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Abstract

Thomassen conjectured that triangle-free planar graphs have an exponential
number of 3-colorings. We show this conjecture to be equivalent to the following
statement: there exists a positive real α such that whenever G is a planar graph
and A is a subset of its edges whose deletion makes G triangle-free, there exists a
subset A′ of A of size at least α|A| such that G− (A\A′) is 3-colorable. This equiv-
alence allows us to study restricted situations, where we can prove the statement to
be true.
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1 Introduction

A now classical theorem of Grötzsch [5] asserts that every triangle-free planar graph is
3-colorable. This statement spurred a lot of interest and, over the years, many ingenious
proofs have been found [3, 8, 11]. The new proofs are simpler than the original argument,
and often target further developments — algorithmic aspects or extension to other sur-
faces. In particular, refining some of his arguments, Thomassen [12] established that every
planar graph of girth at least five has exponentially many — in terms of the number of
vertices — list colorings provided all lists have size at least three. This statement cannot
be extended to planar graphs of girth at least four, that is, triangle-free planar graphs,

∗This work was done within the scope of the International Associated Laboratory STRUCO.
†Supported by the Center of Excellence – Inst. for Theor. Comp. Sci., Prague, project P202/12/G061

of Czech Science Foundation and by the project LL1201 (Complex Structures: Regularities in Combina-
torics and Discrete Mathematics) of the Ministry of Education of Czech Republic.

the electronic journal of combinatorics 24(3) (2017), #P3.47 1



as Voigt [13] exhibited a triangle-free planar graph G along with an assignment L of lists
of size three to the vertices of G such that G is not L-colorable. However, it could still
be true that triangle-free planar graphs admit exponentially many 3-colorings. This was
actually conjectured in 2007 by Thomassen [12, Conjecture 2.1(b)]. The formulation we
give implicitly uses a theorem by Jensen and Thomassen [6, Theorem 10] that the 3-color
matrix of a planar graph has full rank if and only if the graph has no triangle.

Conjecture 1. There exists a positive real number β such that every triangle-free planar
graph G has at least 2β|V (G)| different 3-colorings.

As reported earlier, Thomassen [12] proved the statement under the additional assump-
tion that G has no 4-cycle. In addition, he proved that every triangle-free planar graph G

admits at least 2|V (G)|1/12/20 000 different 3-colorings. This lower bound, which is sub-

exponential, was later improved by Asadi, Dvor̆ák, Postle and Thomas [1] to 2
√
|V (G)|/212.

In addition, Dvor̆ák and Lidický [4, Corollary 1.3] proved the existence of an integer D
such that every triangle-free planar graph G with maximum degree at most ∆ has at
least 3|V (G)|/∆D

different 3-colorings, thereby confirming the analogue of Conjecture 1 for
all classes of triangle-free planar graphs with bounded maximum degree. Actually, this
statement follows from another result of theirs [4, Corollary 1.2], which states the exis-
tence of an integer D such that if G is a triangle-free planar graph and V ′ ⊂ V (G) is
a subset of vertices of G such that every two distinct vertices in V ′ are at distance at
least D in G, then any 3-precoloring of the vertices in V ′ extends to a 3-coloring of the
whole graph G. As we will see later on, precoloring extension might be a useful tool to
study the number of 3-colorings of triangle-free planar graphs.

Summing-up, we see that Conjecture 1 is still widely open. Our goal is to show the
equivalence between Conjecture 1 and another statement dealing with a variation—a very
natural one, in our opinion—of the usual notion of coloring, which we now introduce.

For a function w : X → Q+ and a set X ′ ⊆ X, let w(X ′) =
∑

x∈X′ w(x). A request
graph (G,R=, R6=, w) consists of a graph G, disjoint sets R= and R6= of vertices of G of
degree two such thatR=∪R6= is an independent set inG, and a function w : R=∪R6= → Q+.
The vertices in R= ∪ R6= are referred to as the requests or request vertices. Let ϕ be a
proper coloring of G. We say that a vertex r ∈ R= is satisfied if both its neighbors have
the same color, and a vertex r ∈ R 6= is satisfied if its neighbors have different colors.
For α > 0, we say that a 3-coloring ϕ satisfies α-fraction of the requests if, letting R′ be
the set of satisfied vertices in R= ∪ R6=, we have w(R′) > αw(R= ∪ R6=). The following
problem arises from the work of Asadi et al. [1].

Problem 2. Is there a positive real number α such that every planar triangle-free request
graph admits a 3-coloring satisfying α-fraction of its requests?

As it turns out, Problem 2 admits a positive answer if and only if Conjecture 1 is true.

Theorem 3. The following assertions are equivalent.

(RGEN) There exists a positive real number α such that every planar triangle-free request
graph admits a 3-coloring that satisfies α-fraction of its requests.
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(EXP) There exists a positive real number β such that every planar triangle-free graph G
has at least 2β|V (G)| 3-colorings.

Before going any further, we pause to clarify the relation between (RGEN) and the
statement given in the abstract of this article, namely:

(TRIA) There is a positive real number α such that for every planar graph G and every
subset X of edges such that G−X is triangle-free, there exists a 3-coloring c of G−X
such that at least α|X| edges in X join vertices of different colors under c.

It suffices to subdivide each edge in X by a vertex placed in R6= to see that (TRIA)
is implied by (RGEN). We thus realize that (TRIA) is equivalent to the special case
of (RGEN) where R= is empty and w assigns each vertex in R6= weight 1. As we see
below in Theorem 6, this special case is in fact equivalent to (RGEN), establishing the
equivalence between (RGEN) and (TRIA).

Theorem 3 is proved in Section 3. Request graphs allow for different ways to address
Conjecture 1, making it possible to focus on finding just one coloring subject to given
constraints rather than many. It is unclear whether this will turn out to be advantageous,
as Problem 2 appears to be quite difficult. For example, in Section 5, we consider the
special case under the additional assumption that there are only non-equality requests and
all the requests are incident with the same vertex (that is, R= = ∅ and all the vertices
in R6= have a common neighbor). We manage to establish the following.

Corollary 4. Let α0 = 1/5058. Consider a request graph (G,∅, R6=, w), where G is
planar triangle-free. If all vertices of R6= have a common neighbor, then there exists a
3-coloring of G satisfying α0-fraction of the requests.

As strong as the hypothesis of Corollary 4 are, the argument turns out to be unex-
pectedly involved. Let v be a common neighbor to all requests in R6=, let T be the set of
vertices other than v adjacent to the requests in R6=, and let S be the set of non-request
neighbors of v. Without loss of generality, we can give v color 3, and thus we seek a
coloring of the graph G′ = G− v −R 6= in which all vertices in S and a constant fraction
of the vertices in T only use colors from the list {1, 2}.

Since the vertices in S ∪ T are incident with the same face of G′, this is reminiscent
of a well-known result of Thomassen [9] (Theorem 16 below), which implies that such a
coloring exists whenever G′ has girth at least 5 and S ∪ T is an independent set. As it
turns out, the graph G′ actually can have 4-cycles, but these are relatively easy to deal
with (we can eliminate separating 4-cycles via a precoloring extension argument, and 4-
faces can be reduced in a standard way by collapsing). Nevertheless, while the set S is
independent since G is triangle-free, the vertices in T can be adjacent to other vertices
in S ∪ T .

Suppose for a moment that the outer face of G′ is bounded by an induced cycle C.
By ignoring a constant fraction of the requests, we can assume that the distance in C
between any two distinct vertices in T is at least three. Consequently, G′[S ∪ T ] does
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not contain a path on four vertices; it still can, however, contain 3-vertex paths with
endvertices in S and the middle vertex in T . It would be convenient to have a variation
of Thomassen’s result that allows such 3-vertex paths with lists of size 2; but no such
variation is known or even likely to hold. Even a quite involved result of Dvor̆ák and
Kawarabayashi [2] for 3-list-coloring only allows 2-vertex paths with lists of size two (and
even that only subject to the additional restriction that the distance between such paths is
at least three). Overcoming these issues requires a combination of several partial coloring
arguments together with elimination of a part of interfering constraints in T using a result
of Naserasr [7] on odd distance coloring of planar graphs.

The paper is structured as follows. In Section 2, we perform some ground work
on Problem 2 where we show that it actually suffices to restrict the attention to request
graphs with only non-equality (or only equality) requests, and to unit weights; that is,
it is sufficient to consider request graphs of the form (G,R=,∅, unit) or, equivalently, of
the form (G,∅, R6=, unit), where unit : R= ∪ R6= → Q+ is the function constantly equal
to 1. Section 3 is devoted to proving our main result, Theorem 3. After introducing and
strengthening some auxiliary results on list colorings in Section 4, we prove Corollary 4
in Section 5.

2 Ground work on Problem 2

We start by proving the following equivalences.

Theorem 5. Let α be a positive real number. The following assertions are equivalent.

(RGEN) Every planar triangle-free request graph has a 3-coloring that satisfies α-fraction
of its requests.

(RE) Every planar triangle-free request graph (G,R=,∅, w) has a 3-coloring that satisfies
α-fraction of its requests.

(REU) Every planar triangle-free request graph (G,R=,∅, unit) admits a 3-coloring that
satisfies α-fraction of its requests.

Proof. The implications (RGEN)⇒ (RE)⇒ (REU) are trivial.
Suppose that (REU) holds, and let (G,R=,∅, w) be a planar triangle-free request

graph. Without loss of generality, we can multiply all the values of w by some integer, so
that the values of w become integral. Let G′ be the graph obtained from G by replacing
each vertex r ∈ R= by w(r) clones, and let R′= be the set of all such clones. By (REU)
applied to (G′, R′=,∅, unit), there exists a 3-coloring of G′ satisfying α-fraction of its
requests, and its restriction to G satisfies α-fraction of requests of (G,R=,∅, w). Hence,
(REU) implies (RE).

Suppose that (RE) holds, and let (G,R=, R6=, w) be a request graph. Let G′ be the
graph obtained from G by replacing each vertex of R6= as depicted in Figure 1(a). Let R′=
be the set of created vertices that are depicted in the figure by a square containing “=”.
Let w′ be the function matching w on R= and giving each vertex of R′= the weight of the
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Figure 1: Gadgets showing equivalence of equality and inequality requests.

vertex of R6= it replaces. Then (G′, R=∪R′=,∅, w′) is a planar triangle-free request graph,
and any 3-coloring of G′ corresponds to a 3-coloring of G satisfying the same fraction of
the requests. Hence, (RE) implies (RGEN).

Analogously (using the replacement from Figure 1(b)) we obtain the following.

Theorem 6. Let α be a positive real number. The following assertions are equivalent.

(RGEN) Every planar triangle-free request graph admits a 3-coloring that satisfies α-
fraction of its requests.

(RN) Every planar triangle-free request graph (G,∅, R6=, w) has a 3-coloring that satisfies
α-fraction of its requests.

(RNU) Every planar triangle-free request graph (G,∅, R6=, unit) admits a 3-coloring that
satisfies α-fraction of its requests.

Let us note that (RNU) is just a reformulation of the statement from the abstract,
discussed as (TRIA) earlier.

3 Satisfying requests is equivalent to having exponentially many
3-colorings

Theorem 5 implies that we can establish Theorem 3 by proving the following statement.

Theorem 7. The following assertions are equivalent.

(REU) There exists a positive real number α such that every planar triangle-free request
graph (G,R=,∅, unit) has a 3-coloring satisfying α-fraction of its requests.

(EXP) There exists a positive real number β such that every planar triangle-free graph G
has at least 2β|V (G)| 3-colorings.
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Showing (EXP) ⇒ (REU) is quite easy—we replace each request by a large number
of vertices of degree two with the same neighbors, and observe that these vertices of
degree two can only be colored in many ways if the neighbors are assigned the same color,
i.e., the request is satisfied. Thus, if the graph after the replacement has exponentially
many 3-colorings, then a constant fraction of the requests must be satisfied. The other
implication (REU)⇒ (EXP) is more involved and it uses a number of auxiliary statements
devised in order to prove the sub-exponential bounds of Thomassen [12, Theorem 5.8]
and Asadi et al. [1, Theorem 1.3]. Essentially, the idea is to be able to place requests
such that a 3-coloring satisfying a linear proportion of them will ensure properties that
produce many different 3-colorings of the original graph. Mainly, we want the 3-coloring
to produce 4-faces the vertices of which avoid one of the three colors. We shall thus
pinpoint forced configurations of a minimal counter-example that allow us to put requests
which, if satisfied, produce such faces. We also need to prove that there will be many such
configurations, which is done using a decomposition of the graph based on its separating
5-cycles, as in the previous works on the topic.

We start by explaining why having many 4-faces as mentioned above helps us, through
the following strengthening of a result of Thomassen [12]. For a 3-coloring of a plane graph,
a face f is bichromatic if the set of colors assigned to the vertices incident to f has size
two.

Lemma 8. Let G be a connected plane triangle-free graph with n > 3 vertices, and
for i > 4, let si be the number of faces of G of length exactly i. Let ϕ be a 3-coloring
of G, and let q be the number of bichromatic 4-faces of G. Then G has at least 2(s++8+q)/6

distinct 3-colorings, where s+ = s5 + 2s6 + . . . =
∑

i>5(i− 4)si.

Proof. Let e be the number of edges of G and s the number of faces of G. By Euler’s
formula, e+ 2 = n+ s. Furthermore, 2e = 4s+ s+, and thus e = 2n− 4− s+/2.

For a, b ∈ {1, 2, 3} with a < b, we define Vab to be the set of vertices of G colored by a
or by b, and we let Qab be the set of 4-faces of G with all incident vertices in Vab. Let Xab

be a minimal set of edges such that each face of Qab is incident with an edge of Xab. By the
minimality of Xab, for every e ∈ Xab there exists a bichromatic 4-face f such that e is the
only edge of Xab incident with f , and thus G[Vab]−Xab has the same components as G[Vab].
Furthermore, e may only be incident with two 4-faces of Qab, and thus |Xab| > |Qab| /2.
Let cab be the number of components of G[Vab], set nab = |Vab| and eab = |E(G[Vab])|.
Then eab − |Xab| > nab − cab, and thus eab > nab − cab + |Xab| > nab − cab + |Qab| /2.

Summing these inequalities over all pairs of colors, we obtain

2n− 4− s+/2 = e = e12 + e23 + e13 > 2n− (c12 + c23 + c13) + q/2,

and thus
c12 + c23 + c13 > s+/2 + 4 + q/2.

By symmetry, we can assume that c12 > c23 > c13, and thus

c12 > (s+ + 8 + q)/6.
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We can independently interchange the colors 1 and 2 on each component of G[V12], thereby
obtaining 2c12 different colorings of G. The statement of the lemma follows.

We also use the following result from Thomassen’s paper.

Lemma 9 (Thomassen [12, Theorem 5.1]). Let G be a plane triangle-free graph with
outer face bounded by a cycle C of length at most 5, and let ψ be a 3-coloring of C.
If G 6= C and ψ does not extend to at least two 3-colorings of G, then there exists a
vertex v ∈ V (G) \ V (C) adjacent to two vertices of C of distinct colors.

We need the following observation, which implicitly appears in the paper of Asadi et
al. [1].

Lemma 10. Let β be a positive real number and let n be an integer such that every planar
triangle-free graph H with less than n vertices has at least 2β|V (H)| distinct 3-colorings.
Let d0 = b1/βc. Let G be a planar triangle-free graph with n vertices. If G has less
than 2βn distinct 3-colorings, then every vertex of G of degree at most d0 is contained in
a 5-cycle.

Proof. We prove the contrapositive. Assume that the graph G contains a vertex v that
has degree at most d0 and is not contained in any 5-cycle. Let H be the graph obtained
from G− v by identifying all the neighbors of v to a single vertex. Note that H is planar
and triangle-free, and every 3-coloring of H extends to two distinct 3-colorings of G, as
we can freely choose two different colors for v. By assumptions, we know that H has
at least 2β|V (H)| distinct 3-colorings; hence G has at least 2β|V (H)|+1 distinct 3-colorings.
Since |V (H)| > n − d0 > n − 1/β, we deduce that β |V (H)| + 1 > βn, which concludes
the proof.

A 5-cycle decomposition of a plane graph G is a pair (T,Λ), where T is a rooted tree
and Λ is a function mapping each vertex of T to a subset of the plane, such that the
following conditions hold.

• Let v be a vertex of T . If v is the root of T , then Λ(v) is the whole plane, and
otherwise Λ(v) is the open disk bounded by a separating 5-cycle of G.

• Let u and v be distinct vertices of T . If u is a descendant of v, then Λ(u) ⊂ Λ(v),
that is, Λ(u) is a proper subset of Λ(v). If u is neither a descendant nor an ancestor
of v, then Λ(u) ∩ Λ(v) = ∅.

A vertex x ∈ V (G) is caught by the decomposition if there exists v ∈ V (T ) such that x is
contained in the boundary cycle of Λ(v). The following is a consequence of the proof of
a lemma by Asadi et al. [1, Lemma 2.1].

Lemma 11. Every triangle-free plane graph G has a 5-cycle decomposition (T,Λ) such
that every vertex of G that is incident with a 5-cycle is either incident with a 5-face of G
or caught by (T,Λ).

Combining these results, we obtain the following.
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Corollary 12. Let β ∈ (0, 1/4) and let n be an integer such that every planar triangle-free
graph H with less than n vertices has at least 2β|V (H)| distinct 3-colorings. Set d0 = b1/βc
and γ = d0−3

5(d0−1)
. Let G be a plane triangle-free graph with n vertices and s5 faces of

length 5. If G has less than 2βn distinct 3-colorings, then G has a 5-cycle decomposi-
tion (T,Λ) satisfying |V (T )|+ s5 > γn.

Proof. By Lemma 10, every vertex of G of degree at most d0 is contained in a 5-cycle, so
in particular G has minimum degree at least 2. Let n0 be the number of vertices of G
of degree greater than d0. Since G is planar and triangle-free, its average degree is less
than 4, and thus 4n > (d0 + 1)n0 + 2(n− n0) = 2n+ (d0 − 1)n0, and n0 <

2
d0−1

n. Hence,

G contains more than d0−3
d0−1

n vertices of degree at most d0, which are all contained in
5-cycles. Let (T,Λ) be a 5-cycle decomposition obtained by Lemma 11. Note that at
most 5(|V (T )|+ s5) vertices are caught by (T,Λ) or incident with a 5-face of G, and thus
the bound follows.

Given a 5-cycle decomposition (T,Λ) of a graph G and a vertex v ∈ V (T ) with
children v1, . . . , vk in T , we define Gv to be the subgraph of G drawn in the subset of
the plane obtained from the closure of Λ(v) by removing

⋃k
i=1 Λ(vi). We say that the

decomposition is maximal if for every v ∈ V (T ), the graph Gv contains no separating 5-
cycle. A vertex v of V (T ) is rich if either v is the root of T or every precoloring of the
outer face of Gv extends to at least two distinct 3-colorings of Gv; otherwise, v is poor.
These notions are illustrated in Figure 2.

Lemma 13. Let G be a plane triangle-free graph and let (T,Λ) be a maximal 5-cycle
decomposition of G. If v ∈ V (T ) is poor, then Gv consists of the 5-cycle Kv bounding its
outer face and another vertex adjacent to two vertices of Kv.

Proof. Since v is poor, there exists a 3-coloring ψ of Kv that extends to a unique 3-
coloring ϕ of Gv. Let Kv = y1y2 . . . y5. The definitions imply that Gv 6= Kv. Thus
Lemma 9 yields that there exists a vertex x ∈ V (Gv) \ V (Kv) adjacent to two vertices
of Kv of distinct colors, which can be assumed to be y1 and y3. Since the decomposition
is maximal, the 5-cycle y1xy3y4y5 bounds a face of Gv. If the 4-cycle Q = y1y2y3x also
bounds a face, then the conclusion of the lemma holds. Hence assume that Q does not
bound a face. Because v is poor, the precoloring of Q given by ϕ extends to exactly
one 3-coloring of the subgraph of Gv drawn inside Q. So by Lemma 9, there exists a
vertex x′ ∈ V (Gv) \ (V (Kv) ∪ {x}) adjacent to two vertices of Q with different colors.
Since ϕ(y1) 6= ϕ(y3), we have ϕ(y2) = ϕ(x) and thus x′ is adjacent to y1 and y3. However,
this implies that Gv contains a separating 5-cycle, namely y1x

′y3y4y5, which contradicts
the assumption that the decomposition (T,Λ) is maximal.

Lemma 13 implies that in a maximal 5-cycle decomposition (T,Λ), each poor vertex
of T has at most one son. For a poor vertex v, the inner face of Gv is its 5-face different
from the outer face. A path P = v1v2 . . . vk of poor vertices of T such that v1 is the
ancestor of all the vertices of the path is called a k-suburb. Let GP = Gv1 ∪ · · · ∪Gvk , and
define the inner face of GP to be the inner face of Gvk . In the example shown in Figure 2,
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w9w′6

w′3

w′7

w′2
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u1w2w3w′4u5

w9w2w3w′4u5

w7w6w3w′4u5

w7w6w3w2w8

w7w′6w3w2w8

w7w′6w
′
3w2w8

w′7w
′
6w
′
3w2w8

w9w2w8w7u5

u1u′2u3u4u5

u1u′2u3u4u
′
5

u1u′2u3u4u
′′
5

u1u′2u3u
′
4u
′′
5

t1

t2

t3

t4

t′1

t′2

t′3 t′4

t′5

t′6

t′8

t′7

Figure 2: A graph G (top) along with its maximal 5-cycle decomposition (bottom): for
each vertex of the tree, bar the root r, is shown the corresponding separating 5-cycle of G.
The rich vertices are the root r and t′2; all other vertices of the tree being poor.

the path P = t1 . . . t4 is a 4-suburb, and the graph GP is the subgraph of G induced
by {u1, u3, u4, u5, u

′
2, u
′
3, u
′
4, u
′
5, u
′′
5}. We say that the k-suburb P is upwardly mobile if every

precoloring of the outer face of GP extends to at least two distinct 3-colorings of GP . In the
example shown in Figure 2, the path P ′ = t′4 . . . t

′
7 is a 4-suburb and it is updwardly mobile;

the graph GP ′ being the subgraph of G induced by {w2, w3, w6, w7, w8, w
′
2, w

′
3, w

′
6, w

′
7}.

Let H be a plane graph with a plane subgraph F . A 3-coloring ϕ of H is rearrangeable
with respect to F if there exists a 3-coloring ϕ′ of H such that ϕ′(v) = ϕ(v) for all
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v ∈ V (F ) and some 4-face of H is bichromatic in ϕ′.

Lemma 14. Let G be a plane triangle-free graph and let (T,Λ) be a maximal 5-cycle
decomposition of G. Suppose that P = v1v2 . . . v11 is an 11-suburb in T and let F be
the union of the boundary cycles of the outer and the inner face of GP . If P is not
upwardly mobile, then there exist distinct non-adjacent vertices x and y of GP incident
with a common 4-face, such that every 3-coloring ϕ of GP that gives to x and y the same
color is rearrangeable with respect to F .

Proof. First, we argue that the conclusion of the lemma holds if GP contains one of the
following configurations.

(i) A vertex z /∈ V (F ) of degree two incident with a 4-face.

(ii) Two adjacent vertices z, z′ /∈ V (F ) of degree three, such that z is only incident with
4-faces.

(iii) A vertex z /∈ V (F ) of degree four incident only with 4-faces, such that two neigh-
bors z1, z2 /∈ V (F ) of z that are not incident with the same 4-face at z have degree
three, and z1 is incident only with 4-faces.

In each of these cases, we find two non-adjacent vertices x and y incident to a 4-face f
in GP and next we let ϕ be an arbitrary 3-coloring of GP that gives x and y the same
color. In case (i) let f = xzyu be a 4-face incident with z. We can recolor z with ϕ(u) so
that f is now bichromatic since ϕ(x) = ϕ(y). In case (ii), let f = zxuy, xzz′x′, and yzz′y′

be the 4-faces incident with z. Since ϕ(x) = ϕ(y), we can assume that ϕ(x) = ϕ(y) = 1
and ϕ(u) = 2. Consequently, ϕ(x′) 6= 1 6= ϕ(y′), and we can recolor z′ by color 1 and z
by color 2 to make f bichromatic. In case (iii), let zz1xx

′, zz1yy
′, zz2x

′′x′, and zz2y
′′y′

be the 4-faces incident with z, and let f = xz1yu be the further 4-face incident with z1.
Suppose that ϕ(x) = ϕ(y) = 1 and ϕ(u) = 2. If ϕ(z) 6= 2, then we can recolor z1 by
color 2 to make f bichromatic. If ϕ(z) = 2, then ϕ(x′) = ϕ(y′) = 3 and ϕ(x′′) 6= 3 6=
ϕ(y′′). Therefore we can recolor z2 by color 3, z by color 1, and z1 by color 2 to make f
bichromatic.

Note that Lemma 13 applies to each of v1, . . . , v11. For i ∈ {1, . . . , 11}, let the vertices
of the outer face of Gvi be labelled ui−1

1 ui−1
2 . . . ui−1

5 and let the vertices of the inner face
of Gv11 be labelled u11

1 u
11
2 . . . u11

5 , with the labels chosen so that for each i ∈ {1, . . . , 11},
there is a unique index di ∈ {1, . . . , 5} such that ui−1

di
6= uidi . Hence, ui−1

j = uij for precisely
four values of j ∈ {1, . . . , 5}.

Suppose that the suburb P is not upwardly mobile, and let ψ0 be a precoloring of its
outer face that extends to a unique 3-coloring ψ of GP . Observe that for i ∈ {1, . . . , 11}
the neighbors of uidi in the outer face of Gvi must have different colors, and thus ψ(uidi) =

ψ(ui−1
di

). We conclude that ψ(uij) = ψ(u0
j) for each i ∈ {1, . . . , 11} and each j ∈ {1, . . . , 5}.

By symmetry, we can assume that ψ(u0
1) = 1, ψ(u0

2) = 2, ψ(u0
3) = 3, ψ(u0

4) = 1, and
ψ(u0

5) = 3. It follows that di ∈ {1, 2, 3} for i ∈ {1, . . . , 11}, hence u0
4 = · · · = u11

4 and
u0

5 = · · · = u11
5 . Consider the sequence D = d1, . . . , d11. If two consecutive elements of this
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sequence are equal, or if D contains a consecutive subsequence equal to 1, 3, 1 or 3, 1, 3,
then GP contains the configuration (i). If D contains a consecutive subsequence a, b, a, b
for some distinct a, b ∈ {1, 2, 3} with |a− b| = 1, then GP contains the configuration (ii).
In both cases, the conclusion of the lemma holds; hence, assume that no such consecutive
subsequences appear in D. Furthermore, if D contains the consecutive subsequence 3, 1,
then the same graph GP arises when this subsequence is replaced by 1, 3. Hence we
can assume that D does not contain the consecutive subsequence 3, 1, and thus every
appearance of 3 in D is followed by 2, except possibly for the one in the last position
of D.

If D contains the consecutive subsequence 1, 3, 2, 1, 3 not containing any of the last two
elements of D, then by the previous paragraph D contains, as a consecutive subsequence,
either 1, 3, 2, 1, 3, 2, 1 or 1, 3, 2, 1, 3, 2, 3. This implies that GP contains the configura-
tion (iii), and so the conclusion of the lemma holds. Hence we assume that D does not
contain such a consecutive subsequence.

Suppose that D contains a consecutive subsequence 1, 3, not containing the last five
elements of D. The next element following 3 is necessarily 2. The next element cannot
be 3, as it would be followed by 2 and D would contain a consecutive subsequence 3, 2, 3, 2.
Hence, the next element is 1 and by the previous paragraph the next one is 2, and so GP

contains the configuration (ii). It follows that we can assume that D does not contain
a consecutive subsequence 1, 3 disjoint from the last five elements of D. Hence, every
appearance of 1 not contained in the last six elements of D is followed by 2.

It follows that D starts with one of the following sequences:

• 1, 2, 3, 2, 1, 2, 3, 2;

• 2, 1, 2, 3, 2, 1, 2; or

• 2, 1, 2, 3, 2, 1, 3; or

• 2, 3, 2, 1, 2, 3, 2; or

• 3, 2, 1, 2, 3, 2, 1, 2; or

• 3, 2, 1, 2, 3, 2, 1, 3.

In all the cases, GP contains the configuration (ii) or (iii), and thus the conclusion of the
lemma follows.

We are now ready to demonstrate Theorem 7.

Proof of Theorem 7. We start by showing that (EXP) implies (REU), for any α ∈ (0, β).
Fix a planar triangle-free request graph (G,R=,∅, unit) with n + |R=| vertices. Set r =

|R=| and N =
⌈
n(log2 3−β)

β−α

⌉
. We can assume that r > 1. Every 3-coloring ϕ of G − R=

greedily extends to a 3-coloring of G: let s(ϕ) be the number of requests in R= satisfied
by any such extension. Let G′ be the graph obtained from G by replacing each vertex
of R= by N clones, so |V (G′)| = n + Nr. Observe that ϕ extends to exactly 2s(ϕ)N
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3-colorings of G′. Let s0 be the maximum of s(ϕ) taken over all 3-colorings ϕ of G−R=.
As the number of 3-colorings of G − R= is at most 3n, it follows that the number of 3-
colorings of G′ is at most 2s0N+n log2 3. On the other hand, (EXP) implies that the number
of 3-colorings of G′ is at least 2β(n+Nr), and thus

s0N + n log2 3 > β(n+Nr)

s0 > βr − (log2 3− β)n

N
> αr.

Hence, some 3-coloring ϕ of G − R= extends to a 3-coloring of G that satisfies at
least α |R=| of the requests, as required.

Next, we show that (REU) implies (EXP), for β = α/388. Suppose for a contradiction
that there exists a planar triangle-free graph G with less than 2β|V (G)| 3-colorings. We
choose such a graph G with the least possible number n of vertices. Let d0 = b1/βc and
γ = d0−3

5(d0−1)
. Note that d0 > 388, so γ > 77

387
. Let s5 be the number of 5-faces of G. By

Corollary 12, the graph G has a 5-cycle decomposition (T,Λ) satisfying |V (T )|+s5 > γn,
and we can without loss of generality assume that the decomposition is maximal. Let r
be the number of rich vertices of T and let ` be the number of poor leaves of T . Note that
s5 > `. Let S be a largest collection of pairwise disjoint 11-suburbs in (T,Λ). Note that
at most 10(r + `) poor vertices of T belong to no member of S. Let m be the number of
upwardly mobile suburbs in S, and let S0 be the subset of S consisting of those suburbs
that are not upwardly mobile.

For each rich vertex v and each upwardly mobile suburb P , every coloring of the outer
face of Gv and of GP extends to at least two 3-colorings. Hence, we conclude that G has
at least 2r+m 3-colorings, and thus r +m < βn. Hence

|S0| >
|V (T )| − r − 10(r + `)− 11m

11

=
|V (T )| − 11(r +m)− 10`

11

>
77/387− 11β

11
n− s5.

Let (G′, R=,∅, unit) be the request graph obtained from G by adding, for every suburb
in S0, a vertex to R= adjacent to the two vertices x and y obtained from Lemma 14.
By (REU), there exists a 3-coloring satisfying α-fraction of the requests, and by Lemma 14,
we conclude that G has a 3-coloring with at least α |S0| bichromatic faces. But then

Lemma 8 implies that G has more than 2(s5+α|S0|)/6 > 2
α(77/387−11β)

66
n > 2βn 3-colorings,

which is a contradiction.

4 Auxiliary results

In the rest of the paper, we will use a number of results on coloring and list coloring, which
we present here. Let us formally state Grötzsch’s theorem with one of its extensions.
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Theorem 15 (Grötzsch [5], Thomassen [8]). A planar triangle-free graph G is 3-colorable.
Moreover, any precoloring of an (65)-cycle in G extends to a 3-coloring of G.

Let us recall that Thomassen [9] proved the following generalization of 3-choosability
of planar graphs of girth at least 5.

Theorem 16. Let G be a plane graph of girth at least 5, let P be a subpath of G drawn
in the boundary of the outer face of G with at most three vertices, and let L be an as-
signment of lists to the vertices of G, satisfying the following conditions. All vertices not
incident with the outer face have lists of size three, vertices incident with the outer face
not belonging to V (P ) have lists of size two or three, and vertices of P have lists of size
one giving a proper coloring of P . If the vertices with list of size two form an independent
set, then G is L-colorable.

Theorem 16 can be strengthened as follows.

Theorem 17 (Dvor̆ák and Kawarabayashi [2]). Let G be a plane graph of girth at least 5,
let P = p1 . . . pk be a subpath of G drawn in the boundary of the outer face of G with
k 6 3, and let L be an assignment of lists to the vertices of G, satisfying the following
conditions.

(i) All vertices not incident with the outer face have lists of size three, vertices incident
with the outer face not belonging to V (P ) have lists of size two or three, and vertices
of P have lists of size one giving a proper coloring of P .

(ii) The graph G has no path v1v2v3 with |L(v1)| = |L(v2)| = |L(v3)| = 2.

(iii) The graph G has no path v1v2v3v4v5 with |L(v1)| = |L(v2)| = |L(v4)| = |L(v5)| = 2
and |L(v3)| = 3.

(iv) If |V (P )| = 3, then at least one endvertex p of P is contained in no path pv2v3 with
|L(v2)| = |L(v3)| = 2 and no path pv2v3v4v5 with |L(v2)| = |L(v4)| = |L(v5)| = 2
and |L(v3)| = 3.

Then G is L-colorable.

We need the following variant of this result. If P is a path with |V (P )| = 3, we call
the vertex of P of degree 2 the middle vertex of P . When |V (P )| 6 2, we do not consider
any vertex of P to be the middle one.

Lemma 18. Let G be a plane graph of girth at least 5, let P = p1 . . . pk be a subpath of G
drawn in the boundary of the outer face of G with k 6 3, and let L be an assignment of
lists to the vertices of G, satisfying the following conditions.

(i) All vertices not incident with the outer face have lists {1, 2, 3}, vertices incident with
the outer face not belonging to V (P ) have lists {1, 2} or {1, 2, 3}, and vertices of P
have lists of size one giving a proper 3-coloring of P .
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(ii) The graph G has no path v1v2v3 with |L(v1)| = |L(v2)| = |L(v3)| = 2.

(iii) If |V (P )| = 3, then for one of the endvertices p of P , the graph G contains no path
pv1v2 with |L(v1)| = |L(v2)| = 2.

Then G is L-colorable.

Proof. We prove the statement by induction, assuming that it holds for all graphs with
fewer than |V (G)| vertices.

We can assume that G is 2-connected, the cycle K bounding its outer face has no
chords except for those incident with the middle vertex of P , and there is no path xyz
such that x, z ∈ V (K), y 6∈ V (K), x is not the middle vertex of P and |L(z)| = 2 —
let us show the last assertion, the other ones follow similarly. If G contains such a path,
then G = G1 ∪ G2 for proper induced subgraphs G1 and G2 with xyz = G1 ∩ G2 and
P ⊆ G1. We L-color G1 by the induction hypothesis, modify the lists of x, y and z to
single-element lists given by this coloring, and extend the coloring to G2 by the induction
hypothesis (G2 satisfies (iii), since a path zv1v2 with |L(v1)| = |L(v2)| = 2 is forbidden by
the assumption (ii) for G).

We exclude with a similar argument a chord incident with the middle vertex of P :
let P = p1p2p3, where G contains no path p3v1v2 with |L(v1)| = |L(v2)| = 2. Write G =
G1 ∪ G2 for proper induced subgraphs G1 and G2 intersecting in a chord p2v, such that
p3 ∈ V (G2). By the induction hypothesis, G1 is L-colorable (since it contains only two
vertices p1 and p2 with a list of size one). We modify the list of v to the singleton matching
this L-coloring, and color G2 by the induction hypothesis, thereby obtaining an L-coloring
of G. Hence, we can assume that K is an induced cycle.

Next, suppose that G contains a path v1v2v3 with |L(v1)| = |L(v3)| = 2 and |L(v2)| =
3. By the previous arguments, v1v2v3 is a subpath of K, each neighbor u2 of v2 distinct
from v1 and v3 has a list of size three, and every neighbor of u2 has a list of size different
from two. Define N to be the set of neighbors of v2 distinct from v1 and v3. Since G has
girth greater than 3, N is in independent set. Let L′ be obtained from L by setting the
list of each vertex in N to {1, 2}. By the induction hypothesis, G−v2 is L′-colorable, and
we obtain an L-coloring of G by giving v2 color 3.

Hence, we can assume that G does not contain any such path. It follows that G and
L satisfy the assumptions of Theorem 17, so G is L-colorable.

We also need the following result on extendability of 3-colorings in plane graphs of
girth at least 5.

Theorem 19 (Thomassen [10]). Let G be a plane graph of girth at least 5 with outer face
bounded by a cycle K of length at most 9. Let L be an assignment of lists of size one to
vertices of K yielding a proper coloring of K, and of lists of size three to all other vertices
of G. If G is not L-colorable, then either |K| ∈ {8, 9} and K has a chord, or |K| = 9 and
a vertex of V (G) \ V (K) has three neighbors in K.

Let G be a plane graph, let P be a subpath of the boundary of the outer face of G,
and let X be a set of edges contained in the boundary of the outer face of G forming a
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matching vertex-disjoint from P . Let Z be the set of vertices of G incident with P or an
edge in X. Let G′ be a plane graph such that G is an induced subgraph of G′, G′−V (G)
is an induced cycle K of length |Z| bounding the outer face of G′, and the edges of G′

between V (K) and V (G) form a perfect matching between V (K) and Z. For each z ∈ Z,
let kz be the vertex of K matched to z. We say that G′ is a casing for G, P and X if for
all edges xy ∈ X ∪E(P ), the vertices kx and ky are adjacent in K and the 4-cycle kxxyky
bounds a face of G′. Let p be any vertex of P . For two vertices x and y incident with
edges of X, we write x ≺ y if kx precedes ky in the clockwise ordering of vertices of K
starting with kp.

Let us remark that when G is 2-connected, its casing is uniquely determined and the
ordering ≺ matches the ordering of the vertices around the outer face of G; casings are
just a technical device to enable us to keep track of the order also when the boundary of
the outer face of G is not a cycle.

We now give one more variation of Theorem 17 (note the change in (iii), which now
permits some paths v1v2v3v4v5 with |L(v1)| = |L(v2)| = |L(v4)| = |L(v5)| = 2, as well as
the modifications to (i) and (iv)). In the situations of these theorems, we say that an
edge e = xy joining two vertices with lists of size two blocks a vertex p if there exists a
path puvxy with |L(u)| = 2 and |L(v)| = 3.

Lemma 20. Let G be a plane graph of girth at least 5, let P = p1 . . . pk be a subpath of G
drawn in the boundary of the outer face of G with k 6 3, and let L be an assignment of
lists to vertices of G, satisfying the following conditions.

(i’) All vertices not incident with the outer face have lists of size three, vertices incident
with the outer face not belonging to V (P ) have lists of size two or three, and vertices
of P have lists of size one giving a proper coloring of P . Furthermore, each edge of G
that joins two vertices with list of size less than three is contained in the boundary
of the outer face of G.

(ii) The graph G has no path v1v2v3 with |L(v1)| = |L(v2)| = |L(v3)| = 2.

(iii’) Let X be the set of edges of G joining vertices with a list of size two. There exists
a casing G′ (with outer face K) for G, P and X, such that the following holds for
the ordering ≺ defined by the casing. If v1v2 and v4v5 are distinct edges of X with
v1 ≺ v2 ≺ v4 ≺ v5, then v2 and v4 have no common neighbor, and v1 and v5 have
no common neighbor.

(iv’) If k = 3, then G contains no path p1v2v3 with |L(v2)| = |L(v3)| = 2. Furthermore,
every edge xy ∈ X of G that blocks p1 such that xp3, yp3 6∈ E(G) also blocks p3 and
satisfies L(p2) ⊆ L(x) ∪ L(y).

Then G is L-colorable.

Proof. We prove the statement by induction on |V (G)|, assuming that it holds for all
graphs with fewer than |V (G)| vertices. Clearly, we can assume that G is connected. Also

the electronic journal of combinatorics 24(3) (2017), #P3.47 15



we can assume that k > 2, as otherwise we can add to P another vertex incident with
the outer face of G.

Furthermore, we can assume that G is 2-connected and every chord of the cycle bound-
ing the outer face of G is incident with the middle vertex of P : otherwise, suppose for
instance that the outer face of G has a chord xy with neither x nor y being the middle
vertex of P , and write G = G1 ∪G2 for induced subgraphs G1 and G2 intersecting in xy
such that P ⊆ G1. By the induction hypothesis, the graph G1 has an L-coloring ϕ1 (let us
remark that a casing for G1, P and X1 = X ∩ E(G1) postulated by the assumption (iii’)
can be obtained from G′ by removing the vertices of G2−{x, y}, possibly removing edges
between x or y and K if x or y is not incident with an edge in E(P )∪X1, and suppressing
vertices of degree two in K). Let L2 be the list assignment obtained from L by giving x
and y singleton lists prescribed by ϕ1, and find an L2-coloring of G2 by the induction
hypothesis (letting X2 be the set of edges of G2 joining vertices with list of size two ac-
cording to L2, a casing for G2, P2 = xy and X2 can be constructed from G′ by removing
the vertices of G1−{x, y} and the edges between V (G1) and V (K) not incident with the
edges o X2, adding edges xkp1 and ykp2 , and suppressing vertices of degree two in K).
This yields an L-coloring of G.

A similar argument shows that we can assume the following.

(4.1) There is no path Q = q1q2q3 of length two with q1 and q3 incident with the outer
face of G and not equal to the middle vertex of P , and q2 not incident with the outer face,
such that writing G = G1 ∪G2 for induced subgraphs G1 and G2 with intersection Q and
P ⊆ G1, no neighbor of q1 in G2 has a list of size two.

This implies that G and L satisfy the assumption (iii) of Theorem 17. Indeed, suppose
that G contains a path v1v2v3v4v5 with |L(v1)| = |L(v2)| = |L(v4)| = |L(v5)| = 2 and
|L(v3)| = 3. By the assumption (iii’) and symmetry, we can assume that v1 ≺ v2 ≺ v5 ≺
v4. Since all chords of the outer face are incident with the middle vertex of P , it follows
that v3 is not incident with the outer face. Let G1 and G2 be proper induced subgraphs
of G such that G1∪G2 = G, G1∩G2 = v2v3v4, and P ⊆ G1. Note that v1 ∈ V (G1)\V (G2),
and by the assumption (ii) for G, we conclude that v2 has no neighbor with a list of size
two in G2. Then the path v2v3v4 contradicts (4.1) (with qi = vi+1 for i ∈ {1, 2, 3}).

If G and L satisfy the assumption (iv) of Theorem 17, it follows from that theorem
that G is L-colorable. Hence, suppose this is not the case. Thus (iv’) implies that
P = p1p2p3 and G contains an edge xy joining vertices with lists of size two that blocks p1.
Furthermore, (iv’) also implies that either p3 has a neighbor in {x, y} or the edge xy
blocks p3. Let p1u1v1xy with |L(u1)| = 2 and |L(v1)| = 3 be a path showing that xy
blocks p1. Note that u1 has no neighbor with a list of size two, since we showed in the
previous paragraph that G satisfies the assumption (iii) of Theorem 17. By (4.1) and
the absence of chords not incident with p2, we conclude that p1u1v1xy is contained in the
boundary of the outer face of G. By a symmetric argument at p3, we conclude that the
outer face of G is bounded by either a 7-cycle p1u1v1xyp3p2 or a 9-cycle p1u1v1xyv3u3p3p2

with |L(u3)| = 2 and |L(v3)| = 3. By Theorem 19, we conclude that G is L-colorable,
unless its outer face is bounded by a 9-cycle and G contains a vertex z adjacent to p2, v1,
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and v3. However, in that case G is L-colorable as well, since L(p2) ⊆ L(x) ∪ L(y) by the
assumption (iv’).

Finally, we consider distance colorability of planar triangle-free graphs. The Clebsch
graph is the graph with vertex set equal to the elements of the finite field GF(16) and
edges joining two elements if their difference is a perfect cube.

Theorem 21 (Naserasr [7]). Every planar triangle-free graph has a homomorphism to
the Clebsch graph.

Since the Clebsch graph is triangle-free, Theorem 21 has the following consequence, also
noted by Naserasr [7].

Corollary 22. Every planar triangle-free graph has a proper coloring by 16 colors such
that any two vertices joined by a path of length 3 have different colors.

5 Requests at a vertex

In this section, we consider the case of a request graph with only non-equality requests and
all requests adjacent to one vertex v. Let T be the set of vertices other than v adjacent
to the requests and let S be the set of non-request neighbors of v. We can without loss of
generality assign to v color 3, and thus we equivalently ask for all vertices of S as well as a
constant fraction of the vertices of T to be colored from the list {1, 2}. After removing v
and the request vertices, the vertices of S ∪ T will be incident with a single face of the
graph, say the outer one. If the request graph had girth at least 5 and S = ∅, we could
satisfy all requests in any independent subset of T using Theorem 16, and this would
allow us to satisfy at least 1/3-fraction of all the requests. However, the graphs is only
assumed to be triangle-free, and thus a more involved argument is needed.

Let us introduce a definition motivated by the situation described in the previous
paragraph. Let G be a graph, let S and T be disjoint subsets of its vertices, let P be a
path in G disjoint from S ∪ T , and let w : T → Q+ be an assignment of positive weights
to the vertices in T . If S is an independent set in G, we say that C = (G,P, S, T, w) is
a cog, and the elements of T are its demands. A 3-coloring of the cog is a 3-coloring ϕ
of G such that ϕ(v) ∈ {1, 2} for all v ∈ S. For a real number α, we say that ϕ satisfies
α-fraction of demands if w(ϕ−1({1, 2}) ∩ T ) > αw(T ). We say that the cog is plane if
G is a plane graph, P is a subpath of the boundary of the outer face of G, and S and T
consist only of vertices incident with the outer face of G. The girth of the cog is defined
as the length of the shortest cycle in G.

In all forthcoming figures, vertices of P are depicted by filled circles, vertices of S are
depicted by squares, vertices of T are depicted by squares containing a question mark,
and all other vertices are depicted by empty circles.

Let C = (G,P, S, T, w) be a plane cog and let Q be an induced path in G such that
the ends of Q are incident with the outer face and no other vertex or edge of Q is incident
with the outer face. Then G = G1 ∪ G2 for proper induced subgraphs G1 and G2 with
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Figure 3: Obstructing cogs.

intersection Q. Suppose that P ⊆ G1, and define C1 = (G1, P, S ∩ V (G1), T ∩ V (G1), w �
(T∩V (G1))), and C2 = (G2, Q, S∩V (G2)\V (Q), T∩V (G2)\V (Q), w � (T∩V (G2)\V (Q))).
We say that C1 and C2 are the Q-components of C, and that C2 is cut off by Q. If Q
has length 2 and one of its ends belongs to S ∪ T , we say that Q is a weak 2-chord. A
cog C ′ = (G′, P ′, S ′, T ′, w′) is a subcog of C if G′ ⊆ G, P ′ = P ∩ G′, S ′ ⊆ S ∩ V (G′),
T ′ ⊆ T ∩ V (G′), and w′ is the restriction of w to T ′.

We observe that Theorem 16 implies that if C = (G,P, S, T, w) is a plane cog of girth
at least 5 with |V (P )| 6 3, then every 3-coloring of P extends to a 3-coloring of the cog.
In Lemma 24, we extend this to show that when |V (P )| = 2 (and with a few exceptions),
such a 3-coloring can satisfy a constant fraction of the demands, even if the cog has girth
4. This directly implies the result for request graphs with only non-equality requests at a
single vertex, Corollary 4.

A plane cog (G,P, S, T, w) is polished if T is an independent set and G does not
contain a path v1v2v3 with v1, v3 ∈ T and v2 ∈ S. Let us first deal with the special case
of satisfying demands in polished cogs of girth at least five.

Lemma 23. Let α1 = 1/562. Let C = (G,P, S, T, w) be a polished plane cog of girth at
least 5, where |V (P )| 6 3. Let ψ be a 3-coloring of P . If C does not contain any of the
subcogs depicted in Figure 3, then ψ extends to a 3-coloring of C satisfying α1-fraction of
the demands.

Proof. Suppose on the contrary that C and ψ form a counterexample with |V (G)| as
small as possible. Clearly, G is connected and vertices not belonging to S ∪ T ∪ V (P )
have degree at least three.

Also, G is 2-connected: otherwise, let v be a cutvertex of G. If v is not the middle
vertex of P , then let C1 and C2 be the v-components of C. Note that neither C1 nor C2

contains a subcog depicted in Figure 3. By the minimality of C, the precoloring ψ extends
to a 3-coloring ϕ1 of C1 satisfying α1-fraction of its demands. Furthermore, the 3-coloring
of v by color ϕ1(v) extends to a 3-coloring ϕ2 of C2 satisfying α1-fraction of its demands.
The combination of ϕ1 and ϕ2 is a 3-coloring of C satisfying α1-fraction of its demands,
which contradicts the assumption that (C,ψ) is a counterexample. A similar argument
excludes the case that v is the middle vertex of P and thus G contains no cutvertices. In
particular, the outer face of G is bounded by a cycle K. Similarly, Theorem 19 implies
the following.
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(5.1) Every cycle in G of length at most 7 bounds a face, and the open disk bounded by
any 8-cycle in G contains no vertices.

Suppose that K has a chord uv. Let us first consider the case that neither u nor v
is the middle vertex of P . Let C1 and C2 be the uv-components of C, and let G2 be
the graph of C2. Note that C1 does not contain a subcog depicted in Figure 3, so the
induction hypothesis ensures that ψ extends to a 3-coloring of C1. Considering now C2

with u and v precolored as prescribed by this extension, we deduce that that C2 must
contain the subcog depicted in Figure 3(a)—if C2 did not contain such a subcog, we obtain
a contradiction as in the previous paragraph, since C2 has only two precolored vertices.
Hence, G2 contains a path ux1x2x3v with x1, x3 ∈ S and x2 ∈ T . Since C is polished,
u, v 6∈ S ∪ T . We obtain the following.

(5.2) The cycle K has no chord with an end in S ∪ T , unless the other end of the chord
is the middle vertex of P .

In particular, the edges ux1, x1x2, x2x3, and x3v are not chords, and since every 5-cycle
in G bounds a face by (5.1), we conclude that G2 is equal to the 5-cycle vux1x2x3.

(5.3) If uv is a chord of the cycle K not incident with the middle vertex of P , then the
uv-component of C cut off by uv is the cog depicted in Figure 3(a).

(5.2) implies that each vertex of T is incident with at most two vertices of S (consec-
utive to it in K). Since C is polished, each component of G[S ∪ T ] is a path of length at
most two contained in K, and if its length is two, then its middle vertex belongs to T .
We next show the following.

(5.4) Suppose that Q = uvz is a weak 2-chord of C, where z ∈ S ∪ T and u is not the
middle vertex of P . Then the Q-component C ′ of C cut off by Q is equal to the cog
depicted in Figure 3(b), and since C is polished, it follows that u 6∈ S ∪ T and z ∈ S.

Suppose for a contradiction that this is not the case, and let Q = uvz be a weak 2-chord
satisfying the assumptions that fails the conclusion of (5.4) with C ′ minimal. As before,
we argue that C ′ contains a subcog C ′′ depicted in Figure 3. If C ′′ is the subcog from
Figure 3(a), then since C is polished, C ′′ contains the edge uv (and not vz). Let u′ ∈ S be
the neighbor of v in C ′′ distinct from u. However, then the cut-off u′vz-component of C
contradicts the minimality of C ′ (it cannot be equal to the cog depicted in Figure 3(b)
since C is polished and u′, z ∈ S ∪ T ). Similarly, as C is polished, C ′′ is not the cog
depicted in Figure 3(c). If C ′′ is the cog depicted in Figure 3(b), then (5.1) and (5.2)
yield that C ′ = C ′′, which contradicts the definition of Q.

Finally, suppose that C ′′ is the cog depicted in Figure 3(d). As C is polished, the
minimality of C ′ along with (5.1) and (5.3) imply that either C ′ = C ′′ or C ′ is the cog
depicted in Figure 4. Let β be the weight of the unique demand of C ′′. Let C1 =
(G1, P, S1, T1, w1) be the Q-component of C distinct from C ′. If z ∈ S, then let C ′1 = C1;
otherwise (when z ∈ T ), let C ′1 be obtained from C1 by increasing the weight of z by β.
By the minimality of C, any 3-coloring of P extends to a 3-coloring ϕ of C ′1 satisfying
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Figure 4: A cog split off by a weak 2-chord.
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Figure 5: Compositions of the cog (d) with cogs (a) from Figure 3.

α1-fraction of its demands. If ϕ(u) 6= 3, then we can color the neighbor of u in C ′ with a
list of size three by color 3 and extend the coloring so that all demands in C ′ are satisfied,
and the resulting 3-coloring satisfies α1-fraction of demands of C. Hence, suppose that
ϕ(u) = 3. If z ∈ T and ϕ(z) = 3 (so that the demand of z is not satisfied), then we extend
ϕ to C ′′ without satisfying its unique demand; otherwise ϕ(z) ∈ {1, 2}, and we observe
that ϕ can be extended to a 3-coloring of C ′′ satisfying its demand. In either case, if
C ′ 6= C ′′, then the coloring extends to a 3-coloring of C ′ satisfying the demand of C ′ not
in C ′′, since ϕ(u) = 3. Observe that in all the cases, the resulting 3-coloring of C satisfies
α1-fraction of its demands. This is a contradiction, showing that (5.4) holds.

Suppose now that |V (P )| = 3 and K has a chord uv, where u is the middle vertex
of P . Let G1 and G2 be proper induced subgraphs of G such that G = G1 ∪ G2 and
uv = G1 ∩ G2. For i ∈ {1, 2}, let Pi be the path in Gi consisting of uv and an edge
of P ; let Ci = (Gi, Pi, S ∩ V (Gi) \ {v}, T ∩ V (Gi) \ {v}, w � (T ∩ V (Gi) \ {v})). If Cj,
for some j ∈ {1, 2}, does not contain any of the subcogs depicted in Figure 3, then let
C ′3−j = (G3−j, P ∩ G3−j, S ∩ V (G3−j), T ∩ V (G3−j), w � (T ∩ V (G3−j))), extend ψ to a
3-coloring of C ′3−j satisfying α1-fraction of its demands by the minimality of C, extend
the resulting precoloring of Pj to a 3-coloring of Cj satisfying α1-fraction of its demands
by the minimality of C, and obtain a contradiction as before. Hence, we can assume
that for each i ∈ {1, 2}, the cog Ci contains one of the subcogs depicted in Figure 3. If
Ci contains one of the subcogs (b), (c), or (d) from that figure, it is actually equal to it

the electronic journal of combinatorics 24(3) (2017), #P3.47 20



by (5.1), (5.2) and (5.4), with the exception of the subcog (d), which can have copies of
subcog (a) attached to two of its edges (see Figure 5). If Ci contains the subcog C ′i equal
to (a) from the figure, then since C does not contain such a subcog, we conclude that
C ′i contains the edge uv (and not the edge of P ). But then Gi contains another chord
incident with u, and we can repeat the same argument (at most once, since this chord
is incident with a vertex in S and thus cannot be followed by another copy of the cog
depicted in Figure 3(a)).

In conclusion, if uv1, . . . , uvm are all chords incident with u in cyclic order around u,
then m 6 3 and C consists of P = p1up2, these chords, a path v1x1y1v2 if m = 2 and
v1x1y1v2y2x2v3 if m = 3, with y1, y2, v1, v3 ∈ S and x1, x2 ∈ T , and subcogs depicted in
Figure 3 (b), (c), or (d) or Figure 5 attached to the paths p1uv1 and p2uvm. Note that if
m > 2, then the demands x1, . . . , xm−1 can be satisfied by giving the vertices v1, . . . , vm
alternating colors different from ψ(u), and if m = 1 and v1 ∈ T , then we can always
satisfy the demand of v1 by giving it a color in {1, 2} \ {ψ(u)}. Similarly, at least a
2/3-fraction of the demands in each of the two subcogs at the ends can be satisfied with
the proper choice of color of v1 or vm (if say v1 ∈ S so that its color may be forced by ψ,
then since C is polished and does not contain the subcog (a), it follows that the subcog
cut off by p1uv1 is either (d) or the one depicted in Figure 5(b); and for these, it suffices
that v1 will be colored by 1 or 2 to enable us to satisfy its demands). We conclude that
every 3-coloring of P extends to a 3-coloring of C satisfying 1/4-fraction of its demands.
This is a contradiction, showing the following.

(5.5) No chord of K is incident with the middle vertex of P .

Suppose that a vertex p ∈ V (P ) is incident with a chord Q, and let C ′ be the Q-
component of C cut off by Q. By (5.3), C ′ is the graph depicted in Figure 3(a). If
ψ(p) = 3, then observe that any 3-coloring of C can be modified by recoloring within C ′

so that the demand of C ′ is satisfied. Hence, the minimality of C implies the following.

(5.6) If a chord of K is incident with a vertex p ∈ V (P ), then ψ(p) ∈ {1, 2}.

Note that we can assume that |V (P )| > 2, as otherwise we can include another vertex
in P without creating the subcog depicted in Figure 3(a). Next, we prove the following.

(5.7) Let v1v2v3 be a path of G with v1, v3 ∈ S∪T and v2 6∈ T . Then v1v2v3 is a subpath
of K. Furthermore, if v1, v3 ∈ S, then v2 is either incident with a chord or a weak 2-chord
of K (together with (5.3), (5.4), and (5.5), this implies that v1 or v3 is an endvertex of a
path of length two in G[S ∪ T ]).

Suppose for a contradiction that this is not the case. Note that v1v2v3 is a subpath
of K by (5.2), (5.4), and (5.5), and v2 6∈ V (P ) since |V (P )| > 2. Assume that v1 and v3

belong to S, and that v2 is neither incident with a chord nor a weak 2-chord of K. Let N
be the set of neighbors of v2 distinct from v1 and v3. Since v2 is not incident with a
chord, no vertex of N belongs to S ∪ T ∪ V (P ). Since v2 is not incident with a weak
2-chord, no vertex in N is adjacent to a vertex in S ∪ T . Since G is triangle-free, N is an
independent set. Hence, C ′ = (G − v2, P, S ∪ N, T, w) is a polished cog. If C ′ does not
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contain any of the subcogs depicted in Figure 3, then it follows from the minimality of C
that ψ extends to a 3-coloring of C ′ satisfying α1-fraction of its demands, which can be
extended to a 3-coloring of C by giving v2 the color 3. This contradicts the assumption
that C is a counterexample. Hence C ′ contains a subcog C ′′ depicted in Figure 3. Clearly,
C ′′ contains a vertex y ∈ N . Furthermore, y has a neighbor z in C ′′ that belongs to T . It
follows that either v2y is a chord or v2yz is a weak 2-chord of K, a contradiction which
establishes (5.7).

Without loss of generality, we can assume that G[S ∪ T ] contains no isolated vertices
belonging to T , as these can be moved into S. Let T1 and T2 be the vertices of T belonging
to paths of lengths 1 and 2 in G[S ∪ T ], respectively.

Suppose that w(T1) > 2α1w(T ). We let t1, . . . , tn be the vertices of T1 in order
around K, where P is between tn and t1; without loss of generality, w(t1) > w(tn).
Let T ′1 = T1 if n = 1 and T ′1 = T1 \ {tn} otherwise; we have w(T ′1) > w(T1)/2. Let L be
the list assignment for G such that

L(v) =


{ψ(v)} if v ∈ V (P ),

{1, 2} if v ∈ S ∪ T ′1,

{1, 2, 3} otherwise.

An L-coloring of G would yield a 3-coloring of C that satisfies all demands in T ′1, with
weight at least w(T1)/2 > α1w(T ). This would contradict the assumption that C is
a counterexample. Therefore, G is not L-colorable, and thus it violates one of the as-
sumptions of Lemma 18. The assumptions (i) and (ii) are clearly satisfied. Hence, the
assumption (iii) is violated, so G contains a walk v1v2p1p2p3v3v4 (where P = p1p2p3) with
|L(v1)| = |L(v2)| = |L(v3)| = |L(v4)| = 2; i.e., v1, . . . , v4 ∈ S ∪ T ′1. Consequently, (5.2)
ensures that this walk is a subwalk of K, and thus it contains both t1 and tn. Hence,
t1, tn ∈ T ′1, and thus n = 1 and v1 = v3 and v2 = v4. But then C contains the subcog
depicted in Figure 3(b). This is a contradiction, showing that the following holds.

(5.8) We have w(T1) < 2α1w(T ).

We also note the following direct corollary of (5.7).

(5.9) Let v1v2v3 be a path of G with v1, v3 ∈ S ∪ T2 and v2 6∈ T2. Then v1v2v3 is a
subpath of K, v1, v3 ∈ S, and v2 is either incident with a chord or a weak 2-chord of K.

A vertex z ∈ T2 is peripheral if there exists either a chord or a weak 2-chord Q such
that z is contained in the Q-component Cz of C cut off by Q, and at least one of the
endvertices of Q is adjacent to a vertex in S not belonging to Cz. We choose one of the
endvertices of Q with this property and call it the connector of z. Note that (5.3), (5.4)
and (5.5) imply that the graph of Cz is a 5-cycle.

Let Tp be the set of peripheral vertices and suppose that w(Tp) > 48α1w(T ). Let Y
be the set of connectors of the peripheral vertices, and for y ∈ Y , let us define

ω(y) =
∑
z ∈ Tp

with connector y

w(z).
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Note that ω(Y ) = w(Tp). By Corollary 22, there exists an independent set Y ′ ⊆ Y such
that no two vertices of Y ′ are joined by a path of length 3 in G and ω(Y ′) > w(Tp)/16.
Let y1, . . . , yn be the vertices of Y ′ in order around K, with P being contained between yn
and y1. We consider the cycle y1 . . . yn built on Y ′ and we let Y ′′ be an independent set
in this cycle such that ω(Y ′′) > ω(Y ′)/3.

Let G0 be the subgraph of G obtained by removing the vertices in Tp with their
neighbors of degree 2. Let N be the set of composed of all vertices of G0 − P that are
adjacent to a vertex in Y ′′ by an edge that does not belong to K. Note that N is an
independent set by the choice of Y ′. Also (5.6) yields that each vertex in P adjacent to
a vertex in Y ′′ has color 1 or 2. Consider the graph G0 − Y ′′ with the list assignment L
such that

L(v) =


{ψ(v)} if v ∈ V (P ),

{1, 2} if v ∈ (S ∩ V (G0 − Y ′′)) ∪N ,

{1, 2, 3} otherwise.

Any L-coloring of G0 − Y ′′ can be extended to a 3-coloring of C by first giving vertices
in Y ′′ color 3 and next coloring Cz for each z ∈ Tp; if Cz contains a vertex of Y ′′, we can
extend the coloring so that the demand of Cz is satisfied. It follows that in the resulting
3-coloring of C, the weight of satisfied demands is at least ω(Y ′′) > w(Tp)/48 > α1w(T ),
which contradicts the assumption that C is a counterexample.

Therefore, G0 − Y ′′ is not L-colorable, and thus it violates one of the assumptions
of Lemma 18. The assumption (i) is clearly satisfied. If a vertex v ∈ S is adjacent to
a vertex x ∈ N with a neighbor y ∈ Y ′′, then either yx is a chord of K or yxv is a
weak 2-chord of K, and thus yxv is a subpath of the outer face of G0. Suppose that
the assumption (ii) is violated for a path v1v2v3. Then v1, v3 ∈ N , v2 ∈ S, and the
outer face of G0 contains a subpath yv1v2v3y

′ with y, y′ ∈ Y ′′. However, this contradicts
the choice of Y ′′, as y and y′ would then be consecutive in the cycle y1 . . . yn. Finally,
suppose that the assumption (iii) is violated, and thus the outer face of G0 contains a
walk yv1v2p1p2p3v3v4y

′ (where P = p1p2p3) with y, y′ ∈ Y ′′, v1, v4 ∈ N and v2, v3 ∈ S.
This implies that {y, y′} = {y1, yn}, and so the choice of Y ′′ implies that n = 1 and y = y′.
By (5.1), the interior of the 8-cycle yv1v2p1p2p3v3v4 in G contains no vertices, and hence
V (G0) = V (P )∪{y, v1, v2, v3, v4}. This implies that G0−y is L-colorable, a contradiction.
We thus conclude the following.

(5.10) We have w(Tp) < 48α1w(T ).

Let S0 = S ∩ V (G0) and T0 = T2 \ Tp. From now on, we consider the cog C0 =
(G0, P, S0, T0, w � T0). Note that any 3-coloring of C0 extends to a 3-coloring of C (without
necessarily satisfying any additional demands). Also, the outer face of G0 is bounded by
a cycle K0.

(5.11) The graph G0 contains no path v1v2v3 with v1, v3 ∈ S0 ∪ T0 and v2 6∈ T0.

Indeed, by (5.9) such a path would be a subpath of K and v2 would be incident with
a chord or a weak 2-chord, implying that v1 or v3 belongs to V (G) \ V (G0).
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For t ∈ T0, let Bt be the set consisting of t and its two neighbors in S0. By (5.11),
if t and t′ are two distinct vertices in T0, then no vertex of G0 has neighbors both in Bt

and Bt′ . Let G′0 be the graph obtained from G0 by, for each t ∈ T0, contracting the edges
between t and its neighbors in S0, and by removing all edges among the neighbors of t
in the resulting graph (since G0 has girth at least 5, we know by (5.1) that there may be
only one such edge, in case that t has degree two and is incident with a 5-face). Note
that G′0 is plane and triangle-free, and by Corollary 22, there exists a set T ′0 ⊆ T0 such
that w(T ′0) > w(T0)/16 and no two vertices of T ′0 are joined by a path of length 3 in G′0.
Consequently, if t, t′ ∈ T ′0 are distinct, then G0 contains no path of length 3 with one end
in Bt and the other end in Bt′ .

Let B =
⋃
t∈T ′0

Bt and let N be the set of vertices in V (G0) \ B that have a neighbor

in B. By the previous paragraph, N induces a partial matching in G0 (with each edge
of G0[N ] being contained in the neighborhood of Bt for some t ∈ T ′0 of degree two, called
the origin of the edge). Furthermore, vertices of N have no neighbors in S0 \B by (5.11),
and thus G0[S0 ∪ N ] is a partial matching with the same edges as G0[N ]. Observe also
that, by (5.3), (5.4) and the construction of G0, the endvertices of P are not adjacent to
vertices incident with an edge of G0[N ].

Let p1, . . . , pk, s1, . . . , s2|N | be the vertices of P and of B∩S0 in order around the outer
face of G0. Let p′1, . . . , p

′
k be new vertices, and let G′′0 be the graph obtained from G0

by adding the cycle K ′ = p′1 . . . p
′
ks1 . . . s2|N | as its outer face as well as the edges pip

′
i

for i ∈ {1, . . . , k}. Let G′0 be the graph obtained from G′′0 − (B ∩ T0) by removing all
edges between B ∩ S0 and V (G′0) \ V (K ′) not incident with the vertices in N . Note that
G′0 forms a casing for G0 −B, P , and E(G0[N ]); let ≺ be the corresponding ordering on
the vertices incident with the edges of G0[N ].

Let wN be the sum of the weights of the origins of the edges of G0[N ]. Let H be
the bipartite graph with one part consisting of the vertices in N incident with the edges
of G0[N ], and the other part of the vertices in V (G0)\B that are adjacent to them in G0,
and the edge set consisting exactly of the edges of G0 between these two parts. Let H ′

be the graph obtained from H by, for each edge xy of G0[N ] with x ≺ y, subdividing all
edges of H incident with x once and then identifying x and y to a single vertex. Note
that H ′ is plane and triangle-free, and thus by Corollary 22, there exists a subset X of
the edges of G0[N ] such that the corresponding vertices of H ′ are not joined by paths of
length 3 and the set TX of the origins of the edges in X satisfies w(TX) > wN/16.

Let T ′′0 be the set consisting of the vertices in TX and of the vertices of T ′0 that are
not origins of any edge of G0[N ]. Note that w(T ′′0 ) > w(T ′0)/16 > w(T0)/256. Let B′′ =⋃
t∈T ′′0

Bt and let N ′′ be the set of vertices of V (G0) \B′′ that have a neighbor in B′′. By

the construction of H ′ and the choice of X, the following holds.

(5.12) If x1y1 and x2y2 are distinct edges in G0[N ′′] with x1 ≺ y1 and x2 ≺ y2, then x1

and y2 have no common neighbors in G0, and y1 and x2 have no common neighbors in G0.

If |V (P )| 6 2, then let T ′′′0 = T ′′0 . Otherwise, if P = p1p2p3, we choose T ′′′0 ⊆ T ′′0 as
follows. For i ∈ {1, 3}, let Oi be the set of edges xy ∈ E(G0[N ′′]) such that there exists a
path piuvxy in G0−B′′ with u ∈ S0∪N ′′; and let Ri denote the set of origins of the edges
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in Oi \ O4−i. By symmetry, we can assume that w(R1) 6 w(R3). We let T ′′′0 = T ′′0 \ R1,
and note that w(T ′′′0 ) > w(T ′′0 )/2 > w(T0)/512. Let B′′′ =

⋃
t∈T ′′′0

Bt.

Let c be a color in {1, 2}, different from ψ(p2) when |V (P )| = 3. Let L be the list
assignment for G0 −B′′′ such that

L(v) =



{ψ(v)} if v ∈ V (P ),

{1, 2} if v ∈ S0 \B′′′,
{1, 2, 3} \ {3− c} if v is adjacent to a vertex in T ′′′0 ,

{1, 2, 3} \ {c} if v is adjacent to a vertex in S0 ∩B′′′,
{1, 2, 3} otherwise.

Note that G0 − B′′′ and the list assignment L satisfy the assumptions of Lemma 20
(the condition (i’) is obviously satisfied, the condition (ii) holds by the choice of T ′0, the
condition (iii’) holds by (5.12), and the condition (iv’) holds by the choice of T ′′′0 and the
color c). Hence, G0 − B′′′ is L-colorable, and we can extend this coloring to a 3-coloring
of C0 by giving vertices of T ′′′0 the color 3− c and the vertices of B′′′∩S0 the color c. This
satisfies all demands in T ′′′0 , whose total weight is at least w(T0)/512. As this 3-coloring
extends to C, we have a contradiction unless w(T0)/512 < α1w(T ).

However, if w(T0)/512 < α1w(T ) then (5.8) and (5.10) yield that

w(T ) = w(T1) + w(Tp) + w(T0) < (2 + 48 + 512)α1w(T ) = w(T ),

which is a contradiction. This concludes the proof.

We now generalize Lemma 23 to triangle-free non-polished cogs (allowing now only a
path with two vertices to be precolored).

Lemma 24. Let α0 = α1/9, where α1 is the constant from Lemma 23 (i.e., α0 = 1/5058).
Let C = (G,P, S, T, w) be a plane cog of girth at least 4, where |V (P )| 6 2. If either
|V (P )| 6 1 or at least one vertex of P has no neighbor in S, then every 3-coloring of P
extends to a 3-coloring of C satisfying α0-fraction of the demands.

Proof. Suppose for a contradiction that C is a counterexample with |V (G)| as small as
possible, and let ψ be a 3-coloring of P that does not extend to a 3-coloring of C satisfying
α0-fraction of the demands. Clearly, G is connected and all vertices not belonging to S ∪
T ∪ V (P ) have degree at least three.

Also, G is 2-connected: otherwise, let v be a cutvertex of G, and let C1 and C2 be the
v-components of C. By the minimality of C, the precoloring ψ extends to a 3-coloring ϕ1

of C1 satisfying α0-fraction of its demands. Furthermore, the 3-coloring of v by color ϕ1(v)
extends to a 3-coloring ϕ2 of C2 satisfying α0-fraction of its demands. The combination
of ϕ1 and ϕ2 is a 3-coloring of C satisfying α0-fraction of its demands, which contradicts
the assumption that C is a counterexample.

Hence, the outer face of G is bounded by a cycle K. If |V (P )| 6 1, then let S ′ = S,
otherwise let S ′ consist of S and a vertex of P that has no neighbor in S. Suppose that
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K has a chord uv, where u ∈ S ′. Let C1 and C2 be the uv-components of C. Note
that u has no neighbor in S, and thus C2 satisfies the assumptions of Lemma 24. Hence,
we obtain a contradiction as in the previous paragraph, and we conclude that K has no
chords incident with vertices in S ′.

By Theorem 15, it similarly follows that the open subset of the plane contained inside
any (65)-cycle in G is a face of G. Suppose that G contains a 4-face f = v1v2v3v4. If f is
the outer face, then we conclude that V (G) = {v1, v2, v3, v4} and it is easy to verify that
every 3-coloring of P extends to a 3-coloring of C satisfying α0-fraction of its demands.
Hence, f is not the outer face.

Since S ′ is an independent set, we can by symmetry assume that v1, v3 6∈ S ′. Further-
more, G contains no path v1xyv3 of length three: otherwise, the face f would be contained
in the interior of one of the 5-cycles v1xyv3v2 and v1xyv3v4, thereby contradicting our pre-
vious conclusion that the interior of each 5-cycle of G is a face. Let C ′ be the cog obtained
from C by identifying v1 with v3 to a new vertex v (if both v1 and v3 belong to T , then v
has weight w(v1) +w(v3) in C ′). Note that C ′ satisfies all the assumptions of Lemma 24,
and by the minimality of C, every 3-coloring of P extends to a 3-coloring of C ′ satisfying
α0-fraction of its demands. We can extend this 3-coloring to C by giving both v1 and v3

the color of v. Observe that the resulting 3-coloring satisfies α0-fraction of the demands
of C, unless say v1 ∈ V (P ), ψ(v1) = 3 and v3 ∈ T . Since C is a counterexample, the
latter must be the case.

If v2, v4 6∈ S ′, we can identify v2 with v4 instead and obtain a contradiction in the
same way. Hence, we can assume that v2 ∈ S ′. Since K has no chords incident with
vertices in S ′, we conclude that v1v2v3 is a subpath of K and v2 has degree two. By the
minimality of C, there exists a 3-coloring ϕ of the subcog of C obtained by removing v2,
extending ψ � (V (P ) \ {v2}) and satisfying α0-fraction of the demands. If v2 ∈ S, then
we can give v2 a color in {1, 2} \ {ϕ(v3)}, since ψ(v1) = 3. If v2 ∈ V (P ), then we can
assume that ϕ(v3) 6= ψ(v2), since ψ(v1) = 3, ψ(v2) ∈ {1, 2}, and exchanging colors 1 and 2
in the coloring ϕ keeps the same weight of satisfied demands. In either case, we obtain
a contradiction with the assumption that C is a counterexample. It follows that G has
girth at least five.

By Theorem 15, there exists a 3-coloring ψ1 of G. We write K = v1v2 . . . vk, and note
that there exists an assignment ψ2 of colors in {1, 2, 3} to the vertices of K so that no
two vertices at distance (in K) exactly two from each other have the same color. Let T1

be a subset of T of maximum weight that is monochromatic both in ψ1 and in ψ2; clearly,
w(T1) > w(T )/9. Since T1 is monochromatic in ψ1, it is an independent set in G. Since
K has no chords incident with vertices of S, if vi ∈ S has a neighbor vj ∈ T , then
j ∈ {i − 1, i + 1}, with indices taken cyclically, and since T1 is monochromatic in ψ2, at
most one such neighbor belongs to T1. Hence, G contains no path u1u2u3 with u2 ∈ S and
u1, u3 ∈ T1. Therefore, C ′ = (G,P, S, T1, w � T1) is a polished plane cog of girth at least 5,
and by Lemma 23, every 3-coloring of P extends to a 3-coloring ϕ of C ′ that satisfies α1-
fraction of its demands. Note that ϕ is also a 3-coloring of C, and since w(T1) > w(T )/9,
it satisfies (α1/9)-fraction of the demands of C. This contradicts the assumption that C
is a counterexample.
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The result on request graphs with only non-equality requests all at a single vertex now
readily follows.

Proof of Corollary 4. Let v be a common neighbor of vertices of R6=, and let T be the
set of neighbors of vertices of R6= not equal to v. For t ∈ T , let us define w′(t) =∑

r∈R6=,tr∈E(G) w(r). Let S be the set of neighbors of v not belonging to R6=. Let C =

(G − (R 6= ∪ {v}),∅, S, T, w′), and note that C is a plane cog of girth at least 4. By
Lemma 24, there exists a 3-coloring of C satisfying α0-fraction of its demands. By giving v
the color 3 and coloring vertices of R6= by colors different from the colors of their neighbors,
we obtain a 3-coloring of G that satisfies α0-fraction of its requests, as required.
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