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Abstract

We prove that a random 3-regular graph has rainbow connection number O(log n).
This completes the remaining open case from Rainbow connection of random regular
graphs, by Dudek, Frieze and Tsourakakis.

1 Introduction

A rainbow path in an edge-coloured graph is a path in which every edge has a different
colour. The rainbow connection number of a graph G, denoted rc(G), is the minimum
number of colours required to colour the edges of G such that every pair of vertices is
connected by a rainbow path. (The colouring is not required to be proper, although the
edge-colourings in this paper will be.) This was introduced by Chartrand et al. in [2];
see [5] for a survey and motivations.

Gn,r is the random r-regular graph on n vertices, where every such graph is selected
with equal probability. (We assume that rn is even.) The diameter of Gn,r is approx-
imately logr−1 n with high probability (w.h.p.)1[1]; and clearly this is a lower bound on
rc(Gn,r). Dudek, Frieze and Tsourakakis[3] proved that rc(Gn,r) = O(log n) for r > 4.
Kamcev̆, Krivelevich and Sudakov[4] provided a short elegant proof for r > 5 and ex-
tended the result to expander graphs and to vertex colourings (for r > 28). Here we
briefly note that a small modification to the arguments in [3] proves their result for r = 3.

Let T1, T2 be two copies of a binary tree of height `, where the roots x1, x2 have degree
three. We allow an adversary to colour the edges of T1, T2 so that both colourings are
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1A property A holds with high probability if limn→∞ Pr(Gn,r has A) = 1.
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rainbow; i.e. each colour appears at most once in each tree. Li is the set of leaves of Ti.
We say a pair of leaves u1 ∈ L1, u2 ∈ L2 is compatible if no colour appears both in the
path from x1 to u1 and in the path from x2 to u2. We define M to be the number of
compatible pairs.

Lemma 1. For any two rainbow edge colourings of T1, T2 we have M > 3×2`−1(2`−1+1).

Since |L1| = |L2| = 3×2`−1, more than 1
3

of the pairs of leaves are compatible. Lemma
2 of [3] proves that the same holds for d-ary trees for all d > 3 (with a root of degree d),
albeit with a different constant multiple.

Corollary 2. W.h.p. rc(Gn,3) = O(log n).

The proof goes exactly as in [3]. There they first obtain an edge-colouring such that
for every vertex v, the set of edges within distance ` = K log log n of v is rainbow for a
particular constant K. (That set of edges forms a tree for almost every v.) So consider any
two vertices x1, x2, and let T1, T2 be the trees formed by their distance ` neighbourhoods.
Applying their Lemma 2 (the analogue of our Lemma 1) they prove that at least one
of the compatible pairs of leaves is joined by a path which contains none of the colours
joining either leaf to its root. For the sake of brevity, we refer the reader to [3] for all the
details.

Proof of Lemma 1. For each colour c we let ρ(c) be the number of pairs u1 ∈ L1, u2 ∈ L2

such that c appears in both paths from xi to ui. Clearly M > |L1||L2| −
∑

c ρ(c) where
the sum is taken over all colours c appearing in both trees. For each such c, let λi(c)
denote the level of the edge in Ti coloured c, where the edges adjacent to the leaves are
at level 0 and those adjacent to the root are at level `− 1. So ρ(c) = 2λ1(c)+λ2(c).

Now
∑

c ρ(c) is clearly maximized when no colour appears in exactly one tree; so
assume that each tree contains the colours c1, c2, . . . , c3×2`−1 . Because the trees are iso-
morphic, the sequences (2λ1(c1), 2λ1(c2), . . . ) and (2λ2(c1), 2λ2(c2), . . . ) are both permutations
of the same multiset.

∑
c ρ(c) is the sum of the products of the corresponding elements in

those permutations, which is maximized when the permutations are identical. So noting
that each tree has 3× 2`−λ−1 edges at level λ, we obtain

∑
c

ρ(c) 6
`−1∑
λ=0

3× 2`−λ−1 × 22λ = 3× 2`−1 ×
`−1∑
λ=0

2λ = 3× 2`−1 × (2` − 1).

This yields the lemma as |L1||L2| = (3× 2`−1)2. �

Lemma 1 is tight. We will demonstrate this with a recursive edge-colouring of two
trees of height `. In our construction, s(u) denotes the sibling of u, i.e. the other vertex
with the same parent as u (which is unique if u is distance at least 2 from the root). For
each u ∈ T1, the corresponding vertex in T2 (i.e. same level and same place in left-to-right
order) is labelled u′.

For ` = 1, we colour the edges, left-to-right, 1,2,3 for T1 and 3, 1, 2 for T2. To extend
from height ` to `+1, we use a new set of colours on the new edges of T1, and then use the
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same colours on T2, this time exchanging the colours of the edges of each pair of siblings;
i.e. u, s(u′) are joined to their parents by edges of the same colour and so are s(u), u′.

It is not hard to note first that (u, u′) is always compatible, and then that each leaf
u ∈ L1 lies in 2`−1 + 1 non-compatible pairs: 2× (2`−2 + 1) arising from children of nodes
who were not compatible with its parent in the previous colouring, plus s(u′).

Remark: Lemma 2 of [3] is stated for d-ary trees, d > 3, where the root has degree d.
Their lemma does not extend to binary trees, as they show with a counterexample (due
to Alon) in their section 3. So the fact that the root has degree 3 in our Lemma 1 is
crucial. Proving Lemma 1 when the root has degree 3 is sufficient for the remainder of
the argument from [3] to apply. Indeed, [3] uses their Lemma 2 to derive Corollary 4
which applies to d-ary trees with a root of degree d+ 1, and then use Corollary 4 for the
remainder of the paper. There is one exception – they use Lemma 3 (which is stated only
for trees where the root has degree d) in section 2.6.3, but Corollary 4 applies there just
as well.
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