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Abstract

Let v1, va, ..., v, be real numbers whose squares add up to 1. Consider the 2™
signed sums of the form S = ) +v;. Holzman and Kleitman (1992) proved that
at least 2 of these sums satisfy |S| < 1. This 2 bound seems to be the best their
method can achieve. Using a different method, we improve the bound to é—g, thus
breaking the % barrier.

Keywords: combinatorial probability; probabilistic inequalities

1 Introduction

Let vy, vg, ..., v, be real numbers such that the sum of their squares is at most 1. Consider
the 2" signed sums of the form S = +v; £ vy £ -+ £ v,. In 1986, B. Tomaszewski (see
Guy [3]) asked the following question: is it always true that at least § of these sums satisfy
|S| < 1?7 Most examples with n = 2 and v} + v3 = 1 show that % can’t be replaced with
a bigger number.

Holzman and Kleitman [7] proved that at least 2 of the sums satisfy |S| < 1. This
result was an immediate consequence of their main result: at least % of the sums satisfy
the strict inequality |S| < 1, provided that each |v;] is strictly less than 1. This 2 bound
for |S| < 1 is best possible: consider the example with n =4 and v; = vy = v3 = vy = %
So % seems to be a natural barrier to their method of proof.

Using a different method, we prove that more than % of the sums satisfy |S| < 1. In
other words, we break the % barrier. Our method, roughly speaking, goes like this. We

will let the first few + signs be arbitrary. But once the partial sum becomes near 1 in
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absolute value, we will show that the final sum still has a decent chance of remaining at
most 1 in absolute value.

We can actually improve the % bound a tiny bit, to ;’—3 +9 x 107 Combining our
method with other ideas, which could handle the tight cases for our analysis, may lead
to further improvements of the bound. Still, the conjectured lower bound of % currently
appears to be out of reach.

Ten years after Holzman and Kleitman [7] but independently, Ben-Tal, Nemirovski,
and Roos [1] proved that at least 5 of the sums satisfy |S| < 1; they say that the proof
is mainly due to P. van der Wal. Shnurnikov [9] refined the argument of [1] to prove
a 36% bound. Even though these two bounds are weaker than that of Holzman and
Kleitman, the methods used to prove them are noteworthy. In particular, we will use the
conditioning argument of [1] and the fourth moment method of [9].

Let Tomaszewski’s constant be the largest constant ¢ such that the fraction of sums
that satisfy |S| < 1 is always at least ¢. We now know that Tomaszewski’s constant is
between 35 and 3. Both [7] and [1] conjecture that Tomaszewski’s constant is 3. De,
Diakonikolas, and Servedio [2] developed an algorithm to approximate Tomaszewski’s
constant. Specifically, given an € > 0, their algorithm will output a number that is within
¢ of Tomaszewski’s constant. The running time of their algorithm is exponential in 1/€3,
so it’s not clear that we can run their algorithm in a reasonable amount of time to improve
the known bounds on Tomaszewski’s constant.

The conjectured lower bound of % has been confirmed in some special cases. For
example, von Heymann [6] and Hendriks and van Zuijlen [5] proved the conjecture when
n < 9. Also, van Zuijlen [10] and von Heymann [6] proved the conjecture when all of the
|v;| are equal.

We will use the language of probability. Let Pr[A] be the probability of an event A.
Let E(X) be the expected value of a random variable X. A random sign is a random
variable whose probability distribution is the uniform distribution on the set {—1,+1}.
With this language, we can restate our main result.

Main Theorem. Let vy, vo, ..., v, be real numbers such that Y., v? is at most 1. Let
n

a1, as, ..., a, be independent random signs. Let S be > 7 | av;. Then Pr[|S| < 1] > 33

In Section 2 of this paper, we will provide a short proof of a bound better than %. In
Section 3, we will refine the analysis to improve the bound to é—g and slightly beyond.

2 Beating the 3/8 bound

In this section, we will give the simplest proof we can of a bound better than %. Namely,
we will prove a bound of %, which is a little more than 37.75%. In Section 3, we will
improve the bound further.

We begin with a lemma. Roughly speaking, this lemma can be used to show that if
a partial sum is a little less than 1, then the final sum has a decent chance of remaining

less than 1 in absolute value.
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Lemma 1. Let x be a real number such that |x| < 1. Let vy, vs, ..., v, be real numbers
such that

n

2
> v < (1))
, 7
i=1
Let ay, as, ..., a, be independent random signs. Let Y be Y., a;v;. Then
37
Y
Prlfe+ Y] < 1) > 52

Proof. By symmetry, we may assume that = > 0. The fourth moment of Y is

E(Y4)—3(Z ?) —221} (Z )2§%(1+x)4.

=1
So, by the fourth moment version of Chebyshev’s inequality?!,

E(vY) _ 12

PrY|>142] < —2 ) <%
Y121+ 2] (1+a2)t 49

Looking at the complement,
37

PrilY| <142 > —.
r[|Y] x] > 19
Because Y has a symmetric distribution,

37
98’

Recall that < 1. Hence if =1 — 2 <Y <0, then |z + Y| < 1. Therefore

1
Prl-1—2 <Y <0] > 5 PrilY|<142z] >

37

Pr[|a:—|—Y|<1]>Pr[—1—x<Y<O]>%.

Next we will use Lemma 1 to go beyond the % bound.

Theorem 2. Let vy, vg, ..., v, be real numbers such that >, v? is at most 1. Let ay,
as, ..., a, be independent random signs. Let S be lel a;v;. Then
37
Prl| S| <
Isl<1> 5

Proof. By inserting 0’s, we may assume that n > 4. By permuting, we may assume that
the four largest |v;| are |v,| = |v1]| = |vn—1| = |vs|. By the quadratic mean inequality,

[va] + V2] + [ona| + [on] _ \/v%+v§+vil+vz _ 11
~X AN .
4 4 4 2

!Shnurnikov [9] used the fourth moment in a similar situation.
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So |vi| + |ve| + |vn—1| + |va| < 2. Because of our ordering,

ol -l Joal +lona] _
2 2

Given an integer t from 0 to n, let X; be the partial sum 22:1 a;v; and let Y; be
the remaining sum ', 41 a;v;. Let T be the smallest nonnegative integer ¢ such that
t=n—1or|X; >1—|v41|. In a stochastic process such as ours, T" is called a stopping
time, defined by the stopping rule in the previous sentence?. Note that T > 2, since

|v1] + |ve] < 1. By the stopping rule, | Xr_1| < 1 — |vr|. Hence by the triangle inequality,

[o1] + Jva| <

| Xr| <[ Xpoa| + |vr| <1 —Jop| + |or| = 1.

Also by the stopping rule, if 7' < n — 1, then |X7| > 1 — |vpiq].
We will condition on 7" and X7. We claim that

37

Pr[|S| <1 | T, X7] > —.

IS1< 11T, %] > 50

By averaging over 7" and X, this claim implies the theorem. To prove the claim, we may
assume by symmetry that Xp > 0. We will divide the proof of the claim into three cases,

depending on T'.

Case 1: T =n — 1. In this case, |Yr| = |v,| < 1. Recall that 0 < Xr < 1. Hence if
Yr <0, then |S| = | X1 + Yr| < 1. Therefore by symmetry,

Pr[S|<1|T,X7z| =2 PrlYr <O T, X7| >

N | —

Case 2: T'=n — 2. In this case,
Yl < [ona] + Joa] <2 01] < 2= [v].

Recall that 1 — |v,—1| < X7 < 1. Hence if Y7 < 0, then |S| = | X7 + Y7| < 1. Therefore
by symmetry,

Pr[|S| < 1| T, Xg] > Pr[Yr <O0|T,X7] >

N[ —

Case 3: T'< n — 3. In this case, by the stopping rule,

n

T
Y <1y W<l <l 20k, < 1-2(1 - Xp)2
=T+1 i=1

We can bound the final expression as follows:

2 1 2
1-2(1 - Xp)? = §(1 + X7)? — ?(4XT —3)’ < ?(1 + X7)2

Hence the hypotheses of Lemma 1 are satisfied with x = X7 and Y = Y. By Lemma 1,
we conclude that

37
2A similar stopping rule was implicitly used by Ben-Tal et al. [1] and refined by Shnurnikov [9]. In
addition, [9] pointed out the value of having |v1| 4 |va| < 1.
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3 Further improvement

In this section, we will improve the lower bound to , which is 40.625%. At the end, we
will sketch how to improve the bound further, to —i— 9 x 1076,

Let us examine where the proof of Theorem 2 is potentlally tight. Looking at its
Case 3, we see that the proof is potentially tight when T = 2 and |v1] = |vo] = |vs] = 1
But that scenario is impossible: if T' = 2, then by the stopping rule, |vq| + |vg| > 1 — |uvs].
This suggests that we can sharpen the bound on >~ ;.. v7 in terms of 7" and X7.

Another idea is that our final bound on Pr[|S| < 1], instead of being the worst-case
conditional bound, may be taken to be a weighted average of the conditional bounds, with
weights corresponding to the distribution of 7.

First, we state the following generalization of Lemma 1. Given a number ¢, define
F(c) by

Fle) = %(1 _ 3.

Lemma 3. Let ¢ be a nonnegative number. Let x be a real number such that |x| < 1. Let
V1, Vg, ..., U, be real numbers such that

Zv 1+ Jal

Let ay, as, ..., a, be independent random signs. Let Y be Y., a;v;. Then
Prllz +Y| < 1] > F(c).

Proof. By symmetry, we may assume that x > 0. As in the proof of Lemma 1, the fourth

moment of Y satisfies .

2
E(Y?) < 3(2 uf) < 3A3(1 + 2)h,
=1

So, by the fourth moment version of Chebyshev’s inequality,

E<Y4> < 302.

PrilY] > 1 < 77— <
Y1 > 1+ < 7o

Following the proof of Lemma 1, by taking the complement and then using the symmetry
of Y, we have

l(1—302) = F(c). O

Prllz+Y|<1] > 5

Now we will use Lemma 3 to prove our 13 lower bound.

Theorem 4. Let vy, vy, ..., v, be real numbers such that >, v? is at most 1. Let ay,
as, ..., a, be independent random signs. Let S be Z?Zl a;v;. Then
13
Pr[|S]| < 1] > —.
s < 1] > 5
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Proof. By inserting 0’s, we may assume that n > 4. By symmetry, we may assume that
each v; is nonnegative. By permuting, we may assume that the v; are ordered as follows:

Up Z V1 2 Uy 1 2V 20V3 2 ... 2 Up .

Except for the oddballs v,, and v,_1, the order is decreasing. As in Theorem 2, we have
v+ U+ Uy + 0, <2and vy + vy < 1.

Given an integer t from 0 to n, let M; be the sum Zle v;. Let K be the smallest
nonnegative integer ¢ such that ¢t =n —1 or M; > 1 — v;41. The parameter K measures
how spread out the v; are. Note that K > 2, since v; + vy < 1. By the definition of K,
observe that My 1 < 1—wvg and hence M < 1. Also, if K <n—1, then Mg > 1 —wvg
and hence My 1 > 1.

Given an integer t from 0 to n, define the sums X; and Y; as in Theorem 2. Note that
| X:| < M,;. Following Theorem 2, let T' be the smallest nonnegative integer ¢ such that
t=n—1or|X; >1—wvy. Note that T > K. As before, we have |Xr_1| <1 — vy and
| Xr| < 1. Also, it T' < n — 1, then | X7| > 1 — vpy.

We will bound from below the conditional probability Pr[|S| < 1 | T]. Namely, we
will prove the two-piece lower bound

F ((K+1)2*2T> if T < 3K42
Pr[|S| < 1| 7] > { (12(K+1) 1 31<2+27
F (4K+2) it T > =5

We will actually prove the same lower bound on the refined conditional probability
Pr[|S| < 1| T, Xr|. To prove this claim, we may assume by symmetry that Xr > 0.
We will divide the proof of the claim into five cases, depending on 7.

Case 1: T'=n— 1. The proof of this case is the same as Case 1 of Theorem 2, which
yields the stronger bound Pr(|S| < 1| T, X7] > 3.

Case 2: T'=n— 2. The proof of this case is the same as Case 2 of Theorem 2, which
yields the stronger bound Pr(|S| < 1| T, X7] > 3.

Case 3: K +1<TK 3K2+2 and T < n — 3. By the quadratic mean inequality,

K+1 1 K+1 9 1 1
SRELENG o NV
sz K+1 ZU K+1 K+1>K+1

1= 1=
Hence, by splitting our sum into two parts, we get
T

1
ZU?> K+1+(T—K—1)v%+l>

1

i (@K D - X

=1

As a simpler bound,
T

Zviz > Tvi, >T(1— Xr)

=1
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Multiplying the second-to-last inequality by 2T2;£l_1 and the last inequality by

both multipliers being nonnegative by the case assumption, we get

3K+2-2T
2K+1

27’:2 M —K—-1  (K+1P-T
v; =
17 (K+1)(2K +1) 2K + 1

=1

(1— Xrp)2

Therefore, looking at the complementary sum, we get

~ 5, _ (K+1?*-T
2 S DR

[2— (K+1)(1—X7)?].
i=T+1

We can bound the bracketed expression as follows:

K+1 2
2—(K+1)(1—XT)2=2KH(1+XT)2—2KH[(K+1)XT—K]2
K+1
< 1+ Xp)2
oKk p1 AT

Plugging this inequality back into the previous one, we get

", (K+1)?2-T
3 ( )

NS o LA

1=T41

Hence the hypotheses of Lemma 3 are satisfied with ¢ = %, r=Xp,and Y = Y.
By Lemma 3, we conclude that

K+1)?2-T
Pr[|S| < 1| T, X7 = Pr[|Xr 4 Yo| < 1| T, Xy] >F(%>

Case 4: 3E£2 < T < n— 3. As in Case 3, we can bound ST 0?2 as follows:

i=1 "1

1
2 2
> > (T = K== X

=1

Because T >

3K42 this inequality implies

K
+—(1— Xp)%
> vz K+1 + 5 7)

=1
Compare this bound with the combined bound from Case 3:
iqﬂ L W -K-1 (K17
FT(K+1D(2K + 1) 2K +1

(1— Xrp)2

i=1
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Note that our bound on ZZ'T:1 v? is the same as this bound from Case 3 when T’ = % S0

we can repeat the remainder of Case 3 to get the same lower bound on Pr[|S| < 1| T, X7|
when 7' = 3542 The bound on Pr[|S| < 1| T, X7| in Case 3 was

(K +1)? —T)

PrllS| < 1|7, Xq] > F( R

When T' = ?’KT”, this bound becomes

K
Pr|S| <1|T, X >F( )
(1S < 117 Xe] > F (s

So we get the same bound in our current case.

Case 5: T'= K < n — 3. By the quadratic mean inequality,

T T
1 2 1 1 1
2 _ 2 2 2
>tz 5 (n) = g > X = X
We can bound the final expression as follows:

1 1

Axio - X

e e B VA ey
1

— (1 - Xp)%

(K +1)Xy — K)?

Vv

T K+1
Plugging this inequality back into the previous one, we get

T 1

(1-Xp)2= K—H+(T—K—1)(1—XT)2.

U2>;_
T K+1

i=1

This is the same inequality we derived at the beginning of Case 3. So we can repeat the
remainder of Case 3 to get the same lower bound:

(K +1)? —T)

Prlls| < 1|7, Xq] > F( e

In summary, we have proved our claim on conditional probability:

(E+1)2-T\ —_—
Pr|S|<1|T] > F<(2K+1)2> if T < 3512
F(z7s) it T >

4K+2

Next, we will use this conditional bound to derive a lower bound on the unconditional
probability Pr[|S| < 1].

As mentioned above, we always have T" > K. In fact, assuming that K < n — 4, we
have T' = K if the signs ay, ..., ax are all equal, and otherwise 7' > K + 2. This follows
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from observing that if ay, ..., ax are not all equal, then |X x| < Zfi}l v — Vg < 1—vgi
and | Xg.1| < Zfi}l v; — Vg + Vg1 < 1 — vgyo, by the definition of K and the ordering
of the v;.

This shows that for K’ < n—4 we have Pr[T' = K] = 57— and Pr[T' > K+2] = 1— ¢
Therefore

Pr(|S] < 1]

=2K11 [|5|<1|T=K]+(1—2K71>Pr[|5|<1|T>K+2]
1 (K+1)?°-K 1 (K +1)% - (K +2)

st (Yo ) () ()

Here we have used our conditional bounds, the fact that they are nondecreasing in T,
and the inequality K + 2 < B’KTH Note that this lower bound on Pr[|S| < 1] remains
valid without assuming that K < n — 4. Indeed, if K = n — 3 it is still true that
Pr[T = K| = QK T and while 7" = K + 1 = n — 2 may occur in this case, it yields a
conditional bound of as shown in Case 2 above, which is even better than our stated
lower bound. The Values n — 2 and n — 1 for K are of course covered by the conditional
bound of % in Cases 1 and 2 above.
Thus, to conclude our proof it suffices to show that

o (B5) gl () -

holds for all K > 2. Substituting the relevant expressions into the formula for F' and
performing routine manipulations, the latter is shown to be equivalent to

64(K* 4+ K) < 25 1(40K? 4 40K — 15),
which indeed holds for K > 2. O]

Can we improve thls lower bound? Yes, a little. The idea is to replace the fourth
moment with the more ﬂeX1ble pth moment, where p is a parameter to be optimized. To do
so, we will need Khintchine’s inequality. This inequality was first proved by Khintchine [8]
in a weaker form and later proved by Haagerup [4] with the optimal constants. Namely,
given p > 2, let B, be the constant

QP/QF ptl
VT
where I' is the gamma function. For example, By = 1, B3 = 24/2/7, and B, = 3.

Theorem 5 (Khintchine’s inequality). Let p be a real number such that p > 2. Let vy,
Vo, ..., Uy be real numbers. Let ay, as, ..., a, be independent random signs. Let S be

S aiv;. Then
E(sl) < B,(30?)"

i=1
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For the improved lower bound, choose with foresight p = 3.95937. In Lemma 3,
replace the fourth moment with the pth moment and apply Khintchine’s inequality (with
S =Y), which allows us to replace the function F' with the function G defined by
G(c) = $(1 — B,c?’?). Use this revised lemma in Theorem 4. The resulting lower bound
is G(3), which is bigger than 12 +9 x 1075, We omit the details.
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