be eigenvalues of every graph in Fn. Let F be a graph in Fn, and let Gn

be the weighted graph with vertices {v1, v2, v3}, with edge weights w(v1, v1) = n − 2,
w(v1, v2) = 1, w(v2, v3) = n − 2, w(v3, v3) = (n − 2)2, and all other edge weights zero.
To construct the covering map π : V (F ) → V (Gn), we just need to specify the sets
U1 = π−1(v1), U2 = π−1(v2), U3 = π−1(v3):

U1 = π−1(v1) = {τ ∈ Sn : τn = n}
U2 = π−1(v2) = {τ ∈ Sn : τ1 = n}
U3 = π−1(v3) = {τ ∈ Sn : τ1 6= n, τn 6= n}

In order to verify that this is a covering, we need to check the two properties:

(1) We need to show that any two vertices in the same preimage set Ui have the same
number of neighbors in each preimage set Uj. For example, take τ ∈ U3, so τk = n
for some 1 < k < n. By definition of Fn, if σ is adjacent to τ then either σn = τn
or σn = τ1. In particular, σn 6= n, so τ is not adjacent to any vertex in U1. There
is exactly one neighbor of τ with σ1 = n, and so τ is adjacent to exactly one vertex
in U1. The remaining n − 2 neighbors of τ are in U3. As required, the number of
neighbors in each preimage set did not depend on the choice of τ ∈ U3. The cases
that τ ∈ U1 and τ ∈ U2 are similar.

(2) We need to verify equation 1 for each pair chosen from the preimage sets U1, U2, U3.
For this covering, we have m = (n− 1)!. Firstly, U1 and U1:∑

x∈U1
y∈U1

w(x, y) =
∑
x∈U1

(n− 2)
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since each element of U1 is adjacent to exactly n− 2 elements in U1. So∑
x∈U1
y∈U1

w(x, y) = |U1|(n− 2) = (n− 1)!w(v1, v1)

as required. The pairs U1, U2 and U2, U3 are similarly verified.

For the pair U1 and U3, since there are no edges between these sets and since
w(v1, v3) = 0, we are done. Similarly for the pair U2 and U2. And finally, the pair
U3, U3: ∑

x∈U3
y∈U3

w(x, y) =
∑
x∈U3

(n− 2) = |U3|(n− 2)

Now |U3| = n!− |U1| − |U2| = (n− 2)(n− 1)!, so we get∑
x∈U3
y∈U3

w(x, y) = (n− 1)!w(v3, v3)

as required.

Now that we have a covering, we evaluate the eigenvalues of the projection Gn.

Lemma 5. The eigenvalues of the normalized Laplacian of Gn are
0, 1

n−1 ,
n
n−1 .

Proof. The normalized Laplacian of Gn is
1

n−1 − 1
n−1 0

− 1
n−1 1 −

√
n−2
n−1

0 −
√
n−2
n−1

1
n−1


The result follows from a simple computation.

Corollary 6. For any G ∈ Fn, the adjacency matrix AG has eigenvalues n − 1, n − 2
and −1. For 1 6 i 6 n define

X(i) = {τ ∈ Sn : τn = i}
Y (i) = {τ ∈ Sn : τ1 = i}
Z(i) = {τ ∈ Sn : τ1 6= i, τn 6= i}

Then any eigenfunction corresponding to any other eigenvalue than those listed above must
sum to zero on each of X(i), Y (i) and Z(i), for any i ∈ {1, 2, · · · , n}.

Proof. When defining the covering mapping π to Gn, for a permutation τ the vertex it
was mapped to was determined by the position of n in τ . Observe that we can replace n
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with any index i, 1 6 i 6 n, and we still have a covering, in this case with preimage sets
X(i), Y (i), Z(i).

Now take an eigenfunction of G which corresponds to an eigenfunction other than n−1,
n−2, or −1. G is regular, so this eigenfunction is also an eigenfunction of the normalized
Laplacian of G, corresponding to an eigenvalue other than 0, 1/(n − 1) or n/(n − 1). It
follows from Corollary 4 and the previous lemma that the eigenfunction must sum to zero
over the preimage sets of the covering, which are X(i), Y (i) and Z(i).

5 Spectral gap of graphs in Fn

Recall that Fn is the family of graphs whose vertex set is Sn and where for each vertex τ ,

τ = (τ1, τ2, · · · , τn),

and each 2 6 i 6 n, τ is adjacent to exactly one vertex of the form

(τi, α2, α3, · · · , αi−1, τ1, τi+1, · · · , τn).

Each graph in Fn is an (n − 1)-regular graph. The prefix reversal graph Pn is in Fn, as
well as the right-Cayley graph generated by the transpositions (1 k), where 2 6 k 6 n.

In order to compute the spectral gap of graphs in Fn, we proceed by induction, so
first we compute the spectrum of graphs in F3 to establish our base case.

Lemma 7. F3 = {C6}. In particular, the adjacency spectral gap of every graph in F3

is 1.

Proof. Let G ∈ F3. Then G is a 2-regular graph on 3! = 6 vertices. From the definition
of F3, it is easy to verify that G is connected, and so G = C6. The first two adjacency
eigenvalues of C6 are 2 and 1.

We can now prove the theorem on the spectral gap of Fn, as stated in the Section 1.

Proof of Theorem 2. We proceed by induction, so assume that the adjacency spectral
gap of any graph in Fn−1 is 1. The base case is established by Lemma 7. By (n − 2)-
regularity of graphs in Fn−1, it follows from the inductive assumption that the second
largest eigenvalue of any graph in Fn−1 is n− 3.

Let G be a graph in Fn. Pick any eigenvector f coming from an eigenvalue µ that is
not n − 1, n − 2 or −1. Our goal is to show that µ < n − 2. Recall that X(i) consists
of the permutations whose last entry is i, Y (i) consists of the permutations whose first
entry is i and Z(i) consists of all other permutations. For any i, from Corollary 6 we get a
projection of G with preimage sets X(i), Y (i), Z(i). The set X(i) induces a graph in Fn−1,
and the set Y (i) induces an independent set (since every two adjacent permutations have
different first entries). Furthermore the edges between X(i) and Y (i) form a matching.
Our proof strategy is the following: we will get an expression for µ involving the values of
f on the set X(i) and the set Y (i). We can control the contribution from X(i) using the
inductive assumption, and then we show that we can choose i so that the contribution
from Y (i) is small enough to yield the stated result.
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Claim 8. We can fix an i such that∑
x∈X(i)

f(x)2 >
∑
y∈Y (i)

f(y)2 (3)

and ∑
x∈X(i)

f(x)2 > 0.

Proof of claim. Notice that the sets X(1), X(2), · · · , X(n) partition the vertex set of G
(ie. partitioning the permutations based on the last entry). Similarly, the sets
Y (1), Y (2), · · · , Y (n) partition the vertex set of G. Hence

n∑
j=1

∑
x∈X(j)

f(x)2 =
n∑
j=1

∑
y∈Y (j)

f(y)2 > 0.

In particular, there exists an index i such that∑
x∈X(i)

f(x)2 >
∑
y∈Y (i)

f(y)2.

Let I denote the set of indices i satisfying the above inequality. Then there exists some i
in I satisfying ∑

x∈X(i)

f(x)2 > 0

since f 6= 0.

Consider an arbitrary vertex x ∈ X(i). Then by definition of X(i), x is a permutation
with x(n) = i. x has n−1 neighbors in G, n−2 of these neighbors are in X(i) and one of
its neighbors is in Y (i). Let cx be the unique neighbor of x in Y (i). As noted above, the
induced subgraph on X(i) is in Fn−1. By the eigenvalue-eigenvector equation, we have

µf(x) = f(cx) +
∑

y∈N(x)∩X(i)

f(y).

Multiplying both sides by f(x), and summing over x ∈ X(i) yields

µ
∑
x∈X(i)

f(x)2 =
∑
x∈X(i)

f(x)f(cx) +
∑
x∈X(i)

∑
y∈N(x)∩X(i)

f(x)f(y).

Dividing across by the sum on the left-hand side (which is non-zero by Claim 8) gives

µ =

∑
x∈X(i) f(x)f(cx)∑
x∈X(i) f(x)2

+

∑
x∈X(i)

∑
y∈N(x)∩X(i) f(x)f(y)∑
x∈X(i) f(x)2

. (4)

We will now find upper bounds for each of the two terms on the right-hand side.
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Let G′ be the induced subgraph on X(i), which is a graph in Fn−1, and let g = f |X(i).
Since

∑
x∈X(i) f(x) = 0, we have that g ⊥ 1, where 1 is the constant vector with entries

1, which is the eigenvector associated with µ1. Now we can bound the second term in
equation 4 by n− 3: ∑

x∈X(i)

∑
y∈N(x)∩X(i)

f(x)f(y)∑
x∈X(i)

f(x)2
=

gTAG′g

gTg

6 maxh⊥1
hTAG′h

hTh
= µ2(G

′)

= n− 3.

The edges between X(i) and Y (i) are a matching. So as x ranges over the vertices of
X(i), cx ranges over the vertices of Y (i). By Cauchy–Schwarz,∑

x∈X(i)

f(x)f(cx) 6
√ ∑

x∈X(i)

f(x)2
∑
x∈X(i)

f(cx)2

=

√ ∑
x∈X(i)

f(x)2
∑
y∈Y (i)

f(y)2

So ∑
x∈X(i)

f(x)f(cx)∑
x∈X(i)

f(x)2
6

√√√√√√√√
∑
y∈Y (i)

f(y)2∑
x∈X(i)

f(x)2
6 1

where the last inequality follows from equation 3.
Applying these two bounds in equation 4 gives

µ 6 n− 3 + 1 = n− 2.

This shows that there is no eigenvalue of G strictly between n−2 and n−1, so we conclude
that µ2(G) = n− 2.

As a brief application of Theorem 2, we can establish bounds on the edge expansion
of every graph in G ∈ Fn. Recall that the edge expansion of a d-regular graph G, hG, is
defined as

hG = min
S⊂V (G)

|E(S, S̄)|
min(|S|, |S̄|) · d

.
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If S is the set of permutations whose last entry is n, then |S| = |E(S, S̄)| = (n − 1)!,
which gives the upper bound hG 6 1/(n − 1). To obtain a lower bound, we can use an
inequality from [7], hG > λ1/2. Combining these two inequalities gives the bounds

1

2(n− 1)
6 hG 6

1

n− 1
.

6 Spectrum of the reversal graph

The graph Rn is a Cayley graph of Sn that does not belong to the family Fn but is closely
related. For any 1 6 i < j 6 n, let ri,j denote the bijection on Sn defined by

ri,j(τ) = (τ1, τ2, · · · , τi−1, τj, τj−1, · · · τi+1, τi, τj+1, · · · , τn)

That is, it reverses the subsequence from indices i to j, inclusive. Then two permutations
σ and τ are adjacent in Rn if and only if τ = ri,j(σ) for some i < j. We will first
show that Rn has many integer eigenvalues. We remark that the spectrum of Rn is not
generally integer-valued, despite the presence of many integer eigenvalues. A plot of the
7! eigenvalues of R7 is given in Figure 2. We will first prove the following useful fact.
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Figure 2: The adjacency eigenvalues of the reversal graph, R7, plotted in increasing order.

Lemma 9. Let X be the symmetric n× n matrix with entries

Xi,j = min {i, j, n+ 1− i, n+ 1− j}

For a given real number x, let D be the unique diagonal matrix such that every row of
D +X sums to x. Then the eigenvalues of D +X are

µk = x−
⌊
k

2

⌋
n+ 2

(⌊
k
2

⌋
2

)
, 1 6 k 6 n.
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In particular, µ1 = x, µ2 = x− n.

Example: For n = 5 and x = 12 we get

D +X =


7 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 7

+


1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1


which has eigenvalues 12, 7, 7, 4, 4.

Proof. We proceed by induction. For the case n = 1, the result is immediate. When
n = 2, we have

D +X =

(
x− 1 1

1 x− 1

)
which has eigenvalues x and x− 2, as required.

Now fix n and assume the result holds for all smaller dimensions. Since D + X is
a symmetric matrix with constant row sums, the leading eigenvector of D + X is the
all-ones vector 1, with corresponding eigenvalue x. All other eigenvectors are orthogonal
to 1. It follows that if Y = D+X −11T , then D+X and Y have the same eigenvectors.
Moreover, the spectrum of Y , counting multiplicity, is exactly the spectrum of D + X
with x replaced by x− n.

The only non-zero entry in the top row of Y is the top-left entry, which is x− n. The
only non-zero entry in the bottom row of Y is the bottom-right entry which is also x−n.
Denote the characteristic polynomial of a matrix A by pA(µ). Expanding the determinant
of Y − µI along the top row and then along the bottom row, we obtain that

pY (µ) = (µ− x+ n)2pY ′(µ)

where Y ′ is the (n−2)×(n−2) principal submatrix of Y , obtained by deleting the first and
last rows and columns. In particular, the spectrum of Y consists of x−n with multiplicity
two, and the spectrum of Y ′. Hence, from the relationship between the spectrum of D+X
and the spectrum of Y discussed above, we have that the eigenvalues of D+X are exactly
the eigenvalues of Y ′, together with x and x− n.

Observe that Y ′ satisfies the conditions of the theorem, with row sum equal to x− n.
By induction, we have that the eigenvalues of Y ′ are (for 1 6 k 6 n− 2):

µk(Y
′) = (x− n)−

⌊
k

2

⌋
(n− 2) + 2

(⌊
k
2

⌋
2

)
= x−

⌊
k + 2

2

⌋
n+ 2

(⌊
k+2
2

⌋
2

)
.

Combining these n− 2 eigenvalues with x and x− n yields exactly the claimed spectrum
for D +X.
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Lemma 10. The spectrum of the adjacency matrix of the reversal graph, ARn, contains
the eigenvalues

µk =

(
n

2

)
−
⌊
k

2

⌋
n+ 2

(⌊
k
2

⌋
2

)
, 1 6 k 6 n.

In particular,
(
n
2

)
and

(
n
2

)
− n are eigenvalues, and so the spectral gap is at most n.

Proof. We begin by constructing a projection of the graph Rn. Let G be the graph with
vertices v1, v2, · · · , vn corresponding to the adjacency matrix AG = D+X, where vertex
vi corresponds to row and column i, and D + X is as in the previous lemma, with row
sum

(
n
2

)
. Let U(i) be the set of all permutations τ such that τi = n. The sets U(i),

for 1 6 i 6 n, partition V (Rn), so we can define a map π : V (Rn) → V (G) by setting
π(x) = vi whenever x ∈ U(i). It suffices to show that this is a covering map, then the
result will follow from the previous lemma.

To show that π satisfies the first property of a graph cover, we need that for all indices
i, j, any two vertices in U(i) have the same number of neighbors in U(j). This follows
from the fact that there are a fixed number of reversals that map entry i to entry j.

For the second property, take two preimage sets U(i), U(j), and τ0 some permutation
in U(j). It is easily checked that by construction of the weighted graph G, we have

w(vi, vj) = |N(τ0) ∩ U(i)| ,

where N(τ0) is the set of neighbors of the vertex corresponding to permutation τ0. Then∑
σ∈U(i)

∑
τ∈U(j)

w(σ, τ) =
∑
σ∈U(i)

|U(j)|w(σ, τ0)

= (n− 1)! |N(τ0) ∩ U(i)|
= (n− 1)!w(vi, vj)

where the first equality follows from property (i). Hence π is a covering with m =
(n− 1)!.

We are finally ready to prove the main theorem determining the spectral gap of Rn.
Proof of Theorem 1: The value of µ1 is

(
n
2

)
since Rn is regular of degree

(
n
2

)
. From the

previous lemma we have that

µ2 >

(
n

2

)
− n

so it suffices to prove that

µ2 6

(
n

2

)
− n.

We follow a similar approach to the proof of Theorem 2.
We proceed by induction. For the base case, consider n = 2. Then R2 is K2, with

eigenvalues 1,−1. Now assume for any m < n, we have

µ2(ARm) =

(
m

2

)
−m.
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For any 1 6 i 6 n, we define the sets

Ui(j) = {τ ∈ Sn : τj = i} .
As in the proof of Lemma 10, for any fixed i the sets Ui(j), 1 6 j 6 n are the preimages
of a covering map of Rn, and the two largest eigenvalues of the projection are

(
n
2

)
and(

n
2

)
− n. It follows from Corollary 4 that if ARn has an eigenvalue µ strictly between

(
n
2

)
and

(
n
2

)
−n then the corresponding eigenvector must sum to zero on Ui(j) for all i, j. Let

µ be such an eigenvalue, with eigenvector f .
Let E1 = {{σ, τ} ∈ E(Rn) : σ1 6= τ1}, that is, the set of edges arising from substring

reversals that include the first entry of the permutation. Observe that the edge set E1

is exactly the set of edges of the prefix reversal graph Pn. Let R′ be the graph obtained
by removing all edges in E1 from Rn. Then R′ consists of n connected components,
U1(1), U2(1), · · · , Un(1). Each of these connected components is isomorphic to Rn−1.

We have, by the Rayleigh quotient

µ =
2
∑
{x,y}∈E(Rn)

f(x)f(y)∑
x∈Rn

f(x)2

=
2
∑
{x,y}∈E1

f(x)f(y)∑
x∈Rn

f(x)2
+

2
∑
{x,y}6∈E1

f(x)f(y)∑
x∈Rn

f(x)2

6 µ2(APn) +
2
∑
{x,y}6∈E1

f(x)f(y)∑
x∈Rn

f(x)2

where the last inequality follows since f is orthogonal to the constant vector 1. Using
Theorem 2 we have µ2(APn) = n− 2.

To bound the second term, we will partition the edges not in E1 in the following way

{{x, y} 6∈ E1} = E(U1(1)) ∪ E(U2(1)) ∪ · · · ∪ E(Un(1)).

Hence, we have

2
∑
{x,y}6∈E1

f(x)f(y)∑
x∈Rn

f(x)2
=

∑n
i=1 2

∑
{x,y}∈E(Ui(1))

f(x)f(y)∑n
i=1

∑
x∈Ui(1)

f(x)2

6 max16i6n

2
∑
{x,y}∈E(Ui(1))

f(x)f(y)∑
x∈Ui(1)

f(x)2

6 µ2(ARn−1)

where we are using the fact that v sums to zero over each set Ui(1). Combining the two
inequalities above, we get

µ 6 µ2(APn) + µ2(ARn−1)

= (n− 2) +

(
n− 1

2

)
− (n− 1)

=

(
n

2

)
− n

Thus we conclude that µ2(ARn) =
(
n
2

)
−n and this completes the proof of Theorem 1.
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7 Problems and remarks

Consider the stochastic process of pancake flipping: Start with a stack of n pancakes (or n
cards). At each step, with probability 1/n, choose i where i = 1, . . . , n and do a pancake
flipping of the first i pancakes.

The above process is equivalent to taking a random walk on Pn + I, where Pn is the
pancake graph. The transition probability matrix is then P = (A(Pn) + I)/n.

Since the first nontrivial eigenvalue of the normalized Laplacian of Pn is 1/(n − 1).
Consequently, the first nontrivial eigenvalue of the normalized Laplacian of Pn + I is
1/n and all eigenvalues of the normalized Laplacian of Pn + I are at most 2 − 1/n.
It is known that the rate of convergence for random walk is the inverse of λ−1 where
λ = min{λ1, 2 − λn−1} where 0 = λ0, λ1, . . . , λn−1 are the nontrivial eigenvalues of the
normalized Laplacian of Pn+I. However, in order to get tight bounds for the convergence
of the random walk to the stationary distribution under the total variational distance,
more work is needed. For a vertex-transitive graph, a general upper bound after t steps
of random walk on Pn + I can be derived by using the Plancherel formula (see [7]):

∆TV (t) 6
1

2

(∑
i 6=0

(1− λi)2t
)1/2

.

Using the result that |1− λi| 6 1− 1/n for i 6= 0, we have

∆TV (t) <
1

2

(
1− 1

n

)t
n!

6 e−t/n+n logn.

Hence, the random walk converges to the uniform distribution with ∆TV (t) 6 e−c after
at most t = n2 log n+ cn steps. If we know more about the distribution of eigenvalues λi,
this upper bound should be improved. It seems reasonable to conjecture that O(n log n)
steps suffice.

Similarly, we can consider the random substring reversal process, where in each step,

with probability
(
n+1
2

)−1
we choose a substring (allowing substrings of length 1) and

reverse it. This is equivalent to taking a random walk on Rn + nI. In this case, we have
λ1 = n/

(
n+1
2

)
= 2(n+ 1)−1 and λn−1 6 2− 2(n+ 1)−1. As in the case of pancake flipping,

knowing the spectral gap allows us to obtain a bound on the rate of convergence, but
to obtain sharp bounds it would be desirable to know more about the distribution of all
eigenvalues.

In this paper, we mainly focus on substring reversal and pancake flipping on per-
mutations. There are many interesting variations of these problems. In particular, for
applications such as genome rearrangement, the objects of interest are signed permuta-
tions. In this case the operation of substring reversal is taking the reverse of the substring
and changing the signs of every element in the substring. The corresponding problem for
pancake flipping is the burnt pancake problem where the sign is used to distinguish the
two sides of each pancake. This “burnt” variant was studied by Gates and Papadimitriou
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[11] (with the restriction that the burnt side is originally face-down and must be face-down
when sorted), and by Cohen and Blum [8]. The burnt pancake graph P̄n has 2nn! vertices
and degree n. A natural question is to determine the spectral gap of the adjacency ma-
trix. In fact, Pn + I is a projection of P̄n, which implies that the adjacency spectral gap
of P̄n is at least one. A harmless guess is that the spectral gap of the adjacency matrix
of P̄n is exactly 1. However, this turns out to be not true. For P̄4 the spectral gap is
approximately 0.71343, and for P̄5 the spectral gap is approximately 0.75758.
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