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Abstract

Minkowski sums of simplices in Rn form an interesting class of polytopes that
seem to emerge in various situations. In this paper we discuss the Minkowski sum
of the simplices ∆k−1 in Rn where k and n are fixed, their flags and some of their
face lattice structure. In particular, we derive a closed formula for their exponential
generating flag function. These polytopes are simple, include both the simplex
∆n−1 and the permutahedron Πn−1, and form a Minkowski basis for more general
permutahedra.

Keywords: polytope; permutahedron; Minkowski sum; flag polynomial; exponen-
tial flag function

1 Introduction and motivation

The Minkowski sum of simplices yields an important class of polytopes that includes and
generalizes many known polytopes. For related references and some of the history of the
significance of Minkowski sums of simplices we refer to the introduction in [2]. In [1] a
closed formula for the `-flag polynomial (See Definition 1.1) for an arbitrary Minkowski
sum of k simplices is derived. In particular, this yields a closed formula for the f -vectors
of generalized associahedra from [7]. This mentioned formula, however, is in terms of
the master polytope P (k), a (2k − 2)-dimensional polytope, the structure of which little
is known about except when k 6 2 [2], [1]. In this paper we focus on the family of
Minkowski sum of the simplices of a fixed dimension. These polytopes are interesting for
a variety of reasons. We mention a few here without attempting to be exhaustive: (i) The
polytopes in this family are all simple, and so they have a nice enumeration of their flags
of arbitrary length as we will see shortly (see Lemma 1.3). (ii) This family forms a chain,
or an incremental bridge, between the simplex of a given dimension and the standard
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permutahedron of the same dimension, where each step, or link, is between two such
simple polytopes that differ minimally, in the sense that the cardinality of the support
of the vertices differs by one, as we will see in Proposition 2.3 in Section 2. (iii) Each
polytope in this family is symmetric with respect to permutation of their coordinates, like
the simplex and the standard permutahedron. In fact, they make up a subclass of the
class of generalized permutohedra studied in [7] and [8], something we will discuss in more
detail in Section 3. (iv) By contracting each face formed by vertices of identical positive
support of any polytope of this family, one obtains a hypersimplex; a particular matroid
base polytope (or matroid basis polytope) of the uniform matroid formed by all subsets of
a fixed cardinality (the rank of the matroid) from a given ground set. In fact, each matroid
base polytope of a matroid of a given rank is contained in a “mother”-hypersimplex, that
is, its vertices are among the vertices of the “mother”-hypersimplex. The flags of matroid
base polytopes have been studied in the literature, in particular in [5] and [6], in which a
characterization of the faces of the matroid base polytopes is presented. Also, a formula
for the cd-index of rank-two matroid base polytope is presented, describing the number of
their flags in the most compact way possible, from a linear relations perspective. (v) Last
but not least, this family forms a Minkowski basis for certain generalized permutahedra
of the form Pn−1(x̃) as defined and discussed in [7, p. 13] in terms of non-negative integer
combination as Minkowski sums. Indeed, matroid base polytopes form a subclass of the
family of generalized permutahedra as shown in [3] where some of the work from [7] is
generalized, especially the volume of a general matroid base polytope. This will discussed
in Section 3.

The motivation for this paper stems from an observation on the enumeration of the
flags of the standard permutahedron, presented in Proposition 1.6 here below, which we
now will parse through and discuss.

Recall that the permutahedron Πn−1 is the convex hull of {(π(1), π(2), . . . , π(n)) ∈
Rn : π ∈ Sn} where Sn is the symmetric group of degree n. The faces of Πn−1 have a
nice combinatorial description as presented in Ziegler [10, p. 18]: each i-dimensional face
of Πn−1 can be presented as an ordered partition of the set [n] = {1, . . . , n} into exactly
n − i distinct parts. In particular, Πn−1 has

{
n
n−i

}
(n − i)! faces of dimension i for each

i ∈ {0, 1, . . . , n}, where
{
n
k

}
denotes the Stirling number of the 2nd kind.

Conventions: (i) For an `-tuple x̃ = (x1, . . . , x`) of variables and an `-tuple of
numbers ã = (a1, . . . , a`), let x̃ã = xa11 x

a2
2 · · ·x

a`
` . (ii) For ã = (a1, . . . , a`) let ∂(ã) =

(a1, a2 − a1, a3 − a2, . . . , a` − a`−1). The following definition is from [1]:

Definition 1.1. Let P be a polytope with dim(P ) = d and ` ∈ N. For an `-tuple of
variables x̃ = (x1, . . . , x`) the `-flag polynomial of P is defined by

f̃ `P (x̃) :=
∑
s̃

fs̃(P )x̃∂(s̃),

where the sum is taken over all chains s̃ = (s1, . . . , s`) with 0 6 s1 6 s2 6 · · · 6 s` 6 d and
fs̃(P ) denotes the number of chains of faces A1 ⊆ A2 ⊆ · · · ⊆ A` of P with dim(Ai) = si
for each i ∈ {1, . . . , `}.
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Conventions: For a vector c̃ = (c1, . . . , cn) we denote the linear functional x̃ 7→ c̃ · x̃
by Lc̃. For a given vector c̃ and a polytope P , we denote by FP (c̃) or just F (c̃) the unique
face of P determined by c̃ as the points that maximize Lc̃ when restricted to P . Further,
we denote the set of all the faces of P by F(P ). More specifically we denote the set of
the i-dimensional faces of P by Fi(P ), in particular, F0(P ) denotes the set of vertices of
P . Finally, for a vector c̃ the set supp(c̃) = {c1, . . . , cn} is the support of c̃.

Consider now the well-known description of the i-dimensional faces of Πn−1 as the
ordered partitions of [n] into n − i parts: more explicitly, each functional Lc̃ where the
support supp(c̃) has exactly n− i distinct values c1 < c2 < · · · < cn−i, when restricted to
Πn−1, takes its maximum value at exactly one i-dimensional face A. Here each value ci of
the support corresponds uniquely to one of the ordered parts defining the face A. Also,
by “merging” two such consecutive values ch and ch+1 (for example, by replacing both ch
and ch+1 by their average), we obtain a new functional Lc̃′ which is maximized at a face
A′ of dimension i+ 1 that contains the face A. So, by merging two consecutive parts into
one part, we obtain a coarser ordered partition of [n]. This merging process can clearly be
repeated. In this case we informally say that the first partition is a refinement of the last
partition, or equivalently that the last partition is a coarsening of the first one. Although
classical and trivial on its own, we state this as the following claim for reference purposes.

Claim 1.2. For faces A,B ∈ F(Πn−1), then A ⊆ B if, and only if, the ordered partition
of [n] corresponding to A is a refinement of the ordered partition of [n] corresponding to
B.

Given a chain s̃ = (s1, . . . , s`) with 0 6 s1 6 s2 6 · · · 6 s` 6 n − 1, the number
fs̃(Πn−1) of chains of faces A1 ⊆ A2 ⊆ · · · ⊆ A` of Πn−1 with dim(Ai) = si for each i ∈
{1, . . . , `} can then by Claim 1.2 be obtained by first considering any of the

{
n

n−s1

}
(n−s1)!

faces A1 of dimension s1, then merging s2− s1 consecutive parts (in the ordered partition
defining the face A1) of the n − s1 − 1 available consecutive pairs, then merging s3 − s2

consecutive parts of the n− s2 − 1 available consecutive parts, and so on. Therefore the
number fs̃(Πn−1) of chains of faces A1 ⊆ A2 ⊆ · · · ⊆ A` where dim(Ai) = si for each i is
given by

fs̃(Πn−1) =

{
n

n− s1

}
(n− s1)!

(
n− s1 − 1

s2 − s1

)(
n− s2 − 1

s3 − s2

)
· · ·
(
n− s`−1 − 1

s` − s`−1

)
=

{
n

n− s1

}
(n− s1)!

(
n− s1 − 1

s2 − s1 · · · s` − s`−1 n− s` − 1

)
. (1)

Such a simple formula for the number of s̃-chains of faces of Πn−1 as in (1) is not a
coincidence, as it is solely the consequence of Πn−1 being a simple polytope: each vertex
of a simple d-polytope has d neighboring vertices and is contained in d facets, and so each
k-face containing a given vertex is uniquely determined by

(
d
k

)
of its neighbors. Hence, for

each h 6 k every h-face is contained in exactly
(
d−h
k−h

)
k-faces, and we obtain in general,

as above, the following.
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Lemma 1.3. For any simple d-polytope P and a chain s̃ = (s1, . . . , s`) with 0 6 s1 6
s2 6 · · · 6 s` 6 d, we have

fs̃(P ) = fs1(P )

(
d− s1

s2 − s1 · · · s` − s`−1 d− s`

)
,

where fs1(P ) is the number of s1-faces of P .

Now, assume for a moment that for a d-polytope P we have a polynomial φ̃`P of the
form

φ̃`P (x̃) :=
∑
s̃

fs̃(P )

D(d, s1)
x̃∂(s̃), (2)

where D is a bivariate function on non-negative integers. If D(d, s1) = 1 for all d, s1 then
φ̃` = f̃ `, the `-flag polynomial from Definition 1.1. If P is simple, then by the above
Lemma 1.3, the multinomial theorem and the definition of the f -polynomial (f = f̃ 1

obtained by letting ` = 1 in Definition 1.1), we obtain the following:

φ̃`P (x̃) =
∑
s̃

fs̃(P )

D(d, s1)
x̃∂(s̃)

=
∑
s̃

fs1(P )
(

d−s1
s2−s1 ··· s`−s`−1 d−s`

)
D(d, s1)

xs11 x
s2−s1
2 · · ·xs`−s`−1

`

=
∑
s1

fs1(P )

D(d, s1)
xs11

∑
s2,...,s`

(
d− s1

s2 − s1 · · · s` − s`−1 d− s`

)
xs2−s12 · · ·xs`−s`−1

`

=
∑
s1

fs1(P )

D(d, s1)
xs11 (x2 + · · ·+ x` + 1)d−s1

= (x2 + · · ·+ x` + 1)d
∑
s1

fs1(P )

D(d, s1)

(
x1

x2 + · · ·+ x` + 1

)s1
= (x2 + · · ·+ x` + 1)dφ̃1

P

(
x1

x2 + · · ·+ x` + 1

)
,

showing that φ̃`P is uniquely determined by φ̃1
P if P is a simple d polytope.

Corollary 1.4. For a simple d-polytope P and φ̃`P from (2) we have

φ̃`P (x̃) = (x2 + · · ·+ x` + 1)dφ̃1
P

(
x1

x2 + · · ·+ x` + 1

)
.

In particular, the `-flag polynomial for any simple polytope is uniquely determined by
its f -polynomial

f̃ `P (x̃) = (x2 + · · ·+ x` + 1)dfP

(
x1

x2 + · · ·+ x` + 1

)
.
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Remark: Despite this enumerative bonus for simple (and dually for simplicial) polytopes,
the number of the flags do not yield much of the actual face lattice structure of simple or
simplicial polytopes.

Going back to our motivating permutahedron Πn−1 and its number

fi(Πn−1) =

{
n

n− i

}
(n− i)!

of faces, we see that for n > 1

n−1∑
i=0

fi(Πn−1)

(n− i)!
xn−i =

n−1∑
i=0

{
n

n− i

}
xn−i = Tn(x),

where Tn(x) is the Touchard polynomial of degree n, a.k.a. the Bell polynomial in one
variable of degree n, as Tn(x) = Bn(x, . . . , x) where Bn(x1, . . . , xn) is the complete Bell
polynomial of degree n in n variables denoted by φn(x1, . . . , xn) in [4, p. 263]), and we
have the corresponding bivariate exponential generating function [4, p. 265]

T (x, y) =
∑
n>0

Tn(x)
yn

n!
=
∑
n,k>0

{
n

k

}
xk
yn

n!
= ex(ey−1). (3)

This suggests an exponential version of the `-flag polynomial from Definition 1.1.

Definition 1.5. Let P be a d-polytope and ` ∈ N. For an `-tuple of variables x̃ =
(x1, . . . , x`) define the exponential `-flag polynomial of P by

ξ̃`P (x̃) :=
∑
s̃

fs̃(P )

(d− s1 + 1)!
x̃∂(s̃),

where the sum is taken over all chains s̃ = (s1, . . . , s`) with 0 6 s1 6 s2 6 · · · 6 s` 6 d.
For each a > 0 define the exponential `-generating function of a given family of

polytopes P = {Pd}d>0, where each Pd is of dimension d, by

ξ̃`P;a(x̃, y) :=
∑
d>a

ξ̃`Pd
(x̃)

yd+1

(d+ 1)!
.

In the case of ` = 1 we call ξP (x) := ξ̃1
P (x) the exponential face (or f -) polynomial of

P and for a family of polytopes P = {Pd}d>0, each Pd a d-polytope, we call ξP;a(x, y) :=
ξ̃1
P;a(x, y) the exponential face function of P . When there is not ambiguity and both the

family P and the starting point a are clear, we omit the subscript in ξP;a and simply write
ξ.
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For a = 0 and P = {Πn−1}n>1 we get by (3)

ξ(x, y) =
∑
n>1

ξΠn−1(x)
yn

n!

=
∑
n>1

(
n−1∑
i=0

fi(Πn−1)

(n− i)!
xi

)
yn

n!

=
∑
n>1

(
n−1∑
i=0

fi(Πn−1)

(n− i)!
x−(n−i)

)
(xy)n

n!

=
∑
n>1

Tn(x−1)
(xy)n

n!

= T (x−1, xy)− 1.

So by Corollary 1.4 applied to ξ̃`Πn−1
we then get

ξ̃`(x̃, y) =
1

x2 + · · ·+ x` + 1
ξ

(
x1

x2 + · · ·+ x` + 1
, (x2 + · · ·+ x` + 1)y

)

=
T
(
x2+···+x`+1

x1
, x1y

)
− 1

x2 + · · ·+ x` + 1
,

and again by (3) we get the following proposition.

Proposition 1.6. The exponential generating function for all the `-flags of all the per-
mutahedra Πn−1 for n > 1 from Definition 1.5 is given by

ξ̃`(x̃, y) =
∑
n>1,s̃

ξ̃`Πn−1
(x̃)

yn

n!
=
e

x2+···+x`+1

x1
(ex1y−1) − 1

x2 + · · ·+ x` + 1
.

In particular, as the coefficient [x̃∂(s̃)yn]ξ̃`(x̃, y) of x̃∂(s̃)yn in the expansion of ξ̃`e(x̃, y)
is given by

[x̃∂(s̃)yn]ξ̃`e(x̃, y) =
fs̃(Πn−1)

(n− s1)!n!
,

then by Proposition 1.6 we have

fs̃(Πn−1) = (n− s1)!n![x̃∂(s̃)yn]

(
e

x2+···+x`+1

x1
(ex1y−1) − 1

x2 + · · ·+ x` + 1

)
.

Remarks: (i) Needless to say, there are many ways to define an exponential generating
function for the `-flags of the permutahedra; we chose one here that would yield nice
formulae. (ii) Note that for ` = 1 in Proposition 1.6, the sum x2 + · · ·+x` is empty which
yields the exponential face function

ξ(x, y) = e(
exy−1

x ) − 1.
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Having presented our motivating example, a natural question arises whether formulae
as in Proposition 1.6 can be generalized to a larger family of polytopes that include the
permutahedron Πn−1. This will be the subject of the rest of the paper, which is organized
as follows. In Section 2 we formally define the polytopes Πn−1(k − 1) for each k > 1 and
n > k and we present some basic properties. In Section 3 we describe how the PI-family
Pn = {Πn−1(k− 1)}k=2,...,n fits in with various other families that generalize the standard
permutahedron and we demonstrate how Pn forms a Minkowski basis for one such family
of polytopes. The remaining two sections form the meat of this paper. In Section 4 we
derive a formula for the f -polynomial of Πn−1(k − 1) and describe its flags in terms of
ordered pseudo-partitions of [n] = {1, . . . , n}, in a similar way as we did in Claim 1.2
for the standard permutahedron Πn−1. Finally, in Section 5 we derive a closed formula
for the exponential `-generating function ξ̃`P⊥k ;k−1

(x̃, y) for an arbitrary but fixed integer

k > 1, where P⊥k = {Πn−1(k − 1)}n>k. Note that both families Pn and P⊥k cover all the
polytopes Πn−1(k − 1) when n and k roam respectively;

⋃
n>2Pn =

⋃
k>2P⊥k are both

partitions of the set of all Πn−1(k − 1).

2 The PI-family of polytopes and basic properties

In this section we define the PI-family of polytopes we investigate and present some basic
properties that naturally generalize those of the permutahedron Πn−1 and the simplex
∆n−1. First we recall some basic definitions and notations we will be using.

For n ∈ N and [n] = {1, 2, . . . , n}, the (standard) simplex ∆n−1 = ∆[n] of dimension
n−1 is given by ∆n−1 = ∆[n] = {x̃ = (x1, . . . , xn) ∈ Rn : xi > 0 for all i , x1+· · ·+xn = 1}.
Each subset F ⊆ [n] yields a face ∆F of ∆[n] given by ∆F = {x̃ ∈ ∆[n] : xi = 0 for i 6∈ F}.
Clearly ∆F is itself a simplex embedded in Rn. If F is a family of subsets of [n], then we
can form the Minkowski sum of simplices

PF =
∑
F∈F

∆F =

{∑
F∈F

x̃F : x̃F ∈ ∆F for each F ∈ F

}
. (4)

In general, every nonempty face of any polytope P ⊆ Rn (in particular of ∆[n]) is given
by the set of points that maximize a linear functional Lc̃ : x̃ 7→ c̃ · x̃ restricted to P . We
note that the permutahedron Πn−1 can be expressed as a zonotope, a Minkowski sum of
simplices each of dimension one:

Πn−1 =
∑

F⊆[n], |F |=2

∆F .

In light of this we obtain a natural generalization

Πn−1(k − 1) :=
∑

F⊆[n], |F |=k

∆F , (5)

for each fixed k > 2, the Minkowski sum of all (k − 1)-dimensional simplices in Rn. We
will refer to Πn−1(k−1) from (5) as the hyper-permutahedron. Note that Πn−1(1) = Πn−1,
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the standard permutahedron, and Πn−1(n− 1) = ∆n−1, the standard (n− 1)-dimensional
simplex.

Remark: Clearly we could have denoted Πn−1(k − 1) by the shifted and shorter
Πn(k) ⊆ Rn+1, but to be consistent with the modern convention of denoting the standard
(n − 1)-dimensional permutahedron in Rn by Πn−1, for example Ziegler’s [10, p. 17], we
have opted for Πn−1(k − 1). Needless to say, this is entirely a matter of taste.

We now present some basic and standard facts about Minkowski sums of polytopes in
general that we will be using. It’s proof is standard and hence omitted.

Lemma 2.1. Let P1, . . . , Pk be polytopes in Rn. Then F ∈ F
(∑k

i=1 Pi

)
iff (i) F =∑k

i=1Ai where each Ai ∈ F(Pi) and (ii) there is a linear functional L on Rn such that
each L|Pi

is maximized at Ai and L|∑k
i=1 Pi

is maximized at F .

Since max(L|∑k
i=1 Pi

) =
∑k

i=1 max(L|Pi
) we can say a tad more.

Corollary 2.2. The decomposition of F ∈ F
(∑k

i=1 Pi

)
as F =

∑k
i=1Ai from Lemma 2.1

is unique.

Consider for a moment a functional Lc̃ where c1 > · · · > cn. Clearly Lc̃ restricted to
Πn−1(k − 1) as defined in (5) will yield the vertex (1, 0, . . . , 0) of ∆F from all the

(
n−1
k−1

)
subsets F ⊆ [n] with 1 ∈ F . Further, Lc̃ will yield the vertex (0, 1, 0, . . . , 0) of ∆F from
all the

(
n−2
k−1

)
subsets of F ⊆ [n] with 1 6∈ F and 2 ∈ F and so on. Hence, by (5) and

Lemma 2.1 we see that Lc̃ will yield the unique vertex
((
n−1
k−1

)
,
(
n−2
k−2

)
, . . . ,

(
k−1
k−1

)
, 0, . . . , 0

)
of

Πn−1(k−1). By considering all permutations on n indices, we therefore have the following
proposition.

Proposition 2.3. Every vertex of Πn−1(k−1) has form ũ = (u1, . . . , un) where the support
is given by

supp(ũ) = {u1, . . . , un} =

{(
n− 1

k − 1

)
,

(
n− 2

k − 1

)
, . . . ,

(
k − 1

k − 1

)
, 0

}
.

There are exactly k − 1 copies of 0 among u1, . . . , un and hence exactly one copy of each
nonzero integer from the above set. In particular Πn−1(k − 1) has exactly n!

(k−1)!
vertices.

From Proposition 2.3 here above we see that Πn−1(k − 1) is a degenerate case of the
polytope Pn−1(ṽ) from Postnikov [7], defined as the convex hull of {(vπ(1), vπ(2), . . . , vπ(n)) :
π ∈ Sn} for a fixed vector ṽ ∈ Rn. Namely, Πn−1(k−1) = Pn−1(ṽ) where ṽ = (v1, . . . , vn) =
(
(
n−1
k−1

)
,
(
n−2
k−1

)
, . . . ,

(
k−1
k−1

)
, 0, . . . , 0). The combinatorial type of Pn(ṽ), for any ṽ ∈ Rn with

v1 = v2 = · · · = vk−1 < vk < · · · < vn, is the same as that of Πn−1(k − 1) (i.e. they have
isomorphic face lattices) so, in particular, the combinatorial type of Pn(ṽ) when all the vi
are distinct, is the same as that of the standard permutahedron Πn−1. In [7] the volume
Pn(ṽ) is studied extensively, and it is shown to be a polynomial in the variables v1, . . . , vn.

Note that every functional Lc̃ for which the coordinates c1, . . . , cn of c̃ are distinct
will always yield a vertex of Πn−1(k − 1), but not vice versa when k > 3. For such a

the electronic journal of combinatorics 24(3) (2017), #P3.46 8



c̃ we can, as right before Claim 1.2, “merge” two consecutive values of the support of
c̃ (i.e. replace both values by their average, say) and thereby obtain the unique edge of
Πn−1(k − 1), the endvertices of which form the max-set of this altered Lc̃. Note that the
edges of Πn−1(k − 1) are of two types or kinds: 1st kind having k − 1 zeros among the
coordinates of each generic point on the edge (i.e. edge points excluding the endpoints),
and the 2nd kind with k−2 zeros among the coordinates of each generic point on the edge.
The number e1 of edges of the 1st kind is the same as the number of ordered partition of
a chosen (n− k + 1)-subset of [n] into n− k parts, and hence

e1 =

(
n

n− k + 1

){
n− k + 1

n− k

}
(n− k)! =

(
n

n− k + 1

)(
n− k + 1

2

)
(n− k)! =

(n− k)n!

2(k − 1)!
.

The number e2 of edges of the 2nd kind is the same as the number ways to choose an
(n− k + 2)-subset of [n], partition it into n− k + 1 parts and order the n− k singletons
of those parts, and so

e2 =

(
n

n− k + 2

){
n− k + 2

n− k + 1

}
(n− k)! =

(
n

n− k + 2

)(
n− k + 2

2

)
(n− k)! =

n!

2(k − 2)!
.

Hence, the total number of edges is given by e1 + e2 = (n−1)n!
2(k−1)!

. We summarize in the
following.

Proposition 2.4. Every edge of Πn−1(k − 1) is between a pair of vertices as given in
Proposition 2.3 that differ in exactly two coordinates whose values are consecutive in the
support of the vertices. Consequently the edges are of two types: (i) edges between two
vertices, both with the same k − 1 zero coordinates, and (ii) edges between two vertices,
both with the same k − 2 zero coordinates and one with its least nonzero entry where the
other vertex has a zero. In particular, the number of edges of Πn−1(k − 1) is (n−1)n!

2(k−1)!
and

so Πn−1(k − 1) is a simple polytope for all k and n.

By the above Proposition 2.4 every Πn−1(k − 1) is simple, so the sequence

∆n−1 = Πn−1(n− 1),Πn−1(n− 2), . . . ,Πn−1(2),Πn−1(1) = Πn−1,

can be viewed as discrete transition of simple polytopes from the simplex ∆n−1 to the
standard permutahedron Πn−1, see Figure 1. This is our first main reason to focus our
study on the PI-family consisting of Πn−1(k − 1) where k = 2, . . . , n− 1.

3 Comparing various types of generalizations of permutahedra

In this section we further promote the importance of the PI-family Pn = {Πn−1(k −
1)}k=2,...,n and briefly compare various families of polytopes from the literature, all gen-
eralizing the standard permutahedron in one form or another. We present some explicit
characterizations of them and show that the PI-family Pn forms a Minkowski Z+-basis
for a large family of polytopes that generalizes the standard permutahedron.
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Π3(3) Π3(2) Π3(1)

Figure 1: A simple transition between ∆3 and Π3 in the case n = 4.

There are, needless to say, many ways to generalize the standard permutahedron Πn−1,
and we have briefly mentioned two of them (namely, Πn−1(k−1) and Pn−1(ṽ) from above).
There are two other classes of important families of polytopes from [7] and from [8] we
want to relate Πn−1(k − 1) to. A good portion of the discussion immediately here below
in this section, is, in one form or another, contained in [7] and [9], except for some minor
observations, propositions, and examples toward the end of this section. We include it all
in this short section though as it serves as a second main reason for our investigation, as
well as for self-containment of the article.

First Class: For a collection Ỹ = {yI}I⊆[n] of non-negative real numbers yI > 0 for

each I ⊆ [n], one can define a Pn−1(Ỹ ) as the Minkowski sum of simplices ∆I scaled by
yI

Pn−1(Ỹ ) :=
∑
I⊆[n]

yI∆I ,

and is referred to as a generalized permutohedron in [7]. Apriori this seems to be more
general than the Minkowski sum in (4). However, if we consider a family F of subsets of
[n] containing (possibly) multiple copies of subsets of [n], then PF from (4) can be written
as

PF =
∑
I⊆[n]

nI∆I ,

which can have the same combinatorial type as any Pn−1(Ỹ ). The class Pn−1(Ỹ ) (and
hence also the class PF ,) includes numerous classes of polytopes with highly interesting
combinatorial structures, like the associahedron, the cyclohedron, etc. (see [7] for many
more examples.)

Second Class: For a collection Z̃ = {zI}I⊆[n] of non-negative real numbers zi > 0

for each I ⊆ [n], one can define Pn−1(Z̃) by its bounding hyperplanes

Pn−1(Z̃) :=

x̃ ∈ Rn :
∑
i∈[n]

xi = z[n],
∑
i∈I

xi 6 zI for I ⊂ [n]

 ,

which is also refereed to as the generalized permutohedron in [7]. The following is a
theorem of Rado [9].
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Theorem 3.1. The polytope Pn−1(ṽ) where the coordinates are ordered v1 > · · · > vn,
can be presented as those t̃ ∈ Rn satisfying

∑
i∈[n] ti =

∑
i∈[n] vi and

∑
i∈I ti 6

∑
i∈[|I|] vi

for each I ⊆ [n].

From Theorem 3.1 we see that if zI = zJ whenever |I| = |J |, then there are uniquely
determined v1, . . . , vn such that Pn−1(Z̃) = Pn−1(ṽ). Therefore, the class of Pn−1(Z̃)
polytopes strictly includes all polytopes Pn−1(ṽ).

Further, the following is from [7].

Proposition 3.2. For a given collection Ỹ = {yI}I⊆[n] of non-negative real numbers

yI > 0, then Pn−1(Ỹ ) = Pn−1(Z̃) where zI =
∑

J⊆I yJ for each I ⊆ [n].

Hence, the class of Pn−1(Z̃) polytopes also includes the class of all Pn−1(Ỹ ) polytopes.
By Observation 3.3 here below, this mentioned inclusion is also strict.

Suppose it is known that Pn−1(Z̃) = Pn−1(Ỹ ) for some Ỹ = {yI}I⊆[n]. Then we
may assume that zI =

∑
J⊆I yJ for each I ⊆ [n]. By a Möbius inversion we then get

yI =
∑

J⊆I(−1)|I|−|J |zJ for each I ⊆ [n], so the yI are uniquely determined in terms of
the zI . Hence we have the following.

Observation 3.3. For n ∈ N and a collection Z̃ = {zI}I⊆[n] of non-negative real numbers,

then Pn−1(Z̃) = Pn−1(Ỹ ) if and only if yI =
∑

J⊆I(−1)|I|−|J |zJ > 0 for each I ⊆ [n].

For n ∈ N we say that a collection T̃ = {tI}I⊆[n] is symmetric if tI = tJ whenever
|I| = |J |. Hence, from Proposition 3.2 and the above Observation 3.3 we have the
following.

Observation 3.4. For any n ∈ N we have that Ỹ = {yI}I⊆[n] is symmetric if and only if

Z̃ = {zI}I⊆[n] where zI =
∑

J⊆I yJ is symmetric. Further, if Ỹ is symmetric then

Pn−1(Ỹ ) =
n∑
k=1

ykΠn−1(k − 1)

for non-negative real numbers y1, . . . , yk, where we interpret Πn−1(0) as a singleton point.

Remark: It is interesting to note that Proposition 3.2 from [7] has been generalized to
include all real numbers yI ∈ R for I ⊆ [n], and not merely the non-negative ones, as stated
in Proposition 2.4 in [3]. This implies, in particular, that with the right interpretation of
a Minkowski difference of polytopes, and hence also a signed Minkowski sum of simplices,
as defined and discussed in [7] and [3] (something we will not discuss further in this
article), then both Observations 3.3 and 3.4 do hold for arbitrary real numbers yI =∑

J⊆I(−1)|I|−|J |zJ ∈ R for each I ⊆ [n] on one hand and for y1, . . . , yk ∈ R on the other.

We now describe those permutahedra Pn−1(ṽ) that can be written as Pn−1(Ỹ ) for some
ỹ = {yI}I⊆[n].

For a sequence (an)n>0 of real numbers, recall the (backward) difference given by
∆(an) = an − an−1 for each n > 11. Iteratively we also have the i-th order difference by

1The forward difference is defined as ∆(an) = an+1 − an
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∆i(an) = ∆(∆i−1(an)) for each i > 0 and where ∆0(an) = an for each n. Likewise, for
an n-tuple ã = (a1, . . . , an) ∈ Rn we let ∆(ã) = (∆(a2), . . . ,∆(an)) = (a2 − a1, . . . , an −
an−1) ∈ Rn−1. Clearly, if Pn−1(ṽ) can be written of the form Pn−1(Ỹ ) for some Ỹ , then
by Theorem 3.1 and Observation 3.3 we can assume Ỹ to be symmetric and so

Pn−1(ṽ) =
∑
I⊆[n]

y|I|∆I = y11̃ +
n∑
k=2

ykΠn−1(k − 1),

where 1̃ = (1, 1, . . . , 1) ∈ Rn. The following proposition is our main conclusion of this
section, the proof of which follows thereafter.

Proposition 3.5. For n ∈ N and ṽ ∈ Rn, v1 6 · · · 6 vn, then Pn−1(ṽ) =
∑n

k=1 ykΠn−1(k−
1) for non-negative yk > 0 for each k, if and only if all the differences of ṽ are non-
negative, that is, ∆i(vk) > 0 for each i ∈ {0, 1 . . . , n− 1} and k ∈ {i+ 1, . . . , n}.

Remark: If ∆i(vk) > 0 for each i and k, then the yk with Pn−1(ṽ) =
∑n

k=1 ykΠn−1(k−
1) are uniquely determined by ṽ. Hence, {Πn−1(k− 1) : k ∈ {1, . . . , n}} = Pn∪{1̃} forms
a Minkowski basis for such permutahedra Pn−1(ṽ).

We will prove Proposition 3.5 in a few small steps. First a lemma in linear algebra.

Lemma 3.6. For n ∈ N and k ∈ {1, 2, . . . , n} let

ṽn−1(k − 1) =

(
0, . . . , 0,

(
k − 1

k − 1

)
, . . . ,

(
n− 1

k − 1

))
.

Then ũ ∈ spanR+({ṽn−1(k − 1) : k ∈ {1, . . . , n}}) iff all the differences of ũ are non-
negative.

The proof of the above Lemma 3.6 will use the following trivial fact.

Claim 3.7. For any n ∈ N and ṽ ∈ Rn then ∆(ṽ) = 0̃⇔ ṽ = v1̃ = (v, v, . . . , v) ∈ Rn−1.

Proof. (Lemma 3.6) Note that ∆(ṽn−1(k − 1)) = ṽn−2(k − 2), so by induction on n, all
the differences of ṽn−1(k − 1) are non-negative. Since the difference operator ∆ is linear,
then all the differences of

∑n
k=1 ykṽn−1(k − 1) are non-negative if each yk > 0. Therefore

if ũ ∈ spanR+({ṽn−1(k − 1) : k ∈ {1, . . . , n}}), then it is necessary for all the differences
of ũ to be non-negative.

Conversely, let ũ ∈ Rn have all its differences non-negative. If n = 1 then clearly
ũ = u1 ∈ spanR+({ṽ0(0)}). Otherwise all the differences of ∆(ũ) are non-negative, and

hence by induction on n we can assume that ∆(ũ) =
∑n

k=2 ykṽn−2(k − 1) for some non-
negative y2, . . . , yn, and so

∆(ũ) =
n∑
k=2

yk∆(ṽn−1(k)) = ∆

(
n∑
k=2

ykṽn−1(k − 1)

)
.

By Claim 3.7 we have ũ −
∑n

k=2 ykṽn−1(k) = y11̃ for some real y1. Since all differences
of ũ are non-negative, in particular ∆0(ũ) = ũ, we have y1 = u1 > 0 and hence ũ ∈
spanR+({ṽn−1(k − 1) : k ∈ {1, . . . , n}}). ut
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We now have what we need to prove Proposition 3.5.

Proof. (Proposition 3.5) We first note that if ṽ is as in Proposition 3.5, that is Pn−1(ṽ) =∑n
k=1 ykΠn−1(k − 1) where yk > 0 for each k, then Lc̃, where c̃ = (1, 2, . . . , n) ∈ Rn,

is maximized at ṽ, when restricted to Pn−1(ṽ), and is maximized at ṽn−1(k − 1) when
restricted to Πn−1(k − 1) for each k. Hence, when restricted to

∑n
k=1 ykΠn−1(k − 1) then

Lc̃ is maximized at
∑n

k=1 ykṽn−1(k − 1), and so ṽ =
∑n

k=1 ykṽn−1(k − 1). By Lemma 3.6,
all the differences of ṽ must then be non-negative.

For the converse, if all the difference of ṽ are non-negative, then by Lemma 3.6 there
are non-negative real coefficients yk > 0 such that ṽ =

∑n
k=1 ykṽn−1(k − 1), at which Lc̃

where c̃ = (1, 2, . . . , n) ∈ Rn when restricted to both Pn−1(ṽ) and
∑n

k=1 ykΠn−1(k − 1) is
maximized at. Similarly, for any permutation π of {1, . . . , n}, the linear functional Lπ(c̃)

where π(c̃) = (π(1), . . . , π(n)) when restricted to both Pn−1(ṽ) and
∑n

k=1 ykΠn−1(k − 1)
is maximized at

π(ṽ) = (vπ(1), . . . , vπ(n)) =
n∑
k=1

ykπ(ṽn−1(k − 1)).

By definition of Pn−1(ṽ) we therefore see that every vertex of Pn−1(ṽ) is also a vertex of∑n
k=1 ykΠn−1(k − 1). But since every vertex of

∑n
k=1 ykΠn−1(k − 1) has by Corollary 2.2

the unique form
∑n

k=1 ykw̃k where each w̃k is a vertex of Πn−1(k − 1), and each w̃k is the
maximum set of the functional Lπ(c̃) when restricted to Πn−1(k − 1), then every vertex
of
∑n

k=1 ykΠn−1(k − 1) is indeed the maximum set of some Lπ(c̃). Hence, the polytopes
Pn−1(ṽ) and

∑n
k=1 ykΠn−1(k − 1) have the same set of vertices, and so must be the same

polytope. This completes the proof. ut

Example: Consider the polytope P3(0, 1, 2, 2), and assume it can be written as P3(Ỹ )
for some Ỹ = {yI}I⊆[4]. By Theorem 3.1 and Observation 3.3 we can assume Ỹ to be

symmetric and so P3(0, 1, 2, 2) =
∑4

k=1 ykΠ3(k−1). Looking at the differences of (0, 1, 2, 2)
we get 

∆0

∆1

∆2

∆3

 =


0 1 2 2

1 1 0
0 −1
−1


containing two negative entries in the differences of ṽ = (0, 1, 2, 2). By Proposition 3.5
P3(0, 1, 2, 2) cannot be written in the form of P3(0, 1, 2, 2) =

∑4
k=1 ykΠ3(k− 1). However,

P3(0, 1, 2, 2) is still a symmetric polytope and has dimension 3 by Lemma 4.1 here below.
By Proposition 3.5 we have the following.

Corollary 3.8. The PI-family Pn = {Πn−1(k − 1)}k=2,...,n forms a Minkowski Z+-basis
for those polytopes Pn−1(ṽ) that are of the form Pn−1(Ỹ ) for some family Ỹ = {yI}I⊆[n]

of non-negative real numbers.
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4 The flag polynomial of the hyper-permutahedron

Having briefly compared three types of polytopes, Pn−1(ṽ), Pn−1(Ỹ ), and Pn−1(Z̃), each
of which can be viewed as generalizations of the standard permutahedron, we see that
the polytopes Pn−1(k − 1) for k ∈ {1, . . . , n} form a Minkowski basis for those poly-
topes Pn−1(ṽ) that can be expressed as Pn−1(Ỹ ). Hence, this can be viewed as a further
justification for studying them, and so we will in this section focus on the PI-family
Pn = {Πn−1(k − 1)}k=2,...,n for a given n ∈ N. We will discuss the face lattice and its flag
polynomial. Since many formal statements are the same for Πn−1(k−1) as with the more
general Pn−1(ṽ) and are, in fact, more transparent, we will consider the polytope Pn−1(ṽ)
in many cases, and then derive corollaries about Πn−1(k − 1).

First, we will derive some facts from linear algebra that will come in handy in this
section.

Consider two points ã, c̃ ∈ Rn where neither of them has all its coordinates the same.
In this case there is a proper partition A∪B = [n] such that ci > cj for all (i, j) ∈ A×B.
As neither A nor B is empty, we cannot have ai = aj for all (i, j) ∈ A × B, since that
would imply ai = aj for all i, j ∈ [n]. Hence, there is an (i, j) ∈ A × B with ai 6= aj. If
τ = (i, j) ∈ Sn then

Lc̃(ã)− Lc̃(τ(ã)) = ciai + cjaj − (ciaj + cjai) = (ci − cj)(ai − aj) 6= 0.

Hence, we have the following.

Lemma 4.1. Let ã, c̃ ∈ Rn, neither of which have all its coordinates the same. Then
there is a transposition τ ∈ Sn such that Lc̃(τ(ã)) 6= Lc̃(ã).

In particular, for ã and c̃ as in Lemma 4.1, Pn−1(ã) 6⊆ ker(Lc̃) and so dim(Pn−1(ã)) =
n− 1. Now, since Πn−1(k − 1) = Pn−1(ṽn−1(k − 1)), where

ṽn−1(k − 1)) =

(
0, . . . , 0,

(
k − 1

k − 1

)
, . . . ,

(
n− 1

k − 1

))
is as in Lemma 3.6, we then have the following.

Corollary 4.2. Let ṽ ∈ Rn. Then

dim(Pn−1(ṽ)) =

{
0 if v1 = · · · = vn,
n− 1 otherwise.

In particular dim(Πn−1(k − 1)) = n− 1 for every k ∈ {2, . . . , n}.

We now generalize Corollary 4.2 slightly. As the symmetric group Sn denotes the group
of bijections [n]→ [n], we can adopt the notation S(X) for the group of bijections X → X,
where X is a given set. With this convention Sn = S([n]) and clearly S(X) ∼= S|X| for
any finite set X. For any collection X1, . . . , Xk of disjoint subsets of [n] we then have
the internal product S(X1)S(X2) · · ·S(Xk), a subgroup of S([n]) which is isomorphic to
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the direct product Sn1 × Sn2 × · · · × Snk
where |Xi| = ni. For a vector ṽ ∈ Rn and a

subset X of [n] we let ProjX : Rn → R|X| denote the projection onto all the coordinate
in X. If X = {i} is a singleton set, we let Proji = Proj{i} be the projection onto the i-th
coordinate. Further we let δX(ṽ) denote the indicator function

δX(ṽ) =

{
0 if |supp(ProjX(ṽ))| = 1,
1 otherwise .

(6)

We now have by Corollary 4.2 the following more general statement.

Proposition 4.3. For disjoint subsets X1, . . . , Xh of [n] and ṽ ∈ Rn we have

dim(conv({π(ṽ) : π ∈ S(X1) · · ·S(Xh)})) =
h∑
i=1

δXi
(ṽ)(|Xi| − 1).

Note that the above Proposition 4.3 holds in particular for every partition X1 ∪ · · · ∪
Xh = [n] of [n].

We seek to describe the face lattice of the polytope Pn−1(ṽ) where ṽ has non-negative
real entries, in a similar fashion as was done when describing the faces of the standard
permutahedron Πn−1 earlier, namely by considering the max set of a linear functional
restricted to the polytope. In [8] the combinatorial structure of classes of polytopes that
include those of Pn−1(ṽ) is studied in great depth. In particular, the f -, h- and γ-vectors
of these classes of polytopes are studied. Many explicit formulae for the h- and γ-vectors
involving descent statistics of permutations are given. Here we take a different OR-like
(operations research) approach, involving linear functionals, that more directly relates to
the characterization of the faces as presented in Claim 1.2.

We say that two vectors ã and c̃ have the same order type if ai 6 aj ⇔ ci 6 cj
for all i, j ∈ {1, . . . , n}. The order type defines an equivalence relation among vectors
c̃ ∈ Rn, and clearly all vectors of the same type yield the same face of Pn−1(ṽ), as the
set of maximum points of Lc̃ when restricted to Pn−1(ṽ). Denote by [c̃] the order type
equivalence class of the vector c̃ ∈ Rn. So, if F (c̃) denotes the unique face as the set of
maximum points of Lc̃ restricted to Pn−1(ṽ), then, by the above, F (c̃) = F (c̃′) whenever
[c̃] = [c̃′], and hence the face F ([c̃]) is well defined. Also note that Pn−1(ṽ) and Pn−1(ṽ′)
have the same combinatorial type iff [ṽ] = [ṽ′]. Finally, if δX(c̃) denote the indicator
function from (6), then clearly δX([c̃]) is well defined.

As real addition is commutative, then for any permutation π ∈ Sn we have

Lπ(c̃)(π(x̃)) = π(c̃) · π(x̃) = c̃ · x̃ = Lc̃(x̃).

Hence, if let π(F ) = {π(x̃) : x̃ ∈ F}, then clearly we have the following.

Observation 4.4. For any permutation π ∈ Sn we have π(F ([ã])) = F ([π(ã)]), and, in
particular, Pn−1(ṽ) = Pn−1(π(ṽ)).
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Consider the polytope Pn−1(ṽ) for a given vector ṽ with non-negative real entries. To
describe the face F (c̃) of Pn−1(ṽ), we first note that c̃ yields a unique ordered partition of
[n]

[n] = X1(c̃) ∪ · · · ∪Xh(c̃), (7)

where ci = cj for all i, j ∈ X`(c̃) and ci < cj if i ∈ X`(c̃) and j ∈ X`′(c̃) where ` < `′.
Note that Lc̃ restricted to the set of vertices F0(Pn−1(ṽ)) takes its maximum value on
those vertices ũ, the order of whose entries are in agreement with the order of the entries
of c̃, that is ci < cj ⇒ ui 6 uj. This is clearly a necessary and sufficient condition
ũ ∈ F0(Pn−1(ṽ)) must satisfy in order for Lc̃(ũ) to be a maximum value of Lc̃ when
restricted to Pn−1(ṽ). Formally we have a following description.

Observation 4.5. For a given c̃ ∈ Rn the face of Pn−1(ṽ) determined by [c̃] is given by

F ([c̃]) = conv({ũ ∈ F0(Pn−1(ṽ)) : ci < cj ⇒ ui 6 uj})
= conv({ũ ∈ F0(Pn−1(ṽ)) : ui < uj ⇒ ci 6 cj}).

Clearly by Observation 4.4, we can assume ṽ to be ordered in any way convenient
for our purposes. In particular, when describing the face F ([c̃]) of Pn−1(ṽ), we can for
simplicity assume that the order of ṽ agrees with that of c̃, so vi 6 vj whenever ci < cj,
that is we can assume ṽ ∈ F (c̃) by Observation 4.5. In terms of the partition from (7),
we then obtain another equivalent form by Proposition 4.3.

Proposition 4.6. For a given c̃ ∈ Rn the face of Pn−1(ṽ) determined by [c̃] that contains
ṽ is given by

F ([c̃]) = conv({µ1 · · ·µh(ṽ) : µi ∈ S(Xi(c̃)) ⊆ S([n]), i ∈ {1, . . . , h}}).

In particular we have

dim(F ([c̃])) =
h∑
i=1

δXi(c̃)(ṽ)(|Xi(c̃)| − 1).

We note that if c̃ and ṽ are both ordered, c1 6 · · · 6 cn and v1 6 · · · 6 vn, and
δX`(c̃)∪X`+1(c̃)(ṽ) = 0 for some `, then we can replace each ci where i ∈ X`(c̃) and cj where
j ∈ X`+1(c̃) with a single value between ci and cj, say (ci + cj)/2, and thereby obtaining
a vector c̃′ with a strictly smaller support than c̃ such that F ([c̃]) = F ([c̃′]). In this case
we have merged the two consecutive intervals X`(c̃) and X`+1(c̃) into one interval without
altering the corresponding face of Pn−1(ṽ) that these vectors determine.

Definition 4.7. For ordered vectors c̃, ṽ ∈ Rn we say that c̃ is ṽ-reduced if for every
` ∈ {1, . . . , h} from (7) we have δX`(c̃)∪X`+1(c̃)(ṽ) = 1.

Turning our attention now back to the more specific PI-family Pn = {Πn−1(k −
1)}k=2,...,n we note that vectors of distinct order type can yield the same face of Πn−1(k−1)
when k > 3, but for k = 2 (when Πn−1(k−1) = Πn−1, the standard permutahedron) then
each face corresponds uniquely to the order type of the vector yielding it.
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Observation 4.8. For every k > 2 the map [c̃] 7→ F ([c̃]) ∈ F(Πn−1(k − 1)) is always
surjective, and it is injective (and hence bijective) iff k = 2. In particular, the total
number of order types [c̃] where c̃ ∈ Rn is the same as |F(Πn−1)|, the total number of faces
(including the polytope itself) of Πn−1.

Since Πn−1(k−1) = Pn−1(ṽn−1(k−1)) where ṽn−1(k−1) =
(
0, . . . , 0,

(
k−1
k−1

)
, . . . ,

(
n−1
k−1

))
from Lemma 3.6, then when considering a face F ([c̃]) of Πn−1(k − 1) we can assume c̃
to be ṽn−1(k − 1)-reduced. Therefore we can assume the partition (or rather the disjoint
union) of [n] induced by c̃ from (7) to have the form [n] = Z(c̃) ∪ X0(c̃) ∪ · · · ∪ Xp(c̃)
where Z(c̃) consists of those indices from [n] whose coordinates of F (c̃) all are zero, which
could potentially be empty. In fact, letting n` = |X`(c̃)|, we see that F (c̃) is the unique
face that is the convex combination of those vertices of Πn−1(k − 1) where the np largest
entries occur in coordinates from Xp(c̃), the next largest entries occur in coordinates
from Xp−1(c̃), etc., the n0 2nd smallest entries, not all zero (but where some could be
zero), occur in coordinates from X0(c̃) and lastly the smallest entries, all zero, occur in
coordinates from Z(c̃). As noted, with this setup Z(c̃) could be empty. We therefore must
relax the notion of partition in order to obtain a description of the face F (c̃) = F ([c̃]).

Definition 4.9. For n ∈ N call a tuple (Z,X0, . . . , Xp) an ordered pseudo-partition of
[n] (or an OPP for short) if Z ∪X0 ∪ · · · ∪Xp = [n] is a disjoint union, X0, . . . , Xp are
all non-empty and Z might possibly be empty.

Remark: Although the above Definition 4.9 is motivated by a vector in c̃ ∈ Rn, and
its dot-product with a vertex ṽ ∈ Πn−1(k− 1), the definition of an OPP does not depend
on it.

Theorem 4.10. For n ∈ N and k ∈ {1, . . . , n}, then every d-face of Πn−1(k − 1) is in
one-to-one correspondence with an OPP (Z,X0, . . . , Xp) of [n] where (i) 0 6 |Z| 6 k− 1,
(ii) k 6 |Z|+ |X0| 6 n, and (iii) n− |Z| − p− 1 = d.

Proof. From an OPP P = (Z,X0, . . . , Xp) of [n] satisfying the conditions (i) – (iii) in
Theorem 4.10 above, we obtain a vector c̃ = c̃(P) with Projl(c̃) = 0 if l ∈ Z and
Projl(c̃) = i + 1 if l ∈ Xi. In this case the face F (c̃) is exactly the convex combination
of those vertices of Πn−1(k − 1) where the largest |Xp| entries occur in coordinates from
Xp, the largest |Xp−1| entries of the remaining n − |Xp| ones occur in coordinates from
Xp−1 etc, the largest |X0| entries of the remaining n − (|X1| + · · · + |Xp|) ones occur in
coordinates from X0, and finally, all the coordinates from Z contain only zeros. Hence,
each OPP P yields a unique face F (c̃(P)).

On the other hand, every (proper) face F of Πn−1(k− 1) has the form F ([c̃]) for some
c̃ ∈ Rn where supp(c̃) = [h] for some h ∈ [n] Viewing c̃ as a function c : [n] → [h] with
c(i) = ci for each i ∈ [n], we obtain a OPP P = P(c̃) as in the following way.

Letting p > 0 be the least integer with |X0| + · · · + |Xp| > n − k + 1, where Xi =
c−1(h− p+ i) for each i = 0, . . . , p, and Z = c−1([h− p− 1]), will give us our desired OPP
P(c̃) = (Z,X0, . . . , Xp).
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Clearly we have P(F (c̃(P))) = P and F (c̃(P(F (c̃)))) = F (c̃). Note that in general
c̃(P(F (c̃))) 6= c̃, but they yield the same face. This proves the one-to-one correspondence
between OPPs and (proper) faces of Πn−1(k − 1).

Finally, by Proposition 4.6 if F = F (c̃(P)) is the unique face obtained from the OPP
P , then

dim(F ) =

p∑
i=0

(|Xi| − 1) = |X0|+ · · ·+ |Xp| − p− 1 = n− |Z| − p− 1,

which completes the proof. ut

By Theorem 4.10 we can derive the f -polynomial of Πn−1(k − 1) by enumerating all
OPP P satisfying (i) and (ii) in Theorem 4.10 with d = n−|Z|−p−1 being a given fixed
number. For disjoint Z,X0 ⊆ [n] there are

{
n−|Z|−|X0|

p

}
p! ordered partitions (X1, . . . , Xp)

of the remaining elements of [n] \ (Z ∪X0).
Letting i = |Z| ∈ {0, . . . , k − 1} and j = |X0|, we get by Theorem 4.10 that i ∈

{0, . . . , k − 1} and i+ j ∈ {k, . . . , n}. Hence, each ordered (X1, . . . , Xp) of the remaining
n − i − j elements from [n] \ (Z ∪ X0) will by Theorem 4.10 yield a face of dimension
n − i − p − 1. As there are

(
n
i

)(
n−i
j

)
ways of choosing a legitimate pair (Z,X0), we have

the following Proposition.

Proposition 4.11. The f -polynomial fΠn−1(k−1)(x) =
∑n−1

i=0 fi(Πn−1(k−1))xi of Πn−1(k−
1) is given by

fΠn−1(k−1)(x) =
∑

06i6k−1
k6i+j6n

(
n

i

)(
n− i
j

) n−i−j∑
p=0

{
n− i− j

p

}
p!xn−i−p−1.

Remarks: (i) Note that the coefficients [x0]fΠn−1(k−1)(x) and [x1]fΠn−1(k−1)(x) agree
with previous Propositions 2.3 and 2.4 on the number of vertices and edges respectively.
(ii) When k = n we obtain

fΠn−1(k−1)(x) = fΠn−1(n−1)(x) =
(x+ 1)n − 1

x
,

the f -polynomial of the (n− 1)-dimensional simplex.
By Propositions 4.11 and 2.4 and Corollary 1.4 we obtain the `-flag polynomial of

Πn−1(k − 1) in the following.

Corollary 4.12. For each k ∈ {2, . . . , n} the `-flag polynomial f̃ `Πn−1(k−1)(x̃) of Πn−1(k−1)
is given by

f̃ `Πn−1(k−1)(x̃) = (x2 + · · ·+ x` + 1)n−1fΠn−1(k−1)

(
x1

x2 + · · ·+ x` + 1

)
,

where fΠn−1(k−1) is the f -polynomial of Πn−1(k − 1) given in Proposition 4.11.

the electronic journal of combinatorics 24(3) (2017), #P3.46 18



We complete this section on the face lattice of Πn−1(k − 1) by describing the faces
of Πn−1(k − 1) in terms of OPPs of [n] and when one face contains another in a similar
fashion as in Claim 1.2.

From Observation 4.5 we immediately obtain the following.

Proposition 4.13. If ã, c̃ ∈ Rn are such that ai 6 aj ⇒ ci 6 cj, then for the correspond-
ing faces of Pn−1(ṽ) we have F ([ã]) ⊆ F ([c̃]).

Proposition 4.13 yields a sufficient condition for the vectors ã and c̃ that implies
F ([ã]) ⊆ F ([c̃]). We will now describe exactly the relationship between ã and c̃ such that
for faces of Pn−1(ṽ) we have F ([ã]) ⊆ F ([c̃]).

Assume ã, c̃ ∈ Rn are such for their corresponding faces of Pn−1(ṽ) we have that
F ([ã]) ⊆ F ([c̃]). Since there is a permutation α ∈ Sn with α(ã) ordered, i.e. aα(1) 6
· · · 6 aα(n), we can, for simplicity, assume ã is ordered a1 6 · · · 6 an. In this case the
partition [n] = X1(ã) ∪ · · · ∪Xh(ã) of [n] induced by ã as in (7) is a union of consecutive
intervals. By Observation 4.4 we can assume ṽ is ordered in the same way as ã is, so
v1 6 · · · 6 vn. If δX`(ã)(ṽ) = 1, then for any transposition τ ∈ S(X`(ã)) ⊆ Sn we have
τ(ṽ) ∈ F ([ã]) ⊆ F ([c̃]) and hence c̃ · ṽ = c̃ · τ(ṽ). By Lemma 4.1 we must have the
following.

Claim 4.14. ci = cj for all i, j ∈ X`(ã) with δX`(ã)(ṽ) = 1.

Assume now i ∈ X`(ã) and j ∈ X`+1(ã) where ã is ṽ-reduced. In this case one of the
following three conditions hold: (i) vi < vj, (ii) vi = vj and δX`(ã)(ṽ) = 1, and hence there
is an i′ ∈ X`(ã) with vi′ < vi = vj, or (iii) vi = vj and δX`+1(ã)(ṽ) = 1, and hence there is
an j′ ∈ X`+1(ã) with vi = vj < vj′ .

In case (i) consider the transposition τ = (i, j). Since ṽ ∈ F ([ã]) ⊆ F ([c̃]) we have
c̃ · ṽ > c̃ · τ(ṽ), and hence civi + cjvj > civj + cjvi or (cj − ci)(vj − vi) > 0. Therefore
ci 6 cj must hold.

In case (ii) consider the transposition τ = (i′, j). As in previous case we have c̃ · ṽ >
c̃ · τ(ṽ), and hence ci′vi′ + cjvj > ci′vj + cjvi′ or (cj − ci′)(vj − vi′) > 0. Therefore ci′ 6 cj
must hold, and so by Claim 4.14 ci = ci′ 6 cj must hold.

Finally, in case (iii) consider the transposition τ = (i, j′). As in previously we have
c̃ · ṽ > c̃ · τ(ṽ), and hence civi + cj′vj′ > civj′ + cj′vi or (cj′ − ci)(vj′ − vi) > 0. Therefore
ci 6 cj′ must hold, and so by Claim 4.14 ci 6 cj′ = cj must hold. Hence, we have the
following.

Claim 4.15. For a ṽ-reduced ã, if i ∈ X`(ã) and j ∈ X`′(ã) with ` < `′, then ci 6 cj.

By Observation 4.4 and the previous two Claims 4.14 and 4.15, noting that the ordering
of both ã and ṽ was assumed for the sake of argument, we have the following summarizing
theorem.

Theorem 4.16. Let ã, c̃ ∈ Rn where ã is ṽ-reduced, and F ([ã]), F ([c̃]) be the corresponding
induced faces of Pn−1(ṽ). Assume ṽ ∈ F ([ã]) and let [n] = X1(ã) ∪ · · · ∪ Xh(ã) be the
partition of [n] induced by ã as in (7). With this setup we have F ([ã]) ⊆ F ([c̃]) if and
only if we have the following.
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1. ai < aj ⇒ ci 6 cj.

2. For every part X`(ã) with δX`(ã)(ṽ) = 1, we have δX`(ã)(c̃) = 0.

Finally in this section, we further seek a description of the faces and flags of Πn−1(k−1)
as described in Claim 1.2 for the standard permutahedron Πn−1. To do so, we apply
Theorem 4.16 to describe when exactly one face F ([ã]) of Πn−1(k − 1) is contained in
another F ([c̃]) in terms of the characterization given in Theorem 4.10. We can assume
both ã and c̃ to be ṽn−1(k − 1)-reduced.

Note that, trivially, if |X`(ã)| = 1, then clearly δX`(ã)(c̃) = 0. Assume that F ([ã]) and
F ([c̃]) correspond to the OPPs (Z,X0, . . . , Xp) and (Z ′, X ′0, . . . , X

′
p′) of [n] respectively,

and that ṽ ∈ F ([ã]) ⊆ F ([c̃]) is a vertex of Πn−1(k − 1). By Theorems 4.10 and 4.16 and
the above note, we have that δXi

(c̃) = 0 for all i ∈ {0, . . . , p}, and hence X0 ⊆ X ′0, and
further each part from {X1, . . . , Xp} is contained in a part from {X ′0, . . . , X ′p′}. So, as a
direct consequence of Theorem 4.16 We have the following.

Corollary 4.17. For two faces F ([ã]) and F ([c̃]) of Πn−1(k − 1), where both ã and c̃
are ṽn−1(k− 1)-reduced, corresponding to the OPPs (Z,X0, . . . , Xp) and (Z ′, X ′0, . . . , X

′
p′)

respectively, we have F ([ã]) ⊆ F ([ã]) if, and only if, the disjoint union D ∪X0 ∪ · · · ∪Xp

is a refinement of X ′0 ∪ · · · ∪X ′p′ where X0 ⊆ X ′0 and D = X ′0 \X0 is the difference.

Remark: Note that D ⊆ [n] \ (X0 ∪ · · · ∪Xp) ⊆ Z.
Note that we have a well defined map {0, 1, . . . , p} 3 i 7→ i′ ∈ {0, 1, . . . , p′} where i′ is

the unique index with Xi ⊆ X ′i′ . In this way we have.

Observation 4.18. The above map i 7→ i′ is an increasing surjection.

5 A closed formula for the exponential generating function

In this final section we derive a closed formula for the exponential `-generating func-
tion ξ̃`P⊥k ;k−1

(x̃, y) from Definition 1.5 of the family P⊥k = {Πn−1(k − 1)}n>k of all the

hyper-permutahedra, which we will henceforth denote by ξ̃`k(x̃, y), analogous to the re-
sult of Proposition 1.6. Unless otherwise stated k > 1 is an arbitrary but fixed integer
throughout.

If we let

g̃`n(x̃) :=
∑
s̃

fs̃(Πn−1(k − 1))

(n− s1)!
xn−s11 xs2−s12 · · ·xs`−s`−1

` ,

then by Definition 1.5 we have

xn1 g̃
`
n(x−1

1 , x2, . . . , x`) = ξ̃`Πn−1(k−1)(x̃) (8)

and so for

g̃`(x̃, y) :=
∑
n>1

g̃`n(x̃)
yn

n!
=
∑
n>k

g̃`n(x̃)
yn

n!
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we have

g̃`(x−1
1 , x2, . . . , x`, x1y) =

∑
n>k

xn1 g̃
`
n(x−1

1 , x2, . . . , x`)
yn

n!
= ξ̃`k(x̃, y). (9)

Hence, it suffices to obtain a closed formula for g̃`(x̃, y). Further we note that for ` = 1
we obtain by (8) that xn1 g̃

1
n(x−1

1 ) = ξ̃1(x1) and hence g̃1
n(x1) = xn1 ξ̃

1(x−1
1 ) and so by

Proposition 4.11 that

gn(x) := g̃1
n(x) =

∑
06i6k−1
k6i+j6n

(
n

i

)(
n− i
j

) n−i−j∑
p=0

{
n− i− j

p

}
p!

xi+p+1

(i+ p+ 1)!
. (10)

Further, by (8) for general ` and ` = 1, and Corollary 1.4 applied to ξ̃` and (10) we obtain

g̃`n(x̃) =
1

S
gn(x1(x2 + · · ·+ x` + 1))

=
1

S

 ∑
06i6k−1
k6i+j6n

(
n

i

)(
n− i
j

) n−i−j∑
p=0

{
n− i− j

p

}
p!

(x1(x2 + · · ·+ x` + 1))i+p+1

(i+ p+ 1)!

 ,
where S = x2 + · · ·+ x` + 1. Hence, it suffices to obtain a closed formula for

g(x, y) := g̃1(x, y) =
∑
n>1

gn(x)
yn

n!
=
∑
n>k

gn(x)
yn

n!
, (11)

since then

g̃`n(x̃, y) =
∑
n>k

g̃`n(x̃)
yn

n!
=
g(x1(x2 + · · ·+ x` + 1), y)

x2 + · · ·+ x` + 1
. (12)

By (10) we have

gn(x) =
k−1∑
i=0

gn;i(x) (13)

where for each i ∈ {0, 1, . . . , k − 1}

gn;i(x) =
n−i∑
j=k−i

(
n

i

)(
n− i
j

) n−i−j∑
p=0

{
n− i− j

p

}
p!

xi+p+1

(i+ p+ 1)!

=

(
n

i

) n−i∑
j=k−i

(
n− i
j

) n−i−j∑
p=0

{
n− i− j

p

}
p!

xi+p+1

(i+ p+ 1)!
, (14)

and so its (i+ 1)-th derivative w.r.t. x is

g
(i+1)
n;i (x) =

(
n

i

) n−i∑
j=k−i

(
n− i
j

) n−i−j∑
p=0

{
n− i− j

p

}
xp :=

(
n

i

)
γn;i(x). (15)
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From this we deduce that for

gi(x, y) :=
∑
n>1

gn;i(x)
yn

n!
(16)

where gn;i(x) is given in (14), we have

g
(i+1)
i (x, y) :=

∂i+1

∂xi+1 gi(x, y)

=
∑
n>1

g
(i+1)
n;i (x)

yn

n!

=
∑
n>1

(
n

i

)
γn;i(x)

yn

n!

=
∑
n>i

(
n

i

)
γn;i(x)

yn

n!

=
yi

i!

∑
n>i

γn;i(x)
yn−i

(n− i)!
.

Before we continue, we need the following.

Lemma 5.1. For m,N ∈ N we have

N−m+1∑
i=1

(
N

i

){
N − i
m− 1

}
= m

{
N

m

}
.

Proof. Call an unordered partition of [N ] rooted if it has one distinguished part, the root
r. For each of the unordered partitions of [N ] into m parts, we have m possible roots, and
so the number of rooted partitions of [N ] into m parts is, on one hand, given by m

{
N
m

}
.

On the other hand, we can start by choosing a root r of valid cardinality i ∈ {1, . . . , N−
m + 1}, and then consider the

{
N−i
m−1

}
unordered partitions of the remaining subset of

[N ] ⊆ r. For each i this can be done in
(
N
i

){
N−i
m−1

}
possible ways. Adding these ways for

all possible i will give us the expression on the left in the stated equation. ut

The coefficient [xh](γn;i(x)) of xh in the polynomial γn;i(x) defined in (15) is by direct
tallying and the above Lemma 5.1 given by

[xh](γn;i(x)) =
n−i−h∑
q=k−i

(
n− i
q

){
n− i− q

h

}

=
n−i−h∑
q=1

(
n− i
q

){
n− i− q

h

}
−

k−i−1∑
q=1

(
n− i
q

){
n− i− q

h

}

=

{
n− i
h+ 1

}
(h+ 1)−

k−i−1∑
q=1

(
n− i
q

){
n− i− q

h

}
.
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In light of this, we can further write γn;i(x) as γn;i(x) = αn;i(x)−
∑k−i−1

q=1 αn;i,q(x), where

αn;i(x) :=
∑
h>0

{
n− i
h+ 1

}
(h+ 1)xh, αn;i,q(x) :=

∑
h>0

(
n− i
q

){
n− i− q

h

}
xh.

Defining the corresponding exponential series

αi(x, y) :=
∑
n>i

αn;i(x)
yn−i

(n− i)!
, αi,q(x, y) :=

∑
n>i

αn;i,q(x)
yn−i

(n− i)!
,

we then get

g
(i+1)
i (x, y) =

yi

i!

∑
n>i

γn;i(x)
yn−i

(n− i)!

=
yi

i!

∑
n>i

(
αn;i(x)−

k−i−1∑
q=1

αn;i,q(x)

)
yn−i

(n− i)!

=
yi

i!

(
αi(x, y)−

k−i−1∑
q=1

αi;q(x, y)

)
.

Up to a constant we obtain
∫
αn;i(x) dx =

∑
h>0

{
n−i
h+1

}
xh+1, and so by (3) we get∫

αi(x, y) dx =
∑
h,n>i

{
n− i
h+ 1

}
xh+1 yn−i

(n− i)!
=
∑
h,m>0

{
m

h+ 1

}
xh+1y

m

m!
= ex(ey−1) − 1,

and so by differentiating
αi(x, y) = ex(ey−1)(ey − 1). (17)

Similarly, but with neither integration nor differentiation, we obtain by direct manipula-
tion and by again (3)

αi;q(x, y) =
∑
n>i

αn;i,q(x)
yn−i

(n− i)!

=
∑
n>i

(∑
h>0

(
n− i
q

){
n− i− q

h

}
xh

)
yn−i

(n− i)!

=
∑
m>0

(∑
h>0

(
m

q

){
m− q
h

}
xh

)
ym

m!

=
∑
m,h>0

(
m

q

){
m− q
h

}
ym

m!
xh

=
yq

q!

∑
m,h>0

{
m− q
h

}
ym−q

(m− q)!
xh

=
yq

q!
ex(ey−1).
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Consequentially, by the above and (17) we then get

g
(i+1)
i (x, y) =

yi

i!

(
αi(x, y)−

k−i−1∑
q=1

αi;q(x, y)

)

=
yi

i!
(ey − Ek−i−1(y)) ex(ey−1),

where Em(x) = 1 + x+ · · ·+ xm

m!
is the m-th degree polynomial approximation of ey. By

the above and the defining sum of gi(x, y) in (16) we have

g
(i+1)
i (x, y) =

yi

i!
(ey − Ek−i−1(y)) ex(ey−1), gi(0, y) = g′i(0, y) = · · · = g

(i)
i (0, y) = 0 for all y.

(18)
The closed expression for gi(x, y) is uniquely determined by (18) and by integrating i+ 1
times we get

gi(x, y) =
yi(ey − Ek−i−1(y))

i!(ey − 1)i+1

(
ex(ey−1) − Ei(x(ey − 1))

)
. (19)

By (11), (13), (16) and (19) we then get

g(x, y) =
∑
n>1

gn(x)
yn

n!
=

k−1∑
i=0

gi(x, y) =
k−1∑
i=0

yi(ey − Ek−i−1(y))

i!(ey − 1)i+1

(
ex(ey−1) − Ei(x(ey − 1))

)
,

and so by the above expression, (12) and (9) we have the following main theorem of this
section.

Theorem 5.2. The exponential `-generating function for all the `-flags of all the hyper-
permutahedra P⊥k = {Πn−1(k − 1)}n>k from Definition 1.5 is given by

ξ̃`k(x̃, y) =
∑
n>1,s̃

ξ̃`Πn−1(k−1)(x̃)
yn

n!

=
1

S

k−1∑
i=0

(x1y)i(ex1y − Ek−i−1(x1y))

i!(ex1y − 1)i+1

(
e

S
x1

(ex1y−1) − Ei
(
S

x1

(ex1y − 1)

))
.

where S = x2 + · · · + x` + 1 and Em(x) = 1 + x + · · · + xm

m!
is the m-th polynomial

approximation of ex.

Remarks: (i) The question remains, whether one could possible further simplify the
expression given in Theorem 5.2. Since, however, we are dealing with enumeration of
OPP as described in Theorem 4.10, in which the cardinalities of the parts depend both
on n and k, it seems unlikely to the author that a substantial simplification exists. (ii)
Letting k = 2 we obtain the exponential `-generating function for all the `-flags of all the
hyper-permutahedra {Πn−1}n>2 as the following

ξ̃`2(x̃, y) =
1

x2 + · · ·+ x` + 1

(
e

x2+···+x`+1

x1
(ex1y−1) − 1− y(x2 + · · ·+ x` + 1)

)
,
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which is consistent with Proposition 1.6, when we note that the family {Πn−1}n>1 there
contains Π0 for n = 1, whereas in Theorem 5.2 the family {Πn−1(k − 1)}n>k becomes
{Πn−1}n>2 omitting the singleton Π0.

When ` = 1 in Theorem 5.2 the sum x2 + · · ·+ x` is empty and so we obtain the face
function of all the hyper-permutahedra in the following.

Corollary 5.3. The exponential generating function for the faces of the hyper-permutahedra
{Πn−1(k − 1)}n>k from Definition 1.5 is given by

ξk(x, y) = ξ̃1
k(x, y) =

k−1∑
i=0

(xy)i(exy − Ek−i−1(xy))

i!(exy − 1)i+1

(
e(

exy−1
x ) − Ei

(
exy − 1

x

))
.

where Em(x) = 1 + x+ · · ·+ xm

m!
is the m-th polynomial approximation of ex.
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