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Abstract

Let v1, v2, . . . , vn be real numbers whose squares add up to 1. Consider the 2n

signed sums of the form S =
∑
±vi. Holzman and Kleitman (1992) proved that

at least 3
8 of these sums satisfy |S| 6 1. This 3

8 bound seems to be the best their
method can achieve. Using a different method, we improve the bound to 13

32 , thus
breaking the 3

8 barrier.
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1 Introduction

Let v1, v2, . . . , vn be real numbers such that the sum of their squares is at most 1. Consider
the 2n signed sums of the form S = ±v1 ± v2 ± · · · ± vn. In 1986, B. Tomaszewski (see
Guy [3]) asked the following question: is it always true that at least 1

2
of these sums satisfy

|S| 6 1? Most examples with n = 2 and v21 + v22 = 1 show that 1
2

can’t be replaced with
a bigger number.

Holzman and Kleitman [7] proved that at least 3
8

of the sums satisfy |S| 6 1. This
result was an immediate consequence of their main result: at least 3

8
of the sums satisfy

the strict inequality |S| < 1, provided that each |vi| is strictly less than 1. This 3
8

bound
for |S| < 1 is best possible: consider the example with n = 4 and v1 = v2 = v3 = v4 = 1

2
.

So 3
8

seems to be a natural barrier to their method of proof.
Using a different method, we prove that more than 13

32
of the sums satisfy |S| 6 1. In

other words, we break the 3
8

barrier. Our method, roughly speaking, goes like this. We
will let the first few ± signs be arbitrary. But once the partial sum becomes near 1 in
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absolute value, we will show that the final sum still has a decent chance of remaining at
most 1 in absolute value.

We can actually improve the 13
32

bound a tiny bit, to 13
32

+ 9 × 10−6. Combining our
method with other ideas, which could handle the tight cases for our analysis, may lead
to further improvements of the bound. Still, the conjectured lower bound of 1

2
currently

appears to be out of reach.
Ten years after Holzman and Kleitman [7] but independently, Ben-Tal, Nemirovski,

and Roos [1] proved that at least 1
3

of the sums satisfy |S| 6 1; they say that the proof
is mainly due to P. van der Wal. Shnurnikov [9] refined the argument of [1] to prove
a 36% bound. Even though these two bounds are weaker than that of Holzman and
Kleitman, the methods used to prove them are noteworthy. In particular, we will use the
conditioning argument of [1] and the fourth moment method of [9].

Let Tomaszewski’s constant be the largest constant c such that the fraction of sums
that satisfy |S| 6 1 is always at least c. We now know that Tomaszewski’s constant is
between 13

32
and 1

2
. Both [7] and [1] conjecture that Tomaszewski’s constant is 1

2
. De,

Diakonikolas, and Servedio [2] developed an algorithm to approximate Tomaszewski’s
constant. Specifically, given an ε > 0, their algorithm will output a number that is within
ε of Tomaszewski’s constant. The running time of their algorithm is exponential in 1/ε3,
so it’s not clear that we can run their algorithm in a reasonable amount of time to improve
the known bounds on Tomaszewski’s constant.

The conjectured lower bound of 1
2

has been confirmed in some special cases. For
example, von Heymann [6] and Hendriks and van Zuijlen [5] proved the conjecture when
n 6 9. Also, van Zuijlen [10] and von Heymann [6] proved the conjecture when all of the
|vi| are equal.

We will use the language of probability. Let Pr[A] be the probability of an event A.
Let E(X) be the expected value of a random variable X. A random sign is a random
variable whose probability distribution is the uniform distribution on the set {−1,+1}.
With this language, we can restate our main result.

Main Theorem. Let v1, v2, . . . , vn be real numbers such that
∑n

i=1 v
2
i is at most 1. Let

a1, a2, . . . , an be independent random signs. Let S be
∑n

i=1 aivi. Then Pr[|S| 6 1] > 13
32
.

In Section 2 of this paper, we will provide a short proof of a bound better than 3
8
. In

Section 3, we will refine the analysis to improve the bound to 13
32

and slightly beyond.

2 Beating the 3/8 bound

In this section, we will give the simplest proof we can of a bound better than 3
8
. Namely,

we will prove a bound of 37
98

, which is a little more than 37.75%. In Section 3, we will
improve the bound further.

We begin with a lemma. Roughly speaking, this lemma can be used to show that if
a partial sum is a little less than 1, then the final sum has a decent chance of remaining
less than 1 in absolute value.
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Lemma 1. Let x be a real number such that |x| 6 1. Let v1, v2, . . . , vn be real numbers
such that

n∑
i=1

v2i 6
2

7
(1 + |x|)2.

Let a1, a2, . . . , an be independent random signs. Let Y be
∑n

i=1 aivi. Then

Pr[|x+ Y | 6 1] >
37

98
.

Proof. By symmetry, we may assume that x > 0. The fourth moment of Y is

E(Y 4) = 3
( n∑

i=1

v2i

)2
− 2

n∑
i=1

v4i 6 3
( n∑

i=1

v2i

)2
6

12

49
(1 + x)4.

So, by the fourth moment version of Chebyshev’s inequality1,

Pr[|Y | > 1 + x] 6
E(Y 4)

(1 + x)4
6

12

49
.

Looking at the complement,

Pr[|Y | < 1 + x] >
37

49
.

Because Y has a symmetric distribution,

Pr[−1− x < Y 6 0] >
1

2
Pr[|Y | < 1 + x] >

37

98
.

Recall that x 6 1. Hence if −1− x < Y 6 0, then |x+ Y | 6 1. Therefore

Pr[|x+ Y | 6 1] > Pr[−1− x < Y 6 0] >
37

98
.

Next we will use Lemma 1 to go beyond the 3
8

bound.

Theorem 2. Let v1, v2, . . . , vn be real numbers such that
∑n

i=1 v
2
i is at most 1. Let a1,

a2, . . . , an be independent random signs. Let S be
∑n

i=1 aivi. Then

Pr[|S| 6 1] >
37

98
.

Proof. By inserting 0’s, we may assume that n > 4. By permuting, we may assume that
the four largest |vi| are |vn| > |v1| > |vn−1| > |v2|. By the quadratic mean inequality,

|v1|+ |v2|+ |vn−1|+ |vn|
4

6

√
v21 + v22 + v2n−1 + v2n

4
6

√
1

4
=

1

2
.

1Shnurnikov [9] used the fourth moment in a similar situation.
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So |v1|+ |v2|+ |vn−1|+ |vn| 6 2. Because of our ordering,

|v1|+ |v2| 6
|v1|+ |vn|

2
+
|v2|+ |vn−1|

2
6 1.

Given an integer t from 0 to n, let Xt be the partial sum
∑t

i=1 aivi and let Yt be
the remaining sum

∑n
i=t+1 aivi. Let T be the smallest nonnegative integer t such that

t = n− 1 or |Xt| > 1− |vt+1|. In a stochastic process such as ours, T is called a stopping
time, defined by the stopping rule in the previous sentence2. Note that T > 2, since
|v1|+ |v2| 6 1. By the stopping rule, |XT−1| 6 1− |vT |. Hence by the triangle inequality,

|XT | 6 |XT−1|+ |vT | 6 1− |vT |+ |vT | = 1.

Also by the stopping rule, if T < n− 1, then |XT | > 1− |vT+1|.
We will condition on T and XT . We claim that

Pr[|S| 6 1 | T,XT ] >
37

98
.

By averaging over T and XT , this claim implies the theorem. To prove the claim, we may
assume by symmetry that XT > 0. We will divide the proof of the claim into three cases,
depending on T .

Case 1: T = n − 1. In this case, |YT | = |vn| 6 1. Recall that 0 6 XT 6 1. Hence if
YT 6 0, then |S| = |XT + YT | 6 1. Therefore by symmetry,

Pr[|S| 6 1 | T,XT ] > Pr[YT 6 0 | T,XT ] >
1

2
.

Case 2: T = n− 2. In this case,

|YT | 6 |vn−1|+ |vn| 6 2− |v1| 6 2− |vn−1| .

Recall that 1 − |vn−1| < XT 6 1. Hence if YT 6 0, then |S| = |XT + YT | 6 1. Therefore
by symmetry,

Pr[|S| 6 1 | T,XT ] > Pr[YT 6 0 | T,XT ] >
1

2
.

Case 3: T 6 n− 3. In this case, by the stopping rule,

n∑
i=T+1

v2i 6 1−
T∑
i=1

v2i 6 1− v21 − v22 6 1− 2v2T+1 < 1− 2(1−XT )2.

We can bound the final expression as follows:

1− 2(1−XT )2 =
2

7
(1 +XT )2 − 1

7
(4XT − 3)2 6

2

7
(1 +XT )2.

Hence the hypotheses of Lemma 1 are satisfied with x = XT and Y = YT . By Lemma 1,
we conclude that

Pr[|S| 6 1 | T,XT ] = Pr[|XT + YT | 6 1 | T,XT ] >
37

98
.

2A similar stopping rule was implicitly used by Ben-Tal et al. [1] and refined by Shnurnikov [9]. In
addition, [9] pointed out the value of having |v1|+ |v2| 6 1.
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3 Further improvement

In this section, we will improve the lower bound to 13
32

, which is 40.625%. At the end, we
will sketch how to improve the bound further, to 13

32
+ 9× 10−6.

Let us examine where the proof of Theorem 2 is potentially tight. Looking at its
Case 3, we see that the proof is potentially tight when T = 2 and |v1| = |v2| = |v3| = 1

4
.

But that scenario is impossible: if T = 2, then by the stopping rule, |v1|+ |v2| > 1− |v3|.
This suggests that we can sharpen the bound on

∑n
i=T+1 v

2
i in terms of T and XT .

Another idea is that our final bound on Pr[|S| 6 1], instead of being the worst-case
conditional bound, may be taken to be a weighted average of the conditional bounds, with
weights corresponding to the distribution of T .

First, we state the following generalization of Lemma 1. Given a number c, define
F (c) by

F (c) =
1

2
(1− 3c2).

Lemma 3. Let c be a nonnegative number. Let x be a real number such that |x| 6 1. Let
v1, v2, . . . , vn be real numbers such that

n∑
i=1

v2i 6 c(1 + |x|)2.

Let a1, a2, . . . , an be independent random signs. Let Y be
∑n

i=1 aivi. Then

Pr[|x+ Y | 6 1] > F (c).

Proof. By symmetry, we may assume that x > 0. As in the proof of Lemma 1, the fourth
moment of Y satisfies

E(Y 4) 6 3
( n∑

i=1

v2i

)2
6 3c2(1 + x)4.

So, by the fourth moment version of Chebyshev’s inequality,

Pr[|Y | > 1 + x] 6
E(Y 4)

(1 + x)4
6 3c2.

Following the proof of Lemma 1, by taking the complement and then using the symmetry
of Y , we have

Pr[|x+ Y | 6 1] >
1

2
(1− 3c2) = F (c).

Now we will use Lemma 3 to prove our 13
32

lower bound.

Theorem 4. Let v1, v2, . . . , vn be real numbers such that
∑n

i=1 v
2
i is at most 1. Let a1,

a2, . . . , an be independent random signs. Let S be
∑n

i=1 aivi. Then

Pr[|S| 6 1] >
13

32
.
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Proof. By inserting 0’s, we may assume that n > 4. By symmetry, we may assume that
each vi is nonnegative. By permuting, we may assume that the vi are ordered as follows:

vn > v1 > vn−1 > v2 > v3 > . . . > vn−2.

Except for the oddballs vn and vn−1, the order is decreasing. As in Theorem 2, we have
v1 + v2 + vn−1 + vn 6 2 and v1 + v2 6 1.

Given an integer t from 0 to n, let Mt be the sum
∑t

i=1 vi. Let K be the smallest
nonnegative integer t such that t = n− 1 or Mt > 1− vt+1. The parameter K measures
how spread out the vi are. Note that K > 2, since v1 + v2 6 1. By the definition of K,
observe that MK−1 6 1−vK and hence MK 6 1. Also, if K < n−1, then MK > 1−vK+1

and hence MK+1 > 1.
Given an integer t from 0 to n, define the sums Xt and Yt as in Theorem 2. Note that

|Xt| 6 Mt. Following Theorem 2, let T be the smallest nonnegative integer t such that
t = n− 1 or |Xt| > 1− vt+1. Note that T > K. As before, we have |XT−1| 6 1− vT and
|XT | 6 1. Also, if T < n− 1, then |XT | > 1− vT+1.

We will bound from below the conditional probability Pr[|S| 6 1 | T ]. Namely, we
will prove the two-piece lower bound

Pr[|S| 6 1 | T ] >

{
F
(

(K+1)2−T
(2K+1)2

)
if T 6 3K+2

2
;

F
(

K
4K+2

)
if T > 3K+2

2
.

We will actually prove the same lower bound on the refined conditional probability
Pr[|S| 6 1 | T,XT ]. To prove this claim, we may assume by symmetry that XT > 0.
We will divide the proof of the claim into five cases, depending on T .

Case 1: T = n− 1. The proof of this case is the same as Case 1 of Theorem 2, which
yields the stronger bound Pr[|S| 6 1 | T,XT ] > 1

2
.

Case 2: T = n− 2. The proof of this case is the same as Case 2 of Theorem 2, which
yields the stronger bound Pr[|S| 6 1 | T,XT ] > 1

2
.

Case 3: K + 1 6 T 6 3K+2
2

and T 6 n− 3. By the quadratic mean inequality,

K+1∑
i=1

v2i >
1

K + 1

(K+1∑
i=1

vi

)2
=

1

K + 1
M2

K+1 >
1

K + 1
.

Hence, by splitting our sum into two parts, we get

T∑
i=1

v2i >
1

K + 1
+ (T −K − 1)v2T+1 >

1

K + 1
+ (T −K − 1)(1−XT )2.

As a simpler bound,
T∑
i=1

v2i > Tv2T+1 > T (1−XT )2.
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Multiplying the second-to-last inequality by 2T−K−1
2K+1

and the last inequality by 3K+2−2T
2K+1

,
both multipliers being nonnegative by the case assumption, we get

T∑
i=1

v2i >
2T −K − 1

(K + 1)(2K + 1)
+

(K + 1)2 − T
2K + 1

(1−XT )2.

Therefore, looking at the complementary sum, we get

n∑
i=T+1

v2i 6
(K + 1)2 − T

(K + 1)(2K + 1)

[
2− (K + 1)(1−XT )2

]
.

We can bound the bracketed expression as follows:

2− (K + 1)(1−XT )2 =
K + 1

2K + 1
(1 +XT )2 − 2

2K + 1
[(K + 1)XT −K]2

6
K + 1

2K + 1
(1 +XT )2.

Plugging this inequality back into the previous one, we get

n∑
i=T+1

v2i 6
(K + 1)2 − T

(2K + 1)2
(1 +XT )2.

Hence the hypotheses of Lemma 3 are satisfied with c = (K+1)2−T
(2K+1)2

, x = XT , and Y = YT .
By Lemma 3, we conclude that

Pr[|S| 6 1 | T,XT ] = Pr[|XT + YT | 6 1 | T,XT ] > F
((K + 1)2 − T

(2K + 1)2

)
.

Case 4: 3K+2
2

6 T 6 n− 3. As in Case 3, we can bound
∑T

i=1 v
2
i as follows:

T∑
i=1

v2i >
1

K + 1
+ (T −K − 1)(1−XT )2.

Because T > 3K+2
2

, this inequality implies

T∑
i=1

v2i >
1

K + 1
+
K

2
(1−XT )2.

Compare this bound with the combined bound from Case 3:

T∑
i=1

v2i >
2T −K − 1

(K + 1)(2K + 1)
+

(K + 1)2 − T
2K + 1

(1−XT )2.
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Note that our bound on
∑T

i=1 v
2
i is the same as this bound from Case 3 when T = 3K+2

2
. So

we can repeat the remainder of Case 3 to get the same lower bound on Pr[|S| 6 1 | T,XT ]
when T = 3K+2

2
. The bound on Pr[|S| 6 1 | T,XT ] in Case 3 was

Pr[|S| 6 1 | T,XT ] > F
((K + 1)2 − T

(2K + 1)2

)
.

When T = 3K+2
2

, this bound becomes

Pr[|S| 6 1 | T,XT ] > F
( K

4K + 2

)
.

So we get the same bound in our current case.

Case 5: T = K 6 n− 3. By the quadratic mean inequality,

T∑
i=1

v2i >
1

T

( T∑
i=1

vi

)2
=

1

T
M2

T >
1

T
X2

T =
1

K
X2

T .

We can bound the final expression as follows:

1

K
X2

T =
1

K + 1
− (1−XT )2 +

1

K(K + 1)
[(K + 1)XT −K]2

>
1

K + 1
− (1−XT )2.

Plugging this inequality back into the previous one, we get

T∑
i=1

v2i >
1

K + 1
− (1−XT )2 =

1

K + 1
+ (T −K − 1)(1−XT )2.

This is the same inequality we derived at the beginning of Case 3. So we can repeat the
remainder of Case 3 to get the same lower bound:

Pr[|S| 6 1 | T,XT ] > F
((K + 1)2 − T

(2K + 1)2

)
.

In summary, we have proved our claim on conditional probability:

Pr[|S| 6 1 | T ] >

{
F
(

(K+1)2−T
(2K+1)2

)
if T 6 3K+2

2
;

F
(

K
4K+2

)
if T > 3K+2

2
.

Next, we will use this conditional bound to derive a lower bound on the unconditional
probability Pr[|S| 6 1].

As mentioned above, we always have T > K. In fact, assuming that K 6 n − 4, we
have T = K if the signs a1, . . . , aK are all equal, and otherwise T > K + 2. This follows
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from observing that if a1, . . . , aK are not all equal, then |XK | 6
∑K−1

i=1 vi−vK 6 1−vK+1

and |XK+1| 6
∑K−1

i=1 vi − vK + vK+1 6 1− vK+2, by the definition of K and the ordering
of the vi.

This shows that forK 6 n−4 we have Pr[T = K] = 1
2K−1 and Pr[T > K+2] = 1− 1

2K−1 .
Therefore

Pr[ |S| 6 1]

=
1

2K−1
Pr[|S| 6 1 | T = K] +

(
1− 1

2K−1

)
Pr[|S| 6 1 | T > K + 2]

>
1

2K−1
F

(
(K + 1)2 −K

(2K + 1)2

)
+
(

1− 1

2K−1

)
F

(
(K + 1)2 − (K + 2)

(2K + 1)2

)
.

Here we have used our conditional bounds, the fact that they are nondecreasing in T ,
and the inequality K + 2 6 3K+2

2
. Note that this lower bound on Pr[|S| 6 1] remains

valid without assuming that K 6 n − 4. Indeed, if K = n − 3 it is still true that
Pr[T = K] = 1

2K−1 , and while T = K + 1 = n − 2 may occur in this case, it yields a
conditional bound of 1

2
as shown in Case 2 above, which is even better than our stated

lower bound. The values n− 2 and n− 1 for K are of course covered by the conditional
bound of 1

2
in Cases 1 and 2 above.

Thus, to conclude our proof it suffices to show that

1

2K−1
F

(
(K + 1)2 −K

(2K + 1)2

)
+
(

1− 1

2K−1

)
F

(
(K + 1)2 − (K + 2)

(2K + 1)2

)
>

13

32

holds for all K > 2. Substituting the relevant expressions into the formula for F and
performing routine manipulations, the latter is shown to be equivalent to

64(K2 +K) < 2K−1(40K2 + 40K − 15),

which indeed holds for K > 2.

Can we improve this 13
32

lower bound? Yes, a little. The idea is to replace the fourth
moment with the more flexible pth moment, where p is a parameter to be optimized. To do
so, we will need Khintchine’s inequality. This inequality was first proved by Khintchine [8]
in a weaker form and later proved by Haagerup [4] with the optimal constants. Namely,
given p > 2, let Bp be the constant

Bp =
2p/2Γ(p+1

2
)

√
π

,

where Γ is the gamma function. For example, B2 = 1, B3 = 2
√

2/π, and B4 = 3.

Theorem 5 (Khintchine’s inequality). Let p be a real number such that p > 2. Let v1,
v2, . . . , vn be real numbers. Let a1, a2, . . . , an be independent random signs. Let S be∑n

i=1 aivi. Then

E(|S|p) 6 Bp

( n∑
i=1

v2i

)p/2
.
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For the improved lower bound, choose with foresight p = 3.95937. In Lemma 3,
replace the fourth moment with the pth moment and apply Khintchine’s inequality (with
S = Y ), which allows us to replace the function F with the function G defined by
G(c) = 1

2
(1− Bpc

p/2). Use this revised lemma in Theorem 4. The resulting lower bound
is G(1

4
), which is bigger than 13

32
+ 9× 10−6. We omit the details.
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