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Abstract

A key fact about M.-P. Schützenberger’s (1972) promotion operator on rectangu-
lar standard Young tableaux is that iterating promotion once per entry recovers the
original tableau. For tableaux with strictly increasing rows and columns, H. Thomas
and A. Yong (2009) introduced a theory of K-jeu de taquin with applications to
K-theoretic Schubert calculus. The author (2014) studied a K-promotion operator
P derived from this theory, but observed that this key fact does not generally extend
to K-promotion of such increasing tableaux.

Here, we show that the key fact holds for labels on the boundary of the rectangle.
That is, for T a rectangular increasing tableau with entries bounded by q, we have
Frame(Pq(T )) = Frame(T ), where Frame(U) denotes the restriction of U to its first
and last row and column. Using this fact, we obtain a family of homomesy results
on the average value of certain statistics over K-promotion orbits, extending a 2-row
theorem of J. Bloom, D. Saracino, and the author (2016) to arbitrary rectangular
shapes.
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1 Introduction

An important application of the theory of standard Young tableaux is to the product
structure of the cohomology of Grassmannians. Much attention in the modern Schubert
calculus has been devoted to the study of analogous problems inK-theory (see [18, §1] for a
partial survey of such work). In particular, H. Thomas and A. Yong [28] gave aK-theoretic
Littlewood-Richardson rule by developing a combinatorial theory of increasing tableaux
as a K-theoretic analogue of the classical theory of standard Young tableaux. Their
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Littlewood-Richardson rule and the associated combinatorics have since been extended to
the other minuscule flag varieties [2, 3, 4] and into torus-equivariant K-theory [17, 30].

The theory of increasing tableaux is moreover of independent combinatorial interest.
Various enumerative combinatorics results have recently been obtained [9, 16, 19]; as well
as applications to the studies of combinatorial Hopf algebras [15], longest increasing sub-
sequences of random words [29], plane partitions [5, 11], and combinatorial representation
theory [23]. This paper continues the study begun in [16] of the K-promotion operator
on increasing tableaux, a K-theoretic analogue of M.-P. Schützenberger’s [25] classical
promotion operator.

We systematically identify a partition λ = (λ1 > λ2 > . . . > λk) with its Young
diagram in English orientation. For example, we will treat the partition λ = (4, 3, 1, 1)
as interchangable with the Young diagram consisting of λi left-justified boxes in

row i (from the top).
An increasing tableau of shape λ is a filling of λ by positive integers such that entries

strictly increase from left to right across rows and from top to bottom down columns. We
write Incq(λ) for the set of all increasing tableaux of shape λ with entries bounded above
by q. Using the K-theoretic jeu de taquin of [28], one has a K-promotion operator P on
increasing tableaux [16] by analogy with M.-P. Schützenberger’s classical promotion for
standard Young tableaux [25]. We describe this operator in detail in Section 2.

The operation of (K-)promotion is of particular interest for tableaux of rectangular
shapes. For a standard Young tableau T of shape m × n, one has the key fact that
Pmn(T ) = T (cf. [10]); indeed, one can completely enumerate the orbits by size in this
case via the cyclic sieving phenomenon [22]. For increasing tableaux, on the other hand,
orbits can be much larger than the cardinality q of the alphabet [16, Example 3.10]. In
general, no upper bound is known on the cardinality of the K-promotion orbit of an
increasing tableau, even of rectangular shape.

Example 1. Consider the increasing tableau

T = 1 3 4 5 7 8 11 13 14 17

2 4 7 10 12 13 15 17 19 21

3 6 9 12 13 14 16 18 21 24

6 8 11 15 20 22 23 24 25 26

∈ Inc26(4× 10).

Although one might naively expect the cardinality of its K-promotion orbit to divide
26 by analogy with the standard Young tableau case, in fact the orbit of T has size
1222 = 26 · 47.

The frame of a rectangular Young diagram m×n is the set Frame(m×n) of all boxes
in the first or last row, or in the first or last column. For T ∈ Incq(m × n), we write
Frame(T ) for the labeling of T restricted to Frame(m× n).

Our first main result is the following:
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Theorem 2. Let T ∈ Incq(m× n). Then

Frame(T ) = Frame(Pq(T )).

Example 3. Let T be as in Example 1. Then

P26(T ) = 1 3 4 5 7 8 11 13 14 17

2 4 6 7 10 12 14 15 19 21

3 6 9 12 13 14 16 18 21 24

6 8 11 15 20 22 23 24 25 26

,

where we have bolded all entries that coincide with the corresponding entries of T . The
shaded boxes are those of Frame(P26(T )). Note that in accordance with Theorem 2, all
24 entries of Frame(P26(T )) are bolded.

Remark 4. Since Frame(2 × n) = 2 × n, Theorem 2 in particular recovers the author’s
previous result [16, Theorem 1.3] that Pq(T ) = T for T ∈ Incq(2× n).

The following was conjectured in work with K. Dilks and J. Striker [5, Conjecture 4.12]:

Conjecture 5. Let T ∈ Incq(3× n). Then T = Pq(T ).

Theorem 2 may be interpreted as evidence toward Conjecture 5, since Theorem 2
shows that T and Pq(T ) have the same entries in at least 2n + 2 out of 3n pairs of
corresponding boxes.

Example 6. We note that Theorem 2 might suggest that Frame(P(T )) is determined by
Frame(T ). This is not the case. Consider the increasing tableaux

T = 1 3 4

2 4 6

5 7 8

and U = 1 3 4

2 5 6

5 7 8

and note that Frame(T ) = Frame(U). Nonetheless, we have

P(T ) = 1 2 3

3 5 7

4 6 8

and P(U) = 1 2 3

4 5 7

6 7 8

,

which have distinct frames.

Remark 7. Recall that the promotion order of the tableau T ∈ Inc26(4 × 10) from Ex-
ample 1 is a multiple of 26. This fact is an instance of the resonance phenomenon for
increasing tableaux established in [5, Theorem 2.2]. Originally, the author hoped to use
Theorem 2 toward a strengthening of [5, Theorem 2.2]. However, this seems difficult in
light of Example 6.

the electronic journal of combinatorics 24(3) (2017), #P3.50 3



A set U of objects with a weight function wt : U → C and a group action G y U
with finite orbits is said to be homomesic if every G-orbit O has the same average

weight
∑

x∈O
wt(x)

|O|
. This notion was isolated by J. Propp and T. Roby [20] in response to

observations of D. Panyushev [14], and has since been found to appear in diverse situations
[6, 7, 8, 12, 13, 24, 27].

Using Theorem 2, we obtain our second main result, a family of new homomesies for
increasing tableaux. For T ∈ Incq(λ) and S a set of boxes in λ, let wtS(T ) denote the
sum of the entries of T in S.

Theorem 8. Let S be a subset of Frame(m× n) that is fixed under 180◦ rotation. Then

(Incq(m× n),P,wtS) exhibits homomesy with orbit average (q+1)|S|
2

.

Remark 9. The case m = 2 of Theorem 8 was previously proved by J. Bloom, O. Pechenik
and D. Saracino [1, Theorem 6.5] using results from [16].

The analogue of Theorem 8 for (semi)standard Young tableaux was conjectured by
J. Propp and T. Roby [21] and proved by J. Bloom, O. Pechenik and D. Saracino [1,
Theorem 1.1]. In fact, for (semi)standard Young tableaux, S need not be contained in
Frame(m × n). However, [1, Example 6.4] shows that for increasing tableaux a general-
ization of Theorem 8 without the condition S ⊆ Frame(m× n) would be false.

2 K-jeu de taquin and frames of increasing tableaux

This section culminates in a proof of Theorem 2. First we recall the K-jeu de taquin
of H. Thomas and A. Yong [28], the key ingredient in the operation of K-promotion on
increasing tableaux. While K-promotion can be defined without a full development of
K-jeu de taquin, we will need K-jeu de taquin in the proof of Theorem 2.

If λ, ν are Young diagrams with λ ⊆ ν, the skew (Young) diagram ν/λ is the set-
theoretic difference ν\λ. The Young diagram of a partition λ will also be referred to as
a straight shape, to distinguish it from this more general notion. The Young diagram
for the partition λ is the same as the skew diagram λ/∅, where ∅ is the Young diagram
of the empty partition; hence the set of skew Young diagrams contains, in particular, all
Young diagrams of straight shape. An increasing tableau of skew shape ν/λ is a filling
of the boxes of ν/λ by positive integers such that entries strictly increase from left to
right across rows and from top to bottom down columns. We write Incq(ν/λ) for the set
of all increasing tableaux of shape ν/λ with entries bounded above by q.

2.1 K-jeu de taquin

Let BulletTableaux(ν/λ) denote the set of all fillings of the skew diagram ν/λ by positive
integers and the symbol •. For each positive integer i, we define as follows an operator
swapi on BulletTableaux(ν/λ). Let T ∈ BulletTableaux(ν/λ) and consider the boxes of
T that contain either i or •. The set of such boxes decomposes into edge-connected
components. On each such component that is a single box, swapi does nothing. On each

the electronic journal of combinatorics 24(3) (2017), #P3.50 4



nontrivial component, swapi simultaneously replaces each i by • and each • by i. The
resulting element of BulletTableaux(ν/λ) is swapi(T ).

Example 10. Consider

T = 4 7 3 • 2 2

1 2 • 2

• 3

∈ BulletTableaux

( )

.

In computing swap2(T ), one looks at two connected components. The southwest compo-
nent is a single box containing • and is unchanged by swap2. The other component has
six boxes. Hence

swap2(T ) =
4 7 3 2 • •

1 • 2 •

• 3

.

For a box b in a skew Young diagram, we write b→ for the box immediately right of
b in its row, b↓ for the box immediately below b in its column, etc.

Consider a skew diagram ν/λ. An inner corner of ν/λ is a box b ∈ λ such that
b→ /∈ λ and b↓ /∈ λ. For I any nonempty set of inner corners of ν/λ and T ∈ Incq(ν/λ),
let InI(T ) be the extension of T formed by adding a • to each box of I. Note that
InI(T ) ∈ BulletTableaux(ν/θ) for some θ ⊂ λ.

An outer corner of ν/λ is a box b ∈ ν/λ such that b→ /∈ ν/λ and b↓ /∈ ν/λ. If every
• in T ∈ BulletTableaux(ν/λ) is in an outer corner of ν/λ, then we define Out•(T ) to be
the filling obtained by deleting every • from T ; otherwise Out•(T ) is undefined. Note that
if Out•(T ) is defined, then it has shape δ/λ for some δ ⊆ ν.

Let T ∈ Incq(ν/λ) and let I be any nonempty set of inner corners of ν/λ. Then the
K-jeu de taquin slide of T at I is the result of the following composition of operations

slideI(T ) := Out• ◦ swapq ◦ · · · ◦ swap2 ◦ swap1 ◦ InI(T ).

Observe that Out• is always defined in this context and that slideI(T ) ∈ Incq(δ/ρ) for
some ρ ⊂ λ and δ ⊂ ν.

Iterating this process for successive nonempty sets of inner corners I1, I2, . . ., one even-
tually obtains an increasing tableau R ∈ Incq(κ) of some straight shape κ. Such a tableau
is called a rectification of T .

Remark 11. Unlike in the classical standard tableau setting, an increasing tableau T ∈
Incq(ν/λ) may have more than one rectification and these rectifications may moreover
have different straight shapes. For an example of this phenomenon, see [28, Example 1.3].

2.2 K-promotion

For T ∈ BulletTableaux(ν/λ), we define an operation Rep1→• that replaces each instance
of 1 by •, as well as, for each n ∈ Z>0, an operation Rep•→n that replaces each instance of
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• by n. Let Decr be the operator that decrements each numerical entry by 1 (and ignores
•’s).

K-promotion on Incq(ν/λ) ⊂ BulletTableaux(ν/λ) is the composition

P := Decr ◦ Rep•→q+1 ◦ swapq ◦ · · · ◦ swap3 ◦ swap2 ◦ Rep1→•.

It is not hard to see that if T ∈ Incq(ν/λ), then P(T ) ∈ Incq(ν/λ), and that moreover
this operation coincides with M.-P. Schützenberger’s definition of promotion [25] in the
case that T is a standard Young tableau of straight shape. For more details, see [16].

Example 12. Let T = 1 2 4

3 4 6
∈ Inc6(2× 3). Then one computes P(T ) as follows:

1 2 4

3 4 6
T =

• 2 4

3 4 6

2 • 4

3 4 6

2 • 4

3 4 6

2 4 •

3 • 6

2 4 •

3 • 6

2 4 6

3 6 •

2 4 6

3 6 7

1 3 5

2 5 6
= P(T ).

Rep1→• swap2 swap3

swap4

swap5 swap6 Rep•→7

Decr

2.3 K-evacuation and its dual

To prove Theorem 2 on K-promotion, we will need the related notion of (dual) K-
evacuation. If T is an increasing tableau of straight shape with T ∈ Incq(λ) for some
λ and q, we write sh(T ) = λ to denote the shape of T . Write T6a for the subtableau of T
given by deleting all entries greater than a and removing all empty boxes. In analogous
fashion, define T<a, T>a, and T>a, where T>a and T>a will generally be of skew shape.
Note that the straight-shaped tableau T ∈ Incq(λ) is uniquely determined by the vector
of Young diagrams

(

sh(T60), sh(T61), . . . , sh(T6q)
)

.

An illustration of this correspondence appears in Example 13.
For an increasing tableau T ∈ Incq(λ) of straight shape, we define the K-evacuation

of T to be the tableau E(T ) encoded by the vector
(

sh(Pq(T )60), sh(P
q−1(T )61), . . . , sh(P

0(T )6q)
)

.
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Similarly, the dual K-evacuation of T is E∗(T ) encoded by the vector

(

sh(P0(T )60), sh(P
−1(T )61), . . . , sh(P

−q(T )6q)
)

.

It is useful to encode all these data in a K-theoretic growth diagram as in [28],
using ideas that originate in work of S. Fomin (cf. [26, Appendix 1]); the K-theoretic
growth diagram for T ∈ Incq(λ) is a semi-infinite 2-dimensional array formed by placing
the Young diagram sh(Pj(T )6i) in position (i + j,−j) ∈ Z × Z, where 0 6 i 6 q and
j ∈ Z.

Example 13. Let

T = 1 2 4 5

3 4 5 8

4 6 7 9

6 8 10 11

.

Then the K-theoretic growth diagram of T is

. . .

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

. . .

Here the top illustrated row encodes T , the bottom row encodes P11(T ), and the
central column encodes E(T ) (which is also E∗(P11(T ))). The ∅ at the left of the top row
is located at the origin (0, 0) ∈ Z× Z in our Cartesian coordinate system.
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Using the K-theoretic growth diagram, it is not hard to uncover various relations be-
tween the operators under consideration. Together [28, Theorem 4.1] and [16, Lemma 3.1]
give the following facts that we will need:

Lemma 14. The following relations hold for operations on the set Incq(λ) of straight-
shaped increasing tableaux:

(a) E2 = (E∗)2 = id;

(b) E∗ ◦ E = Pq;

(c) P ◦ E = E ◦ P−1;

(d) if λ = m×n is rectangular, then E∗ = rot ◦E ◦ rot, where rot(T ) is given by rotating
T by 180◦ and replacing i by q + 1− i.

2.4 Proof of Theorem 2

Fix T ∈ Incq(m×n), a tableau of rectangular straight shape. Let w be the reading word
of T , given by reading the entries of T by rows from left to right and from bottom to top,
i.e. in “reverse Arabic fashion.” Let rot(w) := w0 ·w ·w0, where w0 is the longest element
of the symmetric group Sq. Since rot(w) is obtained from w by reversing the order of the
letters of w and then replacing i by q + 1 − i, we see that rot(w) is the reading word of
rot(T ).

Define w6a to be the subword of w obtained by deleting all letters greater than a, with
analogous definitions of w<a, w>a, and w>a.

Lemma 15. The tableaux rot(T ) and E(T ) have the same first row.

Proof. The reading word of rot(T )6a is rot(w)6a. Hence by [28, Theorem 6.1], the length
of the first row of rot(T )6a is LIS(rot(w)6a), where LIS(u) denotes the length of the
longest strictly increasing subsequence of the word u. By the definition of rot, we have
LIS(rot(w)6a) = LIS(w>n−a). But by [28, Theorem 6.1], LIS(w>n−a) is the length of the
first row of any K-rectification of T>n−a. By definition, the shape of E(T )6a is the shape
of a particular K-rectification of T>n−a. Thus the length of the first row of E(T )6a is also
the length of the first row of rot(T )6a. The lemma follows.

Lemma 16. The tableaux rot(T ) and E(T ) have the same first column.

Proof. The proof is the same as for Lemma 15, except that one should replace the use of
[28, Theorem 6.1] on the relation between first rows and longest increasing subsequences
with the use of the analogous relation between first columns and longest decreasing sub-
sequences (see [29] or [3, Corollary 6.8]).

The following proposition is of independent interest. It extends [16, Proposition 3.3],
which is the special case where T ∈ Incq(2× n).

Proposition 17. The tableaux rot(T ) and E(T ) have the same frame.
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Proof. By Lemmas 15 and 16, it remains to show that rot(T ) and E(T ) have the same
last row and column.

Let T ′ = E(T ). Then by Lemmas 15 and 16, rot(T ′) and E(T ′) have the same first row
and column. But by Lemma 14(a), E(T ′) = T , so rot(T ′) and T have the same first row
and column. Hence, rot(rot(T ′)) and rot(T ) have the same last row and column. Since
rot(rot(T ′)) = E(T ), we are done.

Clearly, rot(T ) and rot(rot(rot(T ))) have the same frame. Since by Lemma 14(d), we
have E∗ = rot ◦ E ◦ rot, it thereby follows from Proposition 17 that rot(T ) and E∗(T ) also
have the same frame. Thus E∗(E(T )) has the same frame as rot(rot(T )) = T . But by
Lemma 14(b), Pq(T ) = E∗(E(T )), so

Frame(T ) = Frame(Pq(T )).

This concludes the proof of Theorem 2.

3 Homomesy

In this section, we prove a family of new homomesy results for increasing tableaux. We
will obtain these by imitating the proof of [1, Theorem 1.1] and using Theorem 2.

For a rectangular tableau T ∈ Incq(m×n) and b a box in Frame(m×n), let Dist(T, b)
be the multiset

Dist(T, b) := {wt{b}(P
k(T )) : 0 6 k < q}.

Proposition 18. For a rectangular increasing tableau T ∈ Incq(m × n) and a box b ∈
Frame(m× n),

Dist(T, b) = Dist(E(T ), b).

Proof. This proof is perhaps best understood by following along with the succeeding
Example 19.

Consider the K-theoretic growth diagram G for T . A fixed row r of G encodes an
increasing tableau R. The row immediately below this encodes P(R). The column that
intersects r at its rightmost Young diagram encodes, by definition, E(R). The column
immediately left of this then encodes P(E(R)) by Lemma 14(c). Say the rank of a Young
diagram π in G is the number rank(π) of Young diagrams that are strictly left of π and
in its row. Note that the rank is also the number of Young diagrams strictly below π in
its column.

Shade each Young diagram in G that contains the box b. For any set of q consecutive
rows {ri : 0 < i 6 q}, we have by Theorem 2 the equality of multisets

Dist(T, b) = {rank(ρi) : 0 < i 6 q},

where ρi is the leftmost shaded Young diagram in row ri. In the same way, for any set of
q consecutive columns {cj : 0 6 j < q}, we have

Dist(E(T ), b) = {rank(γj) : 0 6 j < q},
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where γj is the bottommost shaded Young diagram in column cj.
Fix C ∈ Z. For 1 6 k 6 2q + 1, let dk denote the diagonal line of slope one through

G given by
y = x− k + C.

(Recall that the Cartesian coordinate system underlying G has the ∅ representing sh(T60)
at the origin, and the remaining Young diagrams for subtableaux of T arrayed along the
x-axis; in general, G has sh(Pb(T )6a) in position (a+ b,−b).) For each diagonal dk, let δk
be the smallest shaded Young diagram that lies on dk. Observe that the Young diagrams
δk are restricted to q + 1 consecutive rows {ri : 0 6 i 6 q} of G and to q + 1 consecutive
columns {cj : 0 6 j 6 q} of G. We have the equalities of multisets

{rank(ρi) : 0 < i 6 q} = {rank(δk) : 1 < k 6 2q + 1, rank(δk) = rank(δk−1)− 1}

and

{rank(γj) : 0 6 j < q} = {rank(δk) : 1 6 k < 2q + 1, rank(δk) = rank(δk+1)− 1}.

Now construct a lattice path P in the first quadrant of the plane by plotting the
points (k, rank(δk)) for 1 6 k 6 2q + 1 and connecting the vertex (k, rank(δk)) to the
vertex (k + 1, rank(δk+1)) by a line segment. Note that

rank(δ1) = rank(δ2q+1)

by Theorem 2. Moreover,
rank(δk+1) = rank(δk)± 1

for all k. Hence for any positive integer h, the number of k in the interval [2, 2q+1] with

rank(δk) = h = rank(δk−1)− 1

equals the number of k in the interval [1, 2q] with

rank(δk) = h = rank(δk+1)− 1.

This proves that

{rank(ρi) : 0 < i 6 q} = {rank(γj) : 0 6 j < q}

and the proposition follows.

Example 19. Extending Example 13, let b be the shaded box in the increasing tableau

T = 1 2 4 5

3 4 5 8

4 6 7 9

6 8 10 11

.
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Then, we shade the K-theoretic growth diagram of T as

. . .

∅

∅

∅

∅

∅

d1 d2 ∅

d3 d4 ∅

d5 d6 ∅

d7 d8 ∅

d9 d10 ∅

d11 d12 ∅

d13 d14 ∅

d15 d16 d17 d18 d19 d20 d21 d22 d23

. . .

where we have also labeled 23 consecutive diagonals. Here, the top illustrated row encodes
the tableau T and hence lies on the x-axis of the plane. Thus, our choice of consecutive
diagonals comes from setting C = −7. (This choice is entirely arbitrary; choosing C = −7
is convenient merely because it yields diagonals that fit well on the page.)

We then plot the following lattice path. (Compare this to the dashed piecewise-
linear curve separating shaded from unshaded Young diagrams in the K-theoretic growth
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diagram above.)

1 3 5 7 9 11 13 15 17 19 21 23
0

2

4

6

8

10

12

k

ra
n
k
(δ

k
)

Now notice that the number of right-hand endpoints of
•

• steps equals the number of
left-hand endpoints of •

•

steps at each height, the final key observation in the proof of
Proposition 18.

3.1 Proof of Theorem 8

Consider b ∈ Frame(m× n) and let T ∈ Incq(m× n). For O the K-promotion orbit of T ,
we have by Theorem 2 that

∑

U∈O wt{b}(U)

|O|
=

∑q−1
i=0 wt{b}(P

i(T ))

q
.

By Proposition 18,
∑q−1

i=0 wt{b}(P
i(T ))

q
=

∑q−1
i=0 wt{b}(P

i(E(T )))

q
.

But by Theorem 2 and Lemma 14(c),
∑q−1

i=0 wt{b}(P
i(E(T )))

q
=

∑q−1
i=0 wt{b}(P

−i(E(T )))

q
=

∑q−1
i=0 wt{b}(E(P

i(T )))

q
.

Finally by Proposition 17,
∑q−1

i=0 wt{b}(E(P
i(T )))

q
=

∑q−1
i=0 wt{b}(rot(P

i(T )))

q
=

∑q−1
i=0

(

q + 1− wt{b∗}(P
i(T ))

)

q
,

where b∗ is the image of b under rotating m× n by 180◦.
Hence, putting these facts together, we have

∑

U∈O wt{b,b∗}(U)

|O|
=

∑q−1
i=0

(

q + 1− wt{b∗}(P
i(T ))

)

q
+

∑q−1
i=0 wt{b∗}(P

i(T ))

q

=

∑q−1
i=0 (q + 1)

q
= q + 1.
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Thus, for S any set of boxes in Frame(m × n) that is fixed under 180◦ rotation, we
have

∑

U∈O wtS(U)

|O|
=

(q + 1)|S|

2
,

as desired.
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