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Abstract

Combining results of T.K. Lam and J. Stembridge, the type C Stanley symmetric
function FC

w (x), indexed by an element w in the type C Coxeter group, has a
nonnegative integer expansion in terms of Schur functions. We provide a crystal
theoretic explanation of this fact and give an explicit combinatorial description of
the coefficients in the Schur expansion in terms of highest weight crystal elements.
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mixed Haiman insertion, unimodal tableaux, primed tableaux

1 Introduction

Schubert polynomials of type B and type C were independently introduced by Billey and
Haiman [1] and Fomin and Kirillov [6]. Stanley symmetric functions [18] are stable limits
of Schubert polynomials, designed to study properties of reduced words of Coxeter group
elements. In his Ph.D. thesis, T.K. Lam [13] studied properties of Stanley symmetric
functions of types B (and similarly C) and D. In particular he showed, using Kraśkiewicz
insertion [11, 12], that the type B Stanley symmetric functions have a positive integer
expansion in terms of P -Schur functions. On the other hand, Stembridge [19] proved that
the P -Schur functions expand positively in terms of Schur functions. Combining these
two results, it follows that Stanley symmetric functions of type B (and similarly type C)
have a positive integer expansion in terms of Schur functions.
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Schur functions sλ(x), indexed by partitions λ, are ubiquitous in combinatorics and
representation theory. They are the characters of the symmetric group and can also be
interpreted as characters of type A crystals. In [15], this was exploited to provide a
combinatorial interpretation in terms of highest weight crystal elements of the coefficients
in the Schur expansion of Stanley symmetric functions in type A. In this paper, we
carry out a crystal analysis of the Stanley symmetric functions FC

w (x) of type C, indexed
by a Coxeter group element w. In particular, we use Kraśkiewicz insertion [11, 12] and
Haiman’s mixed insertion [8] to find a crystal structure on primed tableaux, which in turn
implies a crystal structure Bw on signed unimodal factorizations of w for which FC

w (x)
is a character. Moreover, we present a type A crystal isomorphism Φ: Bw →

⊕
λ B
⊕gwλ
λ

for some combinatorially defined nonnegative integer coefficients gwλ; here Bλ is the type
A highest weight crystal of highest weight λ . This implies the desired decomposition
FC
w (x) =

∑
λ gwλsλ(x) (see Corollary 4.9) and similarly for type B.

The paper is structured as follows. In Section 2, we review type C Stanley symmetric
functions and type A crystals. In Section 3 we describe our crystal isomorphism by
combining a slight generalization of the Kraśkiewicz insertion [11, 12] and Haiman’s mixed
insertion [8]. The main result regarding the crystal structure under Haiman’s mixed
insertion is stated in Theorem 4.3. The combinatorial interpretation of the coefficients
gwλ is given in Corollary 4.9. In Section 5, we provide an alternative interpretation of the
coefficients gwλ in terms of semistandard unimodal tableaux. Appendices A and B are
reserved for the proofs of Theorems 4.3 and 4.5.

Acknowledgments

We thank the anonymous referee for pointing out reference [14] and furthermore the
connections between our crystal operators and those obtained by intertwining crystal
operators on words with Haiman’s symmetrization of shifted mixed insertion [8, Section
5] and the conversion map [17, Proposition 14] as outlined in Remark 4.11.

2 Background

2.1 Type C Stanley symmetric functions

The Coxeter group WC of type Cn (or type Bn), also known as the hyperoctahedral group
or the group of signed permutations, is a finite group generated by {s0, s1, . . . , sn−1}
subject to the quadratic relations s2i = 1 for all i ∈ I = {0, 1, . . . , n−1}, the commutation
relations sisj = sjsi provided |i− j| > 1, and the braid relations sisi+1si = si+1sisi+1 for
all i > 0 and s0s1s0s1 = s1s0s1s0.

It is often convenient to write down an element of a Coxeter group as a sequence
of indices of si in the product representation of the element. For example, the element
w = s2s1s2s1s0s1s0s1 is represented by the word w = 2120101. A word of shortest length
` is referred to as a reduced word and `(w) := ` is referred as the length of w. The set of
all reduced words of the element w is denoted by R(w).
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Example 2.1. The set of reduced words for w = s2s1s2s0s1s0 is given by

R(w) = {210210, 212010, 121010, 120101, 102101}.

We say that a reduced word a1a2 . . . a` is unimodal if there exists an index v, such that

a1 > a2 > · · · > av < av+1 < · · · < a`.

Consider a reduced word a = a1a2 . . . a`(w) of a Coxeter group element w. A unimodal
factorization of a is a factorization A = (a1 . . . a`1)(a`1+1 . . . a`2) · · · (a`r+1 . . . aL) such that
each factor (a`i+1 . . . a`i+1

) is unimodal. Factors can be empty.
For a fixed Coxeter group element w, consider all reduced words R(w), and denote the

set of all unimodal factorizations for reduced words in R(w) as U(w). Given a factorization
A ∈ U(w), define the weight of a factorization wt(A) to be the vector consisting of the
number of elements in each factor. Denote by nz(A) the number of non-empty factors of
A.

Example 2.2. For the factorization A = (2102)()(10) ∈ U(s2s1s2s0s1s0), we have
wt(A) = (4, 0, 2) and nz(A) = 2.

Following [1, 6, 13], the type C Stanley symmetric function associated to w ∈ WC is
defined as

FC
w (x) =

∑
A∈U(w)

2nz(A)xwt(A). (2.1)

Here x = (x1, x2, x3, . . .) and xv = xv11 x
v2
2 x

v3
3 · · · . It is not obvious from the definition why

the above functions are symmetric. We refer reader to [2], where this fact follows easily
from an alternative definition.

Type B Stanley symmetric functions are also labeled by w ∈ WC (as the type B and
C Coxeter groups coincide) and differ from FC

w (w) by an overall factor 2−o(w)

FB
w (x) = 2−o(w)FC

w (x),

where o(w) is the number of zeroes in a reduced word for w. Loosely speaking, our
combinatorial interpretation in the type C case respects this power of 2 – that is, we will
get a valid combinatorial interpretation in the type B case by dividing by 2o(w).

2.2 Type A crystal of words

Crystal bases [9] play an important role in many areas of mathematics. For example,
they make it possible to analyze representation theoretic questions using combinatorial
tools. Here we only review the crystal of words in type An and refer the reader for more
background on crystals to [3].

Consider the set of words Bhn of length h in the alphabet {1, 2, . . . , n+ 1}. We impose
a crystal structure on Bhn by defining lowering operators fi and raising operators ei for
1 6 i 6 n and a weight function. The weight of b ∈ Bhn is the tuple wt(b) = (a1, . . . , an+1),
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where ai is the number of letters i in b. The crystal operators fi and ei only depend on
the letters i and i + 1 in b. Consider the subword b{i,i+1} of b consisting only of the
letters i and i+ 1. Successively bracket any adjacent pairs (i+ 1)i and remove these pairs
from the word. The resulting word is of the form ia(i+ 1)b with a, b > 0. Then fi changes
this subword within b to ia−1(i + 1)b+1 if a > 0 leaving all other letters unchanged and
otherwise annihilates b. The operator ei changes this subword within b to ia+1(i+ 1)b−1

if b > 0 leaving all other letters unchanged and otherwise annihilates b.
We call an element b ∈ Bhn highest weight if ei(b) = 0 for all 1 6 i 6 n (meaning that

all ei annihilate b).

Theorem 2.3. [10] A word b = b1 . . . bh ∈ Bhn is highest weight if and only if it is a
Yamanouchi word. That is, for any index k with 1 6 k 6 h the weight of a subword
bkbk+1 . . . bh is a partition.

Example 2.4. The word 85744234654333222211111 is highest weight.

Two crystals B and C are said to be isomorphic if there exists a bijective map Φ: B → C
that preserves the weight function and commutes with the crystal operators ei and fi. A
connected component X of a crystal is a set of elements where for any two b, c ∈ X one
can reach c from b by applying a sequence of fi and ei.

Theorem 2.5. [10] Each connected component of Bhn has a unique highest weight element.
Furthermore, if b, c ∈ Bhn are highest weight elements such that wt(b) = wt(c), then the
connected components generated by b and c are isomorphic.

We denote a connected component with a highest weight element of highest weight
λ by Bλ. The character of the crystal B is defined to be a polynomial in the variables
x = (x1, x2, . . . , xn+1)

χB(x) =
∑
b∈B

xwt(b).

Theorem 2.6 ([10]). The character of Bλ is equal to the Schur polynomial sλ(x) (or
Schur function in the limit n→∞).

3 Crystal isomorphism

In this section, we combine a slight generalization of the Kraśkiewicz insertion, reviewed
in Section 3.1, and Haiman’s mixed insertion, reviewed in Section 3.2, to provide an iso-
morphism of crystals between the crystal of words Bh and certain sets of primed tableaux.
Our main result of this section is stated in Theorem 3.13, which asserts that the recording
tableaux under the mixed insertion is constant on connected components of Bh.
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3.1 Kraśkiewicz insertion

In this section, we describe the Kraśkiewicz insertion. To do so, we first need to define
the Edelman–Greene insertion [5]. It is defined for a word w = w1 . . . w` and a letter k
such that the concatenation w1 . . . w`k is an A-type reduced word. The Edelman–Greene
insertion of a letter k into an increasing word w = w1 . . . w`, denoted by w  k, is
constructed as follows:

1. If w` < k, then w  k = w′, where w′ = w1w2 . . . w` k.

2. If k > 0 and k k + 1 = wiwi+1 for some 1 6 i < `, then w  k = k + 1  w.

3. Else let wi be the leftmost letter in w such that wi > k. Then w  k = wi  w′,
where w′ = w1 . . . wi−1 k wi+1 . . . w`.

In the cases above, when w  k = k′  w′, the symbol k′  w′ indicates a word w′

together with a “bumped” letter k′.
Next we consider a reduced unimodal word a = a1a2 . . . a` with a1 > a2 > · · · >

av < av+1 < · · · < a`. The Kraśkiewicz row insertion [11, 12] is defined for a unimodal
word a and a letter k such that the concatenation a1a2 . . . a`k is a C-type reduced word.
The Kraśkiewicz row insertion of k into a (denoted similarly as a  k), is performed as
follows:

1. If k = 0 and there is a subword 101 in a, then a  0 = 0  a.

2. If k 6= 0 or there is no subword 101 in a, denote the decreasing part a1 . . . av as d
and the increasing part av+1 . . . a` as g. Perform the Edelman-Greene insertion of k
into g.

(a) If a` < k, then g  k = av+1 . . . a`k =: g′ and a  k = dg  k = d g′ =: a′.

(b) If there is a bumped letter and g  k = k′  g′, negate all the letters in d (call
the resulting word −d) and perform the Edelman-Greene insertion −d  −k′.
Note that there will always be a bumped letter, and so −d  −k′ = −k′′  
−d′ for some decreasing word d′. The result of the Kraśkiewicz insertion is:
a  k = d[g  k] = d[k′  g′] = −[−d  −k′] g′ = [k′′  d′]g′ = k′′  a′,
where a′ := d′g′.

Example 3.1.

31012  0 = 0  31012, 3012  0 = 0  3102,

31012  1 = 1  32012, 31012  3 = 310123.

The insertion is constructed to “commute” a unimodal word with a letter: If a  k =
k′  a′, the two elements of the type C Coxeter group corresponding to concatenated
words a k and k′a′ are the same.
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The type C Stanley symmetric functions (2.1) are defined in terms of unimodal fac-
torizations. To put the formula on a completely combinatorial footing, we need to treat
the powers of 2 by introducing signed unimodal factorizations. A signed unimodal factor-
ization of w ∈ WC is a unimodal factorization A of w, in which every non-empty factor
is assigned either a + or − sign. Denote the set of all signed unimodal factorizations of
w by U±(w).

For a signed unimodal factorization A ∈ U±(w), define wt(A) to be the vector with
i-th coordinate equal to the number of letters in the i-th factor of A. Notice from (2.1)
that

FC
w (x) =

∑
A∈U±(w)

xwt(A). (3.1)

We will use the Kraśkiewicz insertion to construct a map between signed unimodal
factorizations of a Coxeter group element w and pairs of certain types of tableaux (P,T).
We define these types of tableaux next.

A shifted diagram S(λ) associated to a partition λ with distinct parts is the set of
boxes in positions {(i, j) | 1 6 i 6 `(λ), i 6 j 6 λi + i − 1}. Here, we use English
notation, where the box (1, 1) is always top-left.

Let X◦n be an ordered alphabet of n letters X◦n = {0 < 1 < 2 < · · · < n − 1}, and
let X ′n be an ordered alphabet of n letters together with their primed counterparts as
X ′n = {1′ < 1 < 2′ < 2 < · · · < n′ < n}.

Let λ be a partition with distinct parts. A unimodal tableau P of shape λ on n letters
is a filling of S(λ) with letters from the alphabet X◦n such that the word Pi obtained
by reading the ith row from the top of P from left to right, is a unimodal word, and
Pi is the longest unimodal subword in the concatenated word Pi+1Pi [2] (cf. also with
decomposition tableaux [16, 4]). The reading word of a unimodal tableau P is given by
πP = P`P`−1 . . . P1. A unimodal tableau is called reduced if πP is a type C reduced word
corresponding to the Coxeter group element wP. Given a fixed Coxeter group element w,
denote the set of reduced unimodal tableaux P of shape λ with wP = w as UT w(λ).

A signed primed tableau T of shape λ on n letters (cf. semistandard Q-tableau [13])
is a filling of S(λ) with letters from the alphabet X ′n such that:

1. The entries are weakly increasing along each column and each row of T.

2. Each row contains at most one i′ for every i = 1, . . . , n.

3. Each column contains at most one i for every i = 1, . . . , n.

The reason for using the word “signed” in the name is to distinguish the set of primed
tableaux above from the “unsigned” version described later in the chapter.

Denote the set of signed primed tableaux of shape λ by PT ±(λ). Given an element
T ∈ PT ±(λ), define the weight of the tableau wt(T) as the vector with i-th coordinate
equal to the total number of letters in T that are either i or i′.
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Example 3.2.

(
4 3 2 0 1

2 1 2
0

,
1 1 2′ 3′ 3

2′ 2 3′

4

)
is a pair consisting of a unimodal tableau

and a signed primed tableau both of shape (5, 3, 1).

For a reduced unimodal tableau P with rows P`, P`−1, . . . , P1, the Kraśkiewicz insertion
of a letter k into tableau P (denoted again by P  k) is performed as follows:

1. Perform Kraśkiewicz insertion of the letter k into the unimodal word P1. If there
is no bumped letter and P1  k = P ′1, the algorithm terminates and the new
tableau P′ consists of rows P`, P`−1, . . . , P2, P

′
1. If there is a bumped letter and

P1  k = k′  P ′1, continue the algorithm by inserting k′ into the unimodal word
P2.

2. Repeat the previous step for the rows of P until either the algorithm terminates,
in which case the new tableau P′ consists of rows P`, . . . , Ps+1, P

′
s, . . . , P

′
1, or, the

insertion continues until we bump a letter ke from P`, in which case we then put ke
on a new row of the shifted shape of P′, so that the resulting tableau P′ consists of
rows ke, P

′
`, . . . , P

′
1.

Example 3.3.
4 3 2 0 1

2 1 2
0

 0 =
4 3 2 1 0

2 1 0
0 1

,

since the insertions row by row are given by 43201  0 = 0  43210, 212  0 = 1  210,
and 0  1 = 01.

Lemma 3.4. [11] Let P be a reduced unimodal tableau with reading word πP for an
element w ∈ WC. Let k be a letter such that πPk is a reduced word. Then the tableau
P′ = P  k is a reduced unimodal tableau, for which the reading word πP′ is a reduced
word for wsk.

Lemma 3.5. [13, Lemma 3.17] Let P be a unimodal tableau, and a a unimodal word
such that πPa is reduced. Let (x1, y1), . . . , (xr, yr) be the (ordered) list of boxes added when
P  a is computed. Then there exists an index v, such that x1 < · · · < xv > · · · > xr
and y1 > · · · > yv < · · · < yr.

Let A ∈ U±(w) be a signed unimodal factorization with unimodal factors a1, a2, . . . , an.
We recursively construct a sequence (∅, ∅) = (P0,T0), (P1,T1), . . . , (Pn,Tn) = (P,T)
of tableaux, where Ps ∈ UT (a1a2...as)(λ

(s)) and Ts ∈ PT ±(λ(s)) are tableaux of the same
shifted shape λ(s).

To obtain the insertion tableau Ps, insert the letters of as one by one from left to right,
into Ps−1. Denote the shifted shape of Ps by λ(s). Enumerate the boxes in the skew shape
λ(s)/λ(s−1) in the order they appear in Ps. Let these boxes be (x1, y1), . . . , (x`s , y`s).

Let v be the index that is guaranteed to exist by Lemma 3.5 when we compute
Ps−1  as. The recording tableau Ts is a primed tableau obtained from Ts−1 by
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adding the boxes (x1, y1), . . . , (xv−1, yv−1), each filled with the letter s′, and the boxes
(xv+1, yv+1), . . . , (x`s , y`s), each filled with the letter s. The special case is the box (xv, yv),
which could contain either s′ or s. The letter is determined by the sign of the factor as:
If the sign is −, the box is filled with the letter s′, and if the sign is +, the box is filled
with the letter s. We call the resulting map the primed Kraśkiewicz map KR′.

Example 3.6. Given a signed unimodal factorization A = (−0)(+212)(−43201), the
sequence of tableaux is

(∅, ∅), ( 0 , 1′ ),
(

2 1 2
0

, 1′ 2′ 2
2

)
,

(
4 3 2 0 1

2 1 2
0

,
1′ 2′ 2 3′ 3

2 3′ 3
3′

)
.

If the recording tableau is constructed, instead, by simply labeling its boxes with
1, 2, 3, . . . in the order these boxes appear in the insertion tableau, we recover the original
Kraśkiewicz map [11, 12], which is a bijection

KR: R(w)→
⋃
λ

[
UT w(λ)× ST (λ)

]
,

where ST (λ) is the set of standard shifted tableau of shape λ, i.e., the set of fillings of
S(λ) with letters 1, 2, . . . , |λ| such that each letter appears exactly once, each row filling
is increasing, and each column filling is increasing.

Theorem 3.7. The primed Kraśkiewicz map is a bijection

KR′ : U±(w)→
⋃
λ

[
UT w(λ)× PT ±(λ)

]
.

Proof. First we show that the map is well-defined: Let A ∈ U±(w) such that KR′(A) =
(P,Q). The fact that P is a unimodal tableau follows from the fact that KR is well-
defined. On the other hand, Q satisfies Condition (1) in the definition of signed primed
tableaux since its entries are weakly increasing with respect to the order the associated
boxes are added to P. Now fix an s and consider the insertion Ps−1  as. Refer to the
set-up in Lemma 3.5. Then, y1 < · · · < yv implies there is at most one s′ in each row and
yv > · · · > y`s implies there is at most one s in each column, so Conditions (2) and (3) of
the definition have been verified, implying that indeed Q is a signed primed tableau.

Now suppose (P,Q) ∈
⋃
λ

[
UT w(λ) × PT ±(λ)

]
. The ordering of the alphabet X ′

induces a partial order on the set of boxes of Q. Refine this ordering as follows: Among
boxes containing an s′, box b is greater than box c if box b lies below box c. Among boxes
containing an s, box b is greater than box c if box b lies to the right of box c. Let the
standard shifted tableau induced by the resulting total order be denoted Q∗.

Let w = KR−1(P,Q∗). Divide w into factors, where the size of the s-th factor is equal
to the s-th entry in wt(Q). Let A = a1 . . . an be the resulting factorization, where the
sign of as is determined as follows: Consider the lowest leftmost box in Q that contains
an s or s′ (such a box must exist if as 6= ∅). If this box contains an s give as a positive
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sign, and otherwise a negative sign. Let b1, . . . , b|as| denote the boxes of Q∗ corresponding
to as under KR−1. The construction of Q∗ and the fact that Q is a primed shifted tableau
imply that the coordinates of these boxes satisfy the hypothesis of Lemma 3.5. Since these
are exactly the boxes that appear when we compute Ps−1  as, Lemma 3.5 implies that
as is unimodal. It follows that A is a signed unimodal factorization mapping to (P,Q)
under KR′. It is not hard to see A is unique.

Theorem 3.7 and Equation (3.1) imply the following relation:

FC
w (x) =

∑
λ

∣∣UT w(λ)
∣∣ ∑
T∈PT ±(λ)

xwt(T). (3.2)

Remark 3.8. The sum
∑

T∈PT ±(λ) xwt(T) is also known as the Q-Schur function. The

expansion (3.2), with a slightly different interpretation of Q-Schur function, was shown
in [1].

At this point, we are halfway there to expand FC
w (x) in terms of Schur functions. In

the next section we introduce a crystal structure on the set PT (λ) of unsigned primed
tableaux.

3.2 Mixed insertion

Set Bh = Bh∞. Similar to the well-known RSK-algorithm, mixed insertion [8] gives a
bijection between Bh and the set of pairs of tableaux (T,Q), but in this case T is an
(unsigned) primed tableau of shape λ and Q is a standard shifted tableau of the same
shape.

An (unsigned) primed tableau of shape λ (cf. semistandard P -tableau [13] or semis-
tandard marked shifted tableau [4]) is a signed primed tableau T of shape λ with only
unprimed elements on the main diagonal. Denote the set of primed tableaux of shape
λ by PT (λ). The weight function wt(T) of T ∈ PT (λ) is inherited from the weight
function of signed primed tableaux, that is, it is the vector with i-th coordinate equal to
the number of letters i′ and i in T. We can simplify (3.2) as

FC
w (x) =

∑
λ

2`(λ)
∣∣UT w(λ)

∣∣ ∑
T∈PT (λ)

xwt(T). (3.3)

Remark 3.9. The sum
∑

T∈PT (λ) xwt(T) is also known as a P -Schur function.

Given a word b1b2 . . . bh in the alphabet X = {1 < 2 < 3 < · · · }, we recursively
construct a sequence of tableaux (∅, ∅) = (T0,Q0), (T1,Q1), . . . , (Th,Qh) = (T,Q),
where Ts ∈ PT (λ(s)) and Qs ∈ ST (λ(s)). To obtain the tableau Ts, insert the letter bs
into Ts−1 as follows. First, insert bs into the first row of Ts−1, bumping out the leftmost
element y that is strictly greater than bi in the alphabet X ′ = {1′ < 1 < 2′ < 2 < · · · }.

1. If y is not on the main diagonal and y is not primed, then insert it into the next
row, bumping out the leftmost element that is strictly greater than y from that row.
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2. If y is not on the main diagonal and y is primed, then insert it into the next column
to the right, bumping out the topmost element that is strictly greater than y from
that column.

3. If y is on the main diagonal, then it must be unprimed. Prime y and insert it into
the column on the right, bumping out the topmost element that is strictly greater
than y from that column.

If a bumped element exists, treat it as a new y and repeat the steps above – if the new y
is unprimed, row-insert it into the row below its original cell, and if the new y is primed,
column-insert it into the column to the right of its original cell.

The insertion process terminates either by placing a letter at the end of a row, bumping
no new element, or forming a new row with the last bumped element.

Example 3.10. Under mixed insertion,

2 2 3′ 3
3 3

← 1 =
1 2′ 3′ 3

2 3′

3
.

Let us explain each step in detail. The letter 1 is inserted into the first row bumping
out the 2 from the main diagonal, making it a 2′, which is then inserted into the second
column. The letter 2′ bumps out 2, which we insert into the second row. Then 3 from the
main diagonal is bumped from the second row, making it a 3′, which is then inserted into
third column. The letter 3′ bumps out the 3 on the second row, which is then inserted as
the first element in the third row.

The shapes of Ts−1 and Ts differ by one box. Add that box to Qs−1 with a letter s
in it, to obtain the standard shifted tableau Qs.

Example 3.11. For a word 332332123, some of the tableaux in the sequence (Ti,Qi) are

(
2 3′

3
, 1 2

3

)
,
(

2 2 3′ 3
3 3

, 1 2 4 5
3 6

)
,

(
1 2′ 2 3′ 3

2 3′ 3
3

,
1 2 4 5 9

3 6 8
7

)
.

Theorem 3.12. [8] The construction above gives a bijection

HM: Bh →
⋃
λ`h

[
PT (λ)× ST (λ)

]
.

The bijection HM is called a mixed insertion. If HM(b) = (T,Q), denote PHM(b) = T
and RHM(b) = Q.

Just as for the RSK-algorithm, the mixed insertion has the property of preserving the
recording tableau within each connected component of the crystal Bh.

Theorem 3.13. The recording tableau RHM(·) is constant on each connected component
of the crystal Bh.
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Before we provide the proof of Theorem 3.13, we need to define one more insertion
from [8], which serves as a dual to the previously discussed mixed insertion.

We use the notion of generalized permutations. Similar to a regular permutation in
two-line notation, a generalized permutation w consists of two lines

(
a1a2···ah
b1b2···bh

)
, which gives

a correspondence between as and bs, but there can be repeated letters now. We order
the pairs (as, bs) by making the top line weakly increasing a1 6 · · · 6 ah, and forcing
bs 6 bs+1 whenever as = as+1. The inverse of a generalized permutation w−1 consists of
pairs (bs, as), ordered appropriately. Given a word b = b1 . . . bh, it can be represented as
a generalized permutation w by setting the first line of the permutation to be 1 2 . . . h
and the second line to be b1 b2 . . . bh. Since the inverse of the generalized permutation w
exists, it also defined b−1.

Now, let w =
(
a1a2···ah
b1b2···bh

)
be a generalized permutation on the alphabet X, where the

second line consists of distinct letters. We recursively construct a sequence of tableaux
(∅, ∅) = (Q0,T0), (Q1,T1), . . . , (Qh,Th) = (Q,T), where Qs ∈ ST (λs) and Ts ∈
PT (λs). To obtain the tableau Qs, insert the letter bs into Qs−1 as follows:

• Insert bs into the first row of Qs−1, and insert each bumped element into the next row
until either an element is inserted into an empty cell and the algorithm terminates,
or an element b has been bumped from the diagonal. In the latter case, insert b
into the column to its right and continue bumping by columns, until an empty cell
is filled.

• The shapes of Qs−1 and Qs differ by one box. Add that box to Ts−1 with a letter
as in it. Prime that letter if a diagonal element has been bumped in the process of
inserting bs into Qs−1.

The above insertion process is called a Worley–Sagan insertion algorithm. The inser-
tion tableau Q will be denoted by PWS(w) and the recording tableau T is denoted by
RWS(w).

Theorem 3.14. [8, Theorem 6.10 and Corollary 6.3] Given b ∈ Bh, we have RHM(b) =
PWS(b−1).

Next, we want to find out when the Worley–Sagan insertion tableau is preserved.
Fortunately, other results from [8] provide this description.

Theorem 3.15. [8, Corollaries 5.8 and 6.3] If two words with distinct letters b and b′

are related by a shifted Knuth transformation, then PWS(b) = PWS(b′).

Here, a shifted Knuth transformation is an exchange of consecutive letters in one of
the following forms:

1. Knuth transformations: cab↔ acb or bca↔ bac, where a < b < c,

2. Worley–Sagan transformation: xy ↔ yx, where x and y are the first two letters of
the word.
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We are now ready to prove the theorem.

Proof of Theorem 3.13. If b and b′ are two words in the same connected component of Bh,
their RSK-recording tableaux RRSK(b) and RRSK(b′) are the same. Thus, PRSK(b−1) and
PRSK(b′−1) are the same, and the second lines of b−1 and b′−1 are related by a sequence of
Knuth transformations. This in turn means that PWS(b−1) and PWS(b′−1) are the same,
and RHM(b) = RHM(b′) by Theorem 3.15.

Let us fix a recording tableau Qλ ∈ ST (λ). Define a map Ψλ : PT (λ) → Bh as
Ψλ(T) = HM−1(T,Qλ). By Theorem 3.13, the set Im(Ψλ) consists of several connected
components of Bh. The map Ψλ can thus be taken as a crystal isomorphism, and we can
define the crystal operators and weight function on PT (λ) as

ei(T) := (Ψ−1λ ◦ei◦Ψλ)(T), fi(T) := (Ψ−1λ ◦fi◦Ψλ)(T), wt(T) := (wt◦Ψλ)(T). (3.4)

Although it is not clear that the crystal operators constructed above are independent
of the choice of Qλ, in the next section we will construct explicit crystal operators on the
set PT (λ) that satisfy the relations above and do not depend on the choice of Qλ.

Example 3.16. For T =
1 2′ 2 3′ 3

2 3′ 3
3

, choose Qλ =
1 2 3 4 5

6 7 8
9

. Then Ψλ(T) =

333332221 and e1 ◦Ψλ(T) = 333331221. Thus,

e1(T) = (Ψ−1λ ◦ e1 ◦Ψλ)(T) =
1 1 2 3′ 3

2 3′ 3
3

, f1(T) = f2(T) = 0.

To summarize, we obtain a crystal isomorphism between the crystal (PT (λ), ei, fi,wt),

denoted again by PT (λ), and a direct sum
⊕

µ B
⊕hλµ
µ . We will provide a combinatorial

description of the coefficients hλµ in the next section. This implies the relation on char-
acters of the corresponding crystals χPT (λ) =

∑
µ hλµsµ. Thus we can rewrite (3.3) one

last time

FC
w (x) =

∑
λ

2`(λ)
∣∣UT w(λ)

∣∣∑
µ

hλµsµ =
∑
µ

(∑
λ

2`(λ)
∣∣UT w(λ)

∣∣ hλµ)sµ.
4 Explicit crystal operators on shifted primed tableaux

We consider the alphabet X ′ = {1′ < 1 < 2′ < 2 < 3′ < · · · } of primed and unprimed
letters. It is useful to think about the letter (i + 1)′ as a number i + 0.5. Thus, we say
that letters i and (i + 1)′ differ by half a unit and letters i and (i + 1) differ by a whole
unit.

Given an (unsigned) primed tableau T, we construct the reading word rw(T) as follows:
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1. List all primed letters in the tableau, column by column, in decreasing order within
each column, moving from the rightmost column to the left, and with all the primes
removed (i.e. all letters are increased by half a unit). (Call this part of the word
the primed reading word.)

2. Then list all unprimed elements, row by row, in increasing order within each row,
moving from the bottommost row to the top. (Call this part of the word the
unprimed reading word.)

To find the letter on which the crystal operator fi acts, apply the bracketing rule for
letters i and i+ 1 within the reading word rw(T). If all letters i are bracketed in rw(T),
then fi(T) = 0. Otherwise, the rightmost unbracketed letter i in rw(T) corresponds to
an i or an i′ in T, which we call bold unprimed i or bold primed i respectively.

If the bold letter i is unprimed, denote the cell it is located in as x.
If the bold letter i is primed, we conjugate the tableau T first.
The conjugate of a primed tableau T is obtained by reflecting the tableau over the

main diagonal, changing all primed entries k′ to k and changing all unprimed elements k
to (k+ 1)′ (i.e. increase the entries of all boxes by half a unit). The main diagonal is now
the North-East boundary of the tableau. Denote the resulting tableau as T∗.

Under the transformation T → T∗, the bold primed i is transformed into bold un-
primed i. Denote the cell it is located in as x.

Given any cell z in a shifted primed tableau T (or conjugated tableau T∗), denote
by c(z) the entry contained in cell z. Denote by zE the cell to the right of z, zW the
cell to its left, zS the cell below, and zN the cell above. Denote by z∗ the corresponding
conjugated cell in T∗ (or in T). Now, consider the box xE (in T or in T∗) and notice
that c(xE) > (i+ 1)′.

Crystal operator fi on primed tableaux:

1. If c(xE) = (i + 1)′, the box x must lie outside of the main diagonal and the box
immediately below xE cannot contain (i + 1)′. Change c(x) to (i + 1)′ and change
c(xE) to (i+ 1) (i.e. increase the entry in cell x and xE by half a unit).

2. If c(xE) 6= (i + 1)′ or xE is empty, then there is a maximal connected ribbon
(expanding in South and West directions) with the following properties:

(a) The North-Eastern most box of the ribbon (the tail of the ribbon) is x.

(b) The entries of all boxes within a ribbon besides the tail are either (i + 1)′ or
(i+ 1).

Denote the South-Western most box of the ribbon (the head) as xH .

(a) If xH = x, change c(x) to (i + 1) (i.e. increase the entry in cell x by a whole
unit).
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(b) If xH 6= x and xH is on the main diagonal (in case of a tableau T), change c(x)
to (i+ 1)′ (i.e. increase the entry in cell x by half a unit).

(c) Otherwise, c(xH) must be (i+ 1)′ due to the bracketing rule. We change c(x)
to (i+ 1)′ and change c(xH) to (i+ 1) (i.e. increase the entry in cell x and xH
by half a unit).

In the case when the bold i in T is unprimed, we apply the above crystal operator
rules to T to find fi(T)

Example 4.1. We apply operator f2 on the following tableaux. The bold letter is marked
if it exists:

1. T = 1 2′ 2 3′

2 3′ 3
, rw(T) = 3322312, thus f2(T) = 0;

2. T = 1 2′ 2 3′

2 3′ 4
, rw(T) = 3322412, thus f2(T) = 1 2′ 3′ 3

2 3′ 4
by Case (1).

3. T = 1 1 2 2
3 4′ 4

, rw(T) = 4341122, thus f2(T) = 1 1 2 3
3 4′ 4

by Case (2a).

4. T =
1 1 2′ 2 3

2 2 3′

3 3
, rw(T) = 3233221123, thus f2(T) =

1 1 2′ 3′ 3
2 2 3′

3 3
by Case (2b).

5. T =
1 1 1 2 3

2 2 3′

3 4′
, rw(T) = 3432211123, thus f2(T) =

1 1 1 3′ 3
2 2 3

3 4′
by Case (2c).

In the case when the bold i is primed in T, we first conjugate T and then apply the
above crystal operator rules on T∗, before reversing the conjugation. Note that Case (2b)
is impossible for T∗, since the main diagonal is now on the North-East.

Example 4.2.

Let T =
1 2′ 2 3

3 4′

4
, then T∗ =

2′

2 4′

3′ 4 5′

4′

and f2(T) =
1 2 3′ 3

3 4′

4
.

Theorem 4.3. For any b ∈ Bh with PHM(b) = T and fi(b) 6= 0, the operator fi defined
on above satisfies

PHM(fi(b)) = fi(T).

Also, fi(b) = 0 if and only if fi(T) = 0.

The proof of Theorem 4.3 is quite technical and is relegated to Appendix A. It implies
that the explicit operators fi in this section are indeed equal to those defined in (3.4) and
that they are independent of the choice of Qλ. We also immediately obtain:
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Second proof of Theorem 3.13. Given a word b = b1 . . . bh, let b′ = fi(b) = b′1 . . . b
′
h, so

that bm 6= b′m for some m and bi = b′i for any i 6= m. We show that QHM(b) = QHM(b′).
Denote b(s) = b1 . . . bs and similarly b′(s) = b′1 . . . b

′
s. Due to the construction of the

recording tableau QHM, it suffices to show that PHM(b(s)) and PHM(b′(s)) have the same
shape for any 1 6 s 6 h.

If s < m, this is immediate. If s > m, note that b′(s) = fi(b
(s)). Using Theorem 4.3,

one can see that PHM(b′(s)) = PHM(fi(b
(s))) = fi(PHM(b(s))) has the same shape as

PHM(b(s)).

The next step is to describe the raising operators ei(T). Consider the reading word
rw(T) and apply the bracketing rule on the letters i and i+1. If all letters i+1 are brack-
eted in rw(T), then ei(T) = 0. Otherwise, the leftmost unbracketed letter i+ 1 in rw(T)
corresponds to an i+ 1 or an (i+ 1)′ in T, which we will call bold unprimed i+ 1 or bold
primed i+ 1, respectively. If the bold i+ 1 is unprimed, denote the cell it is located in by
y. If the bold i+1 is primed, conjugate T and denote the cell with the bold i+1 in T∗ by y.

Crystal operator ei on primed tableaux:

1. If c(yW ) = (i+ 1)′, then change c(y) to (i+ 1)′ and change c(yW ) to i (i.e. decrease
the entry in cell y and yW by half a unit).

2. If c(yW ) < (i + 1)′ or yW is empty, then there is a maximal connected ribbon
(expanding in North and East directions) with the following properties:

(a) The South-Western most box of the ribbon (the head of the ribbon) is y.

(b) The entry in all boxes within a ribbon besides the tail is either i or (i+ 1)′.

Denote the North-Eastern most box of the ribbon (the tail) as yT .

(a) If yT = y, change c(y) to i (i.e. decrease the entry in cell y by a whole unit).

(b) If yT 6= y and yT is on the main diagonal (in case of a conjugate tableau T∗),
then change c(y) to (i+ 1)′ (i.e. decrease the entry in cell y by half a unit).

(c) If yT 6= y and yT is not on the diagonal, the entry of cell yT must be (i + 1)′

and we change c(y) to (i+ 1)′ and change c(yT ) to i (i.e. decrease the entry of
cell y and yT by half a unit).

When the bold i + 1 is unprimed, ei(T) is obtained by applying the rules above to T.
When the bold i+1 is primed, we first conjugate T, then apply the raising crystal operator
rules on T∗, and then reverse the conjugation.

Proposition 4.4.
ei(b) = 0 if and only if ei(T) = 0.
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Proof. According to Lemma A.1, the number of unbracketed letters i in b is equal to the
number of unbracketed letters i in rw(T). Since the total number of both letters i and
j = i+ 1 is the same in b and in rw(T), that also means that the number of unbracketed
letters j in b is equal to the number of unbracketed letters j in rw(T). Thus, there are
no unbracketed letters j in b if and only if there are no unbracketed letters j in T.

Theorem 4.5. Given a primed tableau T with fi(T) 6= 0, for the operators ei defined
above we have the following relation:

ei(fi(T)) = T.

The proof of Theorem 4.5 is relegated to Appendix B.

Corollary 4.6. For any b ∈ Bh with HM(b) = (T,Q), the operator ei defined above
satisfies

HM(ei(b)) = (ei(T),Q),

given the left-hand side is well-defined.

The consequence of Theorem 4.3, as discussed in Section 3.2, is a crystal isomorphism

Ψλ : PT (λ)→
⊕
B⊕hλµµ . Now, to determine the nonnegative integer coefficients hλµ, it is

enough to count the highest weight elements in PT (λ) of given weight µ.

Proposition 4.7. A primed tableau T ∈ PT (λ) is a highest weight element if and only
if its reading word rw(T) is a Yamanouchi word. That is, for any suffix of rw(T), its
weight is a partition.

Thus we define hλµ to be the number of primed tableaux T of shifted shape S(λ) and
weight µ such that rw(T) is Yamanouchi.

Example 4.8. Let λ = (5, 3, 2) and µ = (4, 3, 2, 1). There are three primed tableaux of
shifted shape S((5, 3, 2)) and weight (4, 3, 2, 1) with a Yamanouchi reading word, namely

1 1 1 1 2′

2 2 3′

3 4′
,

1 1 1 1 3′

2 2 2
3 4′

and
1 1 1 1 4′

2 2 2
3 3

.

Therefore h(5,3,2)(4,3,2,1) = 3.

We summarize our results for the type C Stanley symmetric functions as follows.

Corollary 4.9. The expansion of FC
w (x) in terms of Schur symmetric functions is

FC
w (x) =

∑
λ

gwλsλ(x), where gwλ =
∑
µ

2`(µ)
∣∣UT w(µ)

∣∣ hµλ . (4.1)

Replacing `(µ) by `(µ) − o(w) gives the Schur expansion of FB
w (x). Note that since

any row of a unimodal tableau contains at most one zero, `(µ) − o(w) is nonnegative.
Thus the given expansion makes sense combinatorially.
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Example 4.10. Consider the word w = 0101 = 1010. There is only one unimodal

tableau corresponding to w, namely P = 1 0 1
0

, which belongs to UT 0101(3, 1). Thus,

gwλ = 4h(3,1)λ. There are only three possible highest weight primed tableaux of shape

(3, 1), namely 1 1 1
2

, 1 1 2′

2
and 1 1 3′

2
, which implies that h(3,1)(3,1) = h(3,1)(2,2) =

h(3,1)(2,1,1) = 1 and h(3,1)λ = 0 for other weights λ. The expansion of FC
0101(x) is thus

FC
0101 = 4s(3,1) + 4s(2,2) + 4s(2,1,1).

Remark 4.11. In [8, Section 5], Haiman showed that shifted mixed insertion can be under-
stood in terms of nonshifted mixed insertion operators that produce a symmetric tableau,
which can subsequently be cut along the diagonal. More precisely, starting with a word b,
consider its doubling double(b) by replacing each letter ` by −` `. By [8, Proposition 6.8]
the mixed insertion of double(b) is the symmetrized version of PHM(b). This symmetrized
version can also be obtained by first applying usual insertion to obtain P (double(b)) and
then applying conversion [17, Proposition 14]. Since both doubling (where the operators
are also replaced by their doubled versions) and regular insertion commute with crystal
operators, it follows that our crystal operators fi on primed tableaux can be described
as follows: To apply fi to T, first form the symmetrization of T and then apply inverse
conversion (changing primed entries to negatives). Next apply the doubled operator fif−i,
and then convert “forwards” (negatives to primes). This produces a symmetric tableau,
which can then be cut along the diagonal to obtain fi(T).

5 Semistandard unimodal tableaux

Many of the results of this paper have counterparts which involve the notion of semi-
standard unimodal tableaux in place of primed tableaux. We give a brief overview of
these results, mostly without proof.

First, let us define semistandard unimodal tableaux. We say that a word a1a2 . . . ah ∈
Bh is weakly unimodal if there exists an index v, such that

a1 > a2 > · · · > av 6 av+1 6 · · · 6 ah.

A semistandard unimodal tableau P of shape λ is a filling of S(λ) with letters from the
alphabet X such that the ith row of P, denoted by Pi, is weakly unimodal, and such that
Pi is the longest weakly unimodal subword in the concatenated word Pi+1Pi. Denote the
set of semistandard unimodal tableaux of shape λ by SUT (λ).

Let a = a1 . . . ah ∈ Bh. The alphabet X imposes a partial order on the entries of a.
We can extend this to a total order by declaring that if ai = aj as elements of X, and
i < j, then as entries of a, ai < aj. For each entry ai, denote its numerical position in the
total ordering on the entries of a by ni and define the standardization of a to be the word
with superscripts, na11 . . . nahh . Since its entries are distinct, n1 . . . nh can be considered
as a reduced word. Let (R,S) be the Kraśkiewicz insertion and recording tableaux of
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n1 . . . nh, and let R∗ be the tableau obtained from R by replacing each ni by ai. One
checks that setting SK(a) = (R∗,S) defines a map,

SK: B =
⊕
h∈N

Bh →
⋃
λ

[
SUT (λ)× ST (λ)

]
.

In fact, this map is a bijection [16, 13]. It follows that the composition SK ◦ HM−1 gives
a bijection ⋃

λ

[
PT (λ)× ST (λ)

]
→
⋃
λ

[
SUT (λ)× ST (λ)

]
.

The following remarkable fact, which appears as [16, Proposition 2.23], can be deduced
from [13, Theorem 3.32], which itself utilizes results of [8].

Theorem 5.1. For any word a ∈ Bh, QSK(a) = QHM(a).

This allows us to define a bijective map ΦQ : PT (λ)→ SUT (λ) as follows. Choose a
standard shifted tableau Q of shape λ. Then, given a primed tableau P of shape λ set
(R,Q) = SK(HM−1(P,Q)), and let ΦQ(P) = R.

For any filling of a shifted shape λ with letters from X, associating this filling to its
reading word (the element of B|λ| obtained by reading rows left to right, bottom to top)
induces crystal operators on the set of all fillings of this shape. In particular, we can apply
these induced operators to any element of SUT (λ) (although, a priori, it is not clear that
the image will remain in SUT (λ)). We now summarize our main results for SK insertion
and its relation to this induced crystal structure.

Theorem 5.2. For any b ∈ Bh with SK(b) = (T,Q) and fi(b) 6= 0, the induced operator
fi described above satisfies

SK(fi(b)) = (fi(T),Q).

Also, fi(b) = 0 if and only if fi(T) = 0.

Corollary 5.3. SUT (λ) is closed under the induced crystal operators described above.

Replacing HM by SK in the second proof of Theorem 3.13, or by combining Theo-
rem 3.13 with Theorem 5.1 yields:

Theorem 5.4. The recording tableau under SK insertion is constant on each connected
component of the crystal Bh.

The upshot of all this is the following theorem.

Theorem 5.5. With respect to the crystal operators we have defined on primed tableaux
and the induced operators on semistandard unimodal tableaux described above, the map
ΦQ is a crystal isomorphism.

Proof. This says no more than that ΦQ is a bijection (which we have established) and that
it commutes with the crystal operations on primed tableaux and semistandard unimodal
tableaux. But this is simply combining Theorem 3.13 with Theorem 5.4.

the electronic journal of combinatorics 24(3) (2017), #P3.51 18



Theorem 5.5 immediately gives us another combinatorial interpretation of the coeffi-
cients gwλ. Let kµλ be the number of semistandard unimodal tableaux of shape µ and
weight λ, whose reading words are Yamanouchi (that is, tableaux that are the highest
weight elements of SUT (µ)).

Corollary 5.6. The expansion of FC
w (x) in terms of Schur symmetric functions is

FC
w (x) =

∑
λ

gwλsλ(x), where gwλ =
∑
µ

2`(µ)
∣∣UT w(µ)

∣∣ kµλ .
Again, replacing `(µ) by `(µ)− o(w) gives the Schur expansion of FB

w (x).

Example 5.7. According to Example 4.10, we should find three highest weight semis-
tandard unimodal tableaux of shape (3, 1), one for each of the weights (3, 1), (2, 2), and

(2, 1, 1). These are 2 1 1
1

, 2 1 1
2

and 3 2 1
1

.

6 Outlook

There are several other generalizations of the results in this paper that one could pursue.
First of all, it would be interesting to consider affine Stanley symmetric functions of
type B or C. As in affine type A, this would involve a generalization of crystal bases
as the expansion is no longer in terms of Schur functions. Another possible extension
is to consider K-theoretic analogues of Stanley symmetric functions, such as the (dual)
stable Grothendieck polynomials. In type A, a crystal theoretic analysis of dual stable
Grothendieck polynomials was carried out in [7]. Type D should also be considered from
this point of view. Finally, the definition of the reading word rw of Section 4 and the
characterization of highest weight elements in Proposition 4.7 is very similar to the reading
words in [14, Section 3.2] in the analysis of Kronecker coefficients.

A Proof of Theorem 4.3

In this appendix, we provide the proof of Theorem 4.3.

A.1 Preliminaries

We use the fact from [8] that taking only elements smaller or equal to i+ 1 from the word
b and applying the mixed insertion corresponds to taking only the part of the tableau T
with elements 6 i+ 1. Thus, it is enough to prove the theorem for a “truncated” word b
without any letters greater than i + 1. To shorten the notation, we set j = i + 1 in this
appendix. We sometimes also restrict to just the letters i and j in a word w. We call this
the {i, j}-subword of w.

First, in Lemma A.1 we justify the notion of the reading word rw(T) and provide the
reason to use a bracketing rule on it. After that, in Section A.2 we prove that the action
of the crystal operator fi on b corresponds to the action of fi on T after the insertion.
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Given a word b, we apply the crystal bracketing rule for its {i, j}-subword and globally
declare the rightmost unbracketed i in b (i.e. the letter the crystal operator fi acts on)
to be a bold i. Insert the letters of b via Haiman insertion to obtain the insertion tableau
T. During this process, we keep track of the position of the bold i in the tableau via the
following rules. When the bold i from b is inserted into T, it is inserted as the rightmost
i in the first row of T since by definition it is unbracketed in b and hence cannot bump a
letter j. From this point on, the tableau T has a special letter i and we track its position:

1. If the special i is unprimed, it is always the rightmost i in its row. When a letter i is
bumped from this row, only one of the non-special letters i can be bumped, unless
the special i is the only i in the row. When the non-diagonal special i is bumped
from its row to the next row, it will be inserted as the rightmost i in the next row.

2. When the diagonal special i is bumped from its row to the column to its right, it is
inserted as the bottommost i′ in the next column.

3. If the special i is primed, it is always the bottommost i′ in its column. When a
letter i′ is bumped from this column, only one of the non-special letters i′ can be
bumped, unless the special i′ is the only i′ in the column. When the primed special
i is bumped from its column to the next column, it is inserted as the bottommost
i′ in the next column.

4. When i is inserted into a row with the special unprimed i, the rightmost i becomes
special.

5. When i′ is inserted into a column with the special primed i, the bottommost primed
i becomes special.

Lemma A.1. Using the rules above, after the insertion process of b, the special i in T
is the same as the rightmost unbracketed i in the reading word rw(T) (i.e. the definition
of the bold i in T). Moreover, the number of unbracketed letters i in b is equal to the
number of unbracketed letters i in rw(T).

Proof. First, note that since both the number of letters i and the number of letters j
are equal in b and rw(T), the fact that the number of unbracketed letters i is the same
implies that the number of unbracketed letters j must also be the same. We use induction
on 1 6 s 6 h, where the letters b1 . . . bs of b = b1b2 . . . bh have been inserted using Haiman
mixed insertion with the above rules. That is, we check that at each step of the insertion
algorithm the statement of our lemma stays true.

The induction step is as follows: Consider the word b1 . . . bs−1 with a corresponding
insertion tableau T(s−1). If the bold i in b is not in b1 . . . bs−1, then T(s−1) does not
contain a special letter i. Otherwise, by induction hypothesis assume that the bold i in
b1 . . . bs−1 by the above rules corresponds to the special i in T(s−1), that is, it is in the
position corresponding to the rightmost unbracketed i in the reading word rw(T(s−1)).
Then we need to prove that for b1 . . . bs, the special i in T(s−1) ends up in the position
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corresponding to the rightmost unbracketed i in the reading word of T(s) = T(s−1)  bs.
We also need to verify that the second part of the lemma remains true for T(s).

Remember that we are only considering “truncated” words b with all letters 6 j.

Case 1. Suppose bs = j. In this case j is inserted at the end of the first row of T(s−1), and
rw(T(s)) has j attached at the end. Thus, both statements of the lemma are unaffected.

Case 2. Suppose bs = i and bs is unbracketed in b1 . . . bs−1bs. Then there is no special i in
tableau T(s−1), and bs might be the bold i of the word b. Also, there are no unbracketed
letters j in b1 . . . bs−1, and thus all j in rw(T(s−1)) are bracketed. Thus, there are no letters
j in the first row of T(s−1), and i is inserted in the first row of T(s−1), possibly bumping
the letter j′ from column c into an empty column c + 1 in the process. Note that if j′

is bumped, moving it to column c + 1 of T(s) does not change the reading word, since
column c of T(s−1) does not contain any primed letters other than j′. The reading word
of T(s) is thus the same as rw(T(s−1)) except for an additional unbracketed i at the end.
The number of unbracketed letters i in both rw(T(s)) and b1 . . . bs−1bs is thus increased by
one compared to rw(T(s−1)) and b1 . . . bs−1. If bs is the bold i of the word b, the special
i of tableau T(s) is the rightmost i on the first row and corresponds to the rightmost
unbracketed i in rw(T(s)).

Case 3. Suppose bs = i and bs is bracketed with a j in the word b1 . . . bs−1. In this case,
according to the induction hypothesis, rw(T(s−1)) has an unbracketed j. There are two
options.

Case 3.1. If the first row of T(s−1) does not contain j, bs is inserted at the end of the
first row of T(s−1), possibly bumping j′ in the process. Regardless, rw(T(s)) does not
change except for attaching an i at the end (see Case 2). This i is bracketed with one
unbracketed j in rw(T(s)). The special i (if there was one in T(s−1)) does not change its
position and the statement of the lemma remains true.

Case 3.2. If the first row of T(s−1) does contain a j, inserting bs into T(s−1) bumps
j (possibly bumping j′ beforehand) into the second row, where j is inserted at the end
of the row. So, if the first row contains n > 0 elements i and m > 1 elements j, the
reading word rw(T(s−1)) ends with . . . injm, and rw(T(s)) ends with . . . jin+1jm−1. Thus,
the number of unbracketed letters i does not change and if there was a special i in the first
row, it remains there and it still corresponds to the rightmost unbracketed i in rw(T(s)).

Case 4. Suppose bs < i. Inserting bs could change both the primed reading word and
unprimed reading word of T(s−1). As long as neither i nor j is bumped from the diagonal,
we can treat primed and unprimed changes separately.

Case 4.1. Suppose neither i nor j is not bumped from the diagonal during the insertion.
This means that there are no transitions of letters i or j between the primed and the
unprimed parts of the reading word. Thus, it is enough to track the bracketing relations
in the unprimed reading word; the bracketing relations in the primed reading word can
be verified the same way via the transposition. After we make sure that the number of
unbracketed letters i and j changes neither in the primed nor unprimed reading word, it
is enough to consider the case when the special i is unprimed, since the case when it is
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primed can again be checked using the transposition. To avoid going back and forth, we
combine these two processes together in each subcase to follow.

Case 4.1.1. If there are no letters i and j in the bumping sequence, the unprimed {i, j}-
subword of rw(T(s)) is the same as in rw(T(s−1)). The special i (if there is one) remains
in its position, and thus the statement of the lemma remains true.

Case 4.1.2. Now consider the case when there is a j in the bumping sequence, but no i.
Let that j be bumped from the row r. Since there is no i bumped, row r does not contain
any letters i. Thus, bumping j from row r to the end of row r + 1 does not change the
{i, j}-subword of rw(T(s−1)), so the statement of the lemma remains true.

Case 4.1.3. Consider the case when there is an i in the bumping sequence. Let that i
be bumped from the row r.

Case 4.1.3.1. If there is a (non-diagonal) j in row r + 1, it is bumped into row r + 2
(j′ may have been bumped in the process). Note that in this case the i bumped from
row r could not have been a special one. If there are n > 0 elements i and m > 1
elements j in row r, the part of the reading word rw(T(s−1)) with . . . injmi . . . changes to
. . . jin+1jm−1 . . . in rw(T(s)). The bracketing relations remain the same, and if row r + 1
contained a special i, it would remain there and would correspond to the rightmost i in
rw(T(s)).

Case 4.1.3.2. If there are no letters j in row r+ 1, and j′ in row r+ 1 does not bump a
j, the {i, j}-subword does not change and the statement of the lemma remains true.

Case 4.1.3.3. Now suppose there are no letters j in row r + 1 and j′ from row r + 1
bumps a j from another row. This can only happen if, before the i was bumped, there
was only one i in row r of T(s−1), there is a j′ immediately below it, and there is a j in
the column to the right of i and in row r′ 6 r.

If r′ = r, then after the insertion process, i and j are bumped from row r to row
r + 1. Since there was only one i in row r and there are no letters j in row r + 1, the
{i, j}-subword of rw(T(s−1)) does not change and the statement of the lemma remains
true.

Otherwise r′ < r. Then there are no letters i in row r′ and by assumption there is no
letter j in row r+ 1. Thus, moving i to row r+ 1 and moving j to the row r′+ 1 does not
change the {i, j}-subword of rw(T(s−1)) and the statement of the lemma remains true.

Case 4.2. Suppose i or j (or possibly both) are bumped from the diagonal in the insertion
process.

Case 4.2.1. Consider the case when the insertion sequence ends with · · · → z → j[j′]
with z < i and possibly → j right after it. Let the bumped diagonal j be in column c.
Then columns 1, 2, . . . , c of T(s−1) could only contain elements 6 z, except for the j on
the diagonal. Thus, the bumping process just moves j from the unprimed reading word
to the primed reading word without changing the overall order of the {i, j}-subword.

Case 4.2.2. Consider the case when the insertion sequence ends with · · · → i′ → i→
j[j′] and possibly → j. Let the bumped diagonal j be in row (and column) r. Note
that r must be the last row of T(s−1). Then i has to be bumped from row r − 1 (and,
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say, column c) and i′ also has to be in row r − 1 (moreover, it has to be the only i′ in
column c − 1). Also, since there are no letters j′ in column c (otherwise it would be in
row r, which is impossible), bumping i′ to column c does not change the {i, j}-subword of
rw(T(s−1)). Note that after i′ moves to column c, there are no i′ or j′ in columns 1, . . . , r,
and thus priming j and moving it to column r+ 1 does not change the {i, j}-subword. If
the last row r contains n elements j, the {i, j}-subword of T(s−1) contains . . . jni . . . and
after the insertion it becomes . . . jijn−1 . . ., where the left j is from the primed subword.
Thus, the number of bracketed letters i does not change. Also, if we moved the special i
in the process, it could only have been the bumped i′. Its position in the reading word is
unaffected.

Case 4.2.3. The case when the insertion sequence does not contain i′, does not bump
i from the diagonal, but contains i and bumps j from the diagonal is analogous to the
previous case.

Case 4.2.4. Suppose both i and j are bumped from the diagonal. That could only be
the case with diagonal i bumped from row (and column) r, bumping another letter i from
the row r and column r + 1, and bumping j from row (and column) r + 1 (and possibly
bumping j to row r + 2 at the end). Let the number of letters i′ in column r + 1 be n
and let the number of letters j in row r + 1 be m.

Case 4.2.4.1 Let m > 2. Then the {i, j}-subword of rw(T(s−1)) contains . . . injmii . . .
and after the insertion it becomes . . . jin+1jijm−2 . . .. The number of unbracketed letters
i stays the same. Since m > 2, the special i of T(s−1) could not have been involved in the
bumping procedure. However, the special i might have been the bottommost i′ in column
r + 1 of T(s−1), and after the insertion the special i would still be the bottommost i′ in
column r + 1 and would correspond to the rightmost unbracketed i in rw(T(s)):

· · i′ ·
i i ·
j j

7→
· · i′ ·
· i′ ·
i j′

j

Case 4.2.4.2. Let m = 1. Then the {i, j}-subword of T(s−1) contains . . . injii . . . and
after the insertion it becomes . . . jin+1i. The number of unbracketed letters i stays the
same. If the special i was in row r and column r + 1, then after the insertion it becomes
a diagonal one, and it would still correspond to the rightmost unbracketed i in rw(T(s)).

Case 4.2.5. Suppose only i is bumped from the diagonal (let that i be on row and column
r). Note that there cannot be an i′ in column r.

Case 4.2.5.1. Suppose i from the diagonal bumps another i from column r+ 1 and row
r. In that case there are no letters j in row r+ 1. No letters j or j′ are affected and thus
the {i, j}-subword of T(s) does not change, and the special i in T(s) (if there is one) still
corresponds to the rightmost unbracketed i in rw(T(s)).

Case 4.2.5.2. Suppose i from the diagonal bumps j′ from column r+ 1 and row r. Note
that j′ must be the only j′ in column r+ 1. Suppose also that there is one j in row r+ 1.
Denote the number of letters i′ in column r+ 1 of T(s−1) by n. If there is a j in row r+ 1
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of T(s−1), then the {i, j}-subword of T(s−1) contains . . . injji . . . and after the insertion
it becomes . . . jin+1j . . .. If there is no j in row r + 1 of T(s−1), then the {i, j}-subword
of T(s−1) contains . . . inji . . . and after the insertion it becomes . . . jin+1 . . .. The number
of unbracketed letters i is unaffected. If the special i of T(s−1) was the bottommost i′ in
column r+1 of T(s−1), after the insertion the special i is still the bottommost i′ in column
r + 1 and corresponds to the rightmost unbracketed i in rw(T(s)).

Corollary A.2.
fi(b) = 0 if and only if fi(T) = 0.

A.2 Proof of Theorem 4.3

By Lemma A.1, the cell x in the definition of the operator fi corresponds to the bold
i in the tableau T. Furthermore, we know how the bold i moves during the insertion
procedure. We assume that the bold i exists in both b and T, meaning that fi(b) 6= 0
and fi(T) 6= 0 by Corollary A.2. We prove Theorem 4.3 by induction on the length of
the word b.

Base. Our base is for words b with the last letter being a bold i (i.e. rightmost unbrack-
eted i). Let b = b1 . . . bh−1bh and fi(b) = b1 . . . bh−1b

′
h, where bh = i and b′h = j. Denote

the mixed insertion tableau of b1 . . . bh−1 as T0, the insertion tableau of b1 . . . bh−1bh as
T, and the insertion tableau of b1 . . . bh−1b

′
h as T′. Note that T0 does not have letters j

in the first row. If the first row of T0 ends with . . . j′, then the first row of T ends with
. . . ij′ and the first row of T′ ends with . . . j′j. If the first row of T0 does not contain j′,
the first row of T ends with . . . i and the first row of T′ ends with . . . j, and the cell xS
is empty. In both cases fi(T) = T′.

Induction step. Now, let b = b1 . . . bh with operator fi acting on the letter bs in b with
s < h. Denote the mixed insertion tableau of b1 . . . bh−1 as T and the insertion tableau
of fi(b1 . . . bh−1) as T′. By induction hypothesis, we know that fi(T) = T′. We want to
show that fi(T  bh) = T′  bh. In Cases 1-3 below, we assume that the bold letter i is
unprimed. Since almost all results from the case with unprimed i are transferrable to the
case with primed bold i via the transposition of the tableau T, we just need to cover the
differences in Case 4.

Case 1. Suppose T falls under Case (1) of the rules for fi: the bold i is in the non-
diagonal cell x in row r and column c and the cell xE in the same row and column c+ 1
contains the entry j′. Consider the insertion path of bh.

Case 1.1. If the insertion path of bh in T contains neither cell x nor cell xE, the insertion
path of bh in T′ also does not contain cells x and xE. Thus, fi(T  bh) = T′  bh.

Case 1.2. Suppose that during the insertion of bh into T, the bold i is row-bumped by
an unprimed element d < i or is column-bumped by a primed element d′ 6 i′. This could
only happen if the bold i is the unique i in row r of T. During the insertion process, the
bold i is inserted into row r + 1. Since there are no letters i in row r of T′, inserting bh
into T′ inserts d in cell x, bumps j′ to cell xE, and bumps j into row r + 1. Thus we are
in a situation similar to the induction base. It is easy to check that row r + 1 does not
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contain any letters j in T. If it contains j′, this j′ is bumped back into row r+ 1. Similar
to the induction base, fi(T  bh) = T′  bh.

Case 1.3. Suppose that during the insertion of bh into T, an unprimed i is inserted into
row r. Note that in this case, row r in T must contain a j (or else the i from row r would
not be the rightmost unbracketed i in rw(T)). Thus inserting i into row r in T shifts the
bold i to column c + 1, shifts j′ to column c + 2 and bumps j to row r + 1. Inserting i
into row r in T′ shifts j′ to column c+ 1 with a j to the right of it, and bumps j into row
r + 1. Thus fi(T  bh) = T′  bh.

Case 1.4. Suppose that during the insertion of bh into T, the j′ in cell xE is column-
bumped by a primed element d′ and the cell x is unaffected. Note that in order for T  bh
to be a valid primed tableau, i must be smaller than d′, and thus d′ could only be j′. On
the other hand, j′ cannot be inserted into column c + 1 of T′ in order for T′  bh to be
a valid primed tableau. Thus this case is impossible.

Case 2. Suppose tableau T falls under Case (2a) of the crystal operator rules for fi. This
means that for a bold i in cell x (in row r and column c) of tableau T, the cell xE contains
the entry j or is empty and cell xS is empty. Tableau T′ has all the same elements as T,
except for a j in the cell x. We are interested in the case when inserting bh into either T
or T′ bumps the element from cell x.

Case 2.1. Suppose that the non-diagonal bold i in T (in row r) is row-bumped by an
unprimed element d < i or column-bumped by a primed element d′ < j′. Element d (or
d′) bumps the bold i into row r+ 1 of T, while in T′ (since there are no letters i in row r
of T′) it bumps j from cell x into row r+ 1. Thus we are in the situation of the induction
base and fi(T  bh) = T′  bh.

Case 2.2. Suppose x is a non-diagonal cell in row r, and during the insertion of bh into
T, an unprimed i is inserted into the row r. In this case, row r in T must contain a letter
j. The insertion process shifts the bold i one cell to the right in T and bumps a j into
row r + 1, while in T′ it just bumps j into the row r + 1. We end up in Case (2a) of the
crystal operator rules for fi with bold i in the cell xE.

Case 2.3. Suppose that during the insertion of bh into T′, the j in the non-diagonal cell x
is column-bumped by a j′. This means that j′ was previously bumped from column c− 1
and row > r. Thus the cell xSW (cell to the left of an empty xS) is non-empty. Moreover,
right before inserting j′ into the column c, the cell xSW contains an entry < j′. Inserting
j′ into column c of T just places j′ into the empty cell xS. Inserting j′ into column c of
T′ places j′ into x, and bumps j into the empty cell xS. Thus, we end up in Case (2c) of
the crystal operator rules after the insertion of bh with y = xS.

Case 2.4. Suppose that x in T is a diagonal cell (in row r and column r) and that it is
row-bumped by an element d < i. Note that in this case there cannot be any letter j in
row r + 1. Also, since d is inserted into cell x, there cannot be any letters i′ in columns
1, . . . , r, and thus there cannot be any letters j′ in column r+ 1 (otherwise the i in cell x
would not be bold). The bumped bold i in tableau T is inserted as a primed bold i′ into
the cell z of column r + 1.
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Case 2.4.1. Suppose that there are no letters i in column r + 1 of T. In this case, the
cell z in T either contains j (and then that j would be bumped to the next row) or is
empty. Inserting bh into tableau T′ bumps the diagonal j in cell x, which is inserted as a
j′ into cell z, possibly bumping j after that. Thus, T  bh falls under Case (2a) of the
“primed” crystal rules with the bold i′ in cell z (note that there cannot be any j′ in cell
(z∗)E of the tableau (T  bh)∗). Since T  bh and T′  bh differ only by the cell z,
fi(T  bh) = T′  bh.

Case 2.4.2. Suppose that there is a letter i in cell z of column r+ 1 of T. Note that cell
z can only be in rows 1, . . . , r−1 and thus zSW contains an element < i. Thus, during the
insertion process of bh into T, diagonal bold i from cell x is inserted as bold i′ into cell
z, bumping the i from cell z into cell zS (possibly bumping j afterwards). On the other
hand, inserting bh into T′ bumps the diagonal j from cell x into cell zS as a j′ (possibly
bumping j afterwards). Thus, T  bh falls under Case (1) of the “primed” crystal rules
with the bold i′ in cell z, and so fi(T  bh) = T′  bh.

Case 2.5. Suppose that x is a diagonal cell (in row r and column r) and that during
the insertion of bh into T, an unprimed i is inserted into row r. In this case, the entry
in cell xE has to be j and the diagonal cell xES must be empty. Inserting i into row r of
T bumps a j from cell xE into cell xES. On the other hand, inserting i into row r of T′

bumps a j from the diagonal cell x, which in turn is inserted as a j′ into cell xE, which
bumps j from cell xE into cell xES. Thus, T  bh falls under Case (2b) of the crystal
rules with bold i in cell xE and y = xES, and so fi(T  bh) = T′  bh.

Case 3. Suppose that T falls under Case (2b) or (2c) of the crystal operator rules. That
means xE contains the entry j or is empty and xS contains the entry j′ or j. There is a
chain of letters j′ and j in T starting from xS and ending on a box y. According to the
induction hypothesis, y is either on the diagonal and contains the entry j or y is not on
the diagonal and contains the entry j′. The tableau T′ = fi(T) has j′ in cell x and j in
cell y. We are interested in the case when inserting bh into T affects cell x or affects some
element of the chain. Let rx and cx be the row and the column index of cell x, and ry,
cy are defined accordingly. Note that during the insertion process, j′ cannot be inserted
into columns cy, . . . , cx and j cannot be inserted into rows rx + 1, . . . , ry, since otherwise
T  bh would not be a primed tableau.

Case 3.1. Suppose the bold i in cell x (of row rx and column cx) of T is row-bumped
by an unprimed element d < i or column-bumped by a primed element d′ < i. Note that
in this case, bold i in row rx is the only i in this row, so row rx + 1 cannot contain any
letter j. Therefore the entry in cell xS must be j′. In tableau T, the bumped bold i
is inserted into cell xS and j′ is bumped from cell xS into column cx + 1, reducing the
chain of letters j′ and j by one. Notice that since xE either contains a j or is empty, j′

cannot be bumped into a position to the right of xS, so Case (1) of the crystal rules for
T  bh cannot occur. As for T′, inserting d into row rx (or inserting d′ into column cx)
just bumps j′ into column cx + 1, thus reducing the length of the chain by one in that
tableau as well. Note that in the case when the length of the chain is one (i.e. y = xS),
we would end up in Case (2a) of the crystal rules after the insertion. Otherwise, we are
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still in Case (2b) or (2c). In both cases, fi(T  bh) = T′  bh.

Case 3.2. Suppose a letter i is inserted into the same row as x (in row rx). In this case,
xE must contain a j (otherwise the bold i would not be in cell x). After inserting bh into
T, the bold i moves to cell xE (note that there cannot be a j′ to the right of xE) and j
from xE is bumped to cell xES, thus the chain now starts at xES. As for T′, inserting i
into the row rx moves j′ from cell x to the cell xE and moves j from cell xE to cell xES.
Thus, fi(T  bh) = T′  bh.

Case 3.3. Consider the chain of letters j and j′ in T. Suppose an element of the chain
z 6= x, y is row-bumped by an element d < j or is column-bumped by an element d′ < j′.
The bumped element z (of row rz and column cz) must be a “corner” element of the
chain, i.e. in T the entry in the boxes must be c(z) = j′, c(zE) = j and c(zS) must be
either j or j′. Therefore, inserting bh into T bumps j′ from box z to box zE and bumps j
from box zE to box zES, and inserting bh into T′ has exactly the same effect. Thus, there
is still a chain of letters j and j′ from xS to y in T and T′, and fi(T  bh) = T′  bh.

Case 3.4. Suppose T falls under Case (2c) of the crystal rules (i.e. y is not a diagonal
cell) and during the insertion of bh into T, j′ in cell y is row-bumped (resp. column-
bumped) by an element d < j′ (resp. d′ < j′). Since y is the end of the chain of letters
j and j′, yS must be empty. Also, since it is bumped, the entry in yE must be j. Thus,
inserting bh into T bumps j′ from cell y to cell yE and bumps j from cell yE into row
ry + 1 and column 6 cy. On the other hand, inserting bh into T′ bumps j from cell y
into row ry + 1 and column 6 cy. The chain of letters j and j′ now ends at yE and
fi(T  bh) = T′  bh.

Case 3.5. Suppose T falls under Case (2b) of the crystal rules (i.e. y with entry j is
a diagonal cell) and during the insertion of bh into T, j in cell y is row-bumped by an
element d < j. In this case, the cell yE must contain the entry j. Thus, inserting bh into
T bumps j from cell y (making it j′) to cell yE and bumps j from cell yE to the diagonal
cell yES. On the other hand, inserting bh into T′ has exactly the same effect. The chain
of letters j and j′ now ends at the diagonal cell yES, so T  bh falls under Case (2b) of
the crystal rules and fi(T  bh) = T′  bh.

Case 4. Suppose the bold i in tableau T is a primed i. We use the transposition
operation on T, and the resulting tableau T∗ falls under one of the cases of the crystal
operator rules. When bh is inserted into T, we can easily translate the insertion process
to the transposed tableau T∗ so that [T∗  (bh + 1)′] = [T  bh]∗: the letter (bh + 1)′

is inserted into the first column of T∗, and all other insertion rules stay exactly same,
with one exception – when the diagonal element d′ is column-bumped from the diagonal
cell of T∗, the element d′ becomes (d − 1) and is inserted into the row below. Notice
that the primed reading word of T becomes an unprimed reading word of T∗. Thus, the
bold i in tableau T∗ corresponds to the rightmost unbracketed i in the unprimed reading
word of T∗. Therefore, everything we have deduced in Cases 1-3 from the fact that bold
i is in the cell x will remain valid here. Given fi(T

∗) = T′∗, we want to make sure that
fi(T

∗  (bh + 1)′) = T′∗  (bh + 1)′.
The insertion process of (bh + 1)′ into T∗ falls under one of the cases above and the
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proof of fi(T
∗  (bh + 1)′) = T′∗  (bh + 1)′ is exactly the same as the proof in those

cases. We only need to check the cases in which the diagonal element might be affected
differently in the insertion process of (bh + 1)′ into T∗ compared to the insertion process
of (bh + 1)′ into T′∗. Fortunately, this never happens: in Case 1 neither x nor xE could be
diagonal elements; in Cases 2 and 3 x cannot be on the diagonal, and if xE is on diagonal,
it must be empty. Following the proof of those cases, fi(T

∗  (bh+1)′) = T′∗  (bh+1)′.

B Proof of Theorem 4.5

This appendix provides the proof of Theorem 4.5. In this section we set j = i + 1. We
begin with two preliminary lemmas.

B.1 Preliminaries

Lemma B.1. Consider a shifted tableau T.

1. Suppose tableau T falls under Case (2c) of the fi crystal operator rules, that is,
there is a chain of letters j and j′ starting from the bold i in cell x and ending at j′

in cell xH . Then for any cell z of the chain containing j, the cell zNW contains i.

2. Suppose tableau T falls under Case (2b) of the fi crystal operator rules, that is,
there is a chain of letters j and j′ starting from the bold i in cell x and ending at j
in the diagonal cell xH . Then for any cell z of the chain containing j or j′, the cell
zNW contains i or i′ respectively.

· · · · · · · i
· · · i i i j′

· · j′ j j j
· j′

· · · · i′ i
· i′ i i j′

i j′ j j
j

Proof. The proof of the first part is based on the observation that every j in the chain must
be bracketed with some i in the reading word rw(T). Moreover, if the bold i is located in
row rx and rows rx, rx + 1, . . . , rz contain n letters j, then rows rx, rx + 1, . . . , rz − 1 must
contain exactly n non-bold letters i. To prove that these elements i must be located in
the cells to the North-West of the cells containing j, we proceed by induction on n. When
we consider the next cell z containing j in the chain that must be bracketed, notice that
the columns cz, cz + 1, . . . , cx already contain an i, and thus we must put the next i in
column cz − 1; there is no other row to put it than rz − 1. Thus, zNW must contain an i.

This line of logic also works for the second part of the lemma. We can show that
for any cell z of the chain containing j, the cell zNW must contain an i. As for cells z
containing j′, we can again use the fact that the corresponding letters j in the primed
reading word of T must be bracketed. Notice that these letters j′ cannot be bracketed
with unprimed letters i, since all unprimed letters i are already bracketed with unprimed
letters j. Thus, j′ must be bracketed with some i′ from a column to its left. Let columns
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1, 2, . . . , cz contain m elements j′. Using the same induction argument as in the previous
case, we can show that zNW must contain i′.

Next we need to figure out how y in the raising crystal operator ei is related to the
lowering operator rules for fi.

Lemma B.2. Consider a pair of tableaux T and T′ = fi(T).

1. If tableau T (in case when bold i in T is unprimed) or T∗ (if bold i is primed) falls
under Case (1) of the fi crystal operator rules, then cell y of the ei crystal operator
rules is cell xE of T′ or (T′)∗, respectively.

2. If tableau T (in case when bold i in T is unprimed) or T∗ (if bold i is primed) falls
under Case (2a) of the fi crystal operator rules, then cell y of the ei crystal operator
rules is located in cell x of T′ or (T′)∗, respectively.

3. If tableau T falls under Case (2b) of the fi crystal operator rules, then cell y of the
ei crystal operator rules is cell x∗ of (T′)∗.

4. If tableau T (in case when bold i in T is unprimed) or T∗ (if bold i is primed) falls
under Case (2c) of the fi crystal operator rules, then cell y of the ei crystal operator
rules is cell xH of T′ or (T′)∗, respectively.

Proof. In all the cases above, we need to compare reading words rw(T) and rw(T′). Since
fi affects at most two boxes of T, it is easy to track how the reading word rw(T) changes
after applying fi. We want to check where the bold j under ei ends up in rw(T′) and in
T′, which allows us to determine the cell y of the ei crystal operator rules.

Case 1.1. Suppose T falls under Case (1) of the fi crystal operator rules, that is, the
bold i in cell x is to the left of j′ in cell xE. Furthermore, fi acts on T by changing
the entry in x to j′ and by changing the entry in xE to j. In the reading word rw(T),
this corresponds to moving the j corresponding to xE to the left and changing the bold i
(the rightmost unbracketed i) corresponding to cell x to j (that then corresponds to xE).
Moving a bracketed j in rw(T) to the left does not change the {i, j} bracketing, and thus
the j corresponding to xE in rw(T′) is still the leftmost unbracketed j. Therefore, this j
is the bold j of T′ and is located in cell xE.

Case 1.2. Suppose the bold i in T is primed and T∗ falls under Case (1) of the fi crystal
operator rules. After applying lowering crystal operator rules to T∗ and conjugating back,
the bold primed i in cell x∗ of T changes to an unprimed i, and the unprimed i in cell (x∗)S
of T changes to j′. In terms of the reading word of T, it means moving the bracketed i
(in the unprimed reading word) corresponding to (x∗)S to the left so that it corresponds
to x∗, and then changing the bold i (in the primed reading word) corresponding to x∗ into
the letter j corresponding to (x∗)S. The first operation does not change the bracketing
relations between i and j, and thus the leftmost unbracketed j in rw(T′) corresponds to
(x∗)S. Hence the bold unprimed j is in cell xE of (T′)∗.
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Case 2.1. If T falls under Case (2a) of the fi crystal operator rules, fi just changes the
entry in x from i to j. The rightmost unbracketed i in the reading word of T changes to
the leftmost unbracketed j in rw(T′). Thus, the bold j in rw(T′) corresponds to cell x.

Case 2.2. The case when T∗ falls under Case (2a) of the fi crystal operator rules is the
same as the previous case.

Case 3. Suppose T falls under Case (2b) of fi crystal operator rules. Then there is a
chain starting from cell x (of row rx and column cx) and ending at the diagonal cell z (of
row and column rz) consisting of elements j and j′. Applying fi to T changes the entry in
x from i to j′. In rw(T) this implies moving the bold i from the unprimed reading word
to the left through elements i and j corresponding to rows rx, rx + 1, . . . , rz, then through
elements i and j in the primed reading word corresponding to columns cz− 1, . . . , cx, and
then changing that i to j which corresponds to cell x. But according to Lemma B.1, the
letters i and j in these rows and columns are all bracketed with each other, since for every
j or j′ in the chain there is a corresponding i or i′ in the North-Western cell. (Notice that
there cannot be any other letter j or j′ outside of the chain in rows rx + 1, . . . , rz and in
columns cz − 1, . . . , cx.) Thus, moving the bold i to the left in rw(T) does not change
the bracketing relations. Changing it to j makes it the leftmost unbracketed j in rw(T′).
Therefore, the bold j in rw(T′) corresponds to the primed j in cell x of T′, and the cell
y of the ei crystal operator rules is thus cell x∗ in (T′)∗.

Case 4.1. Suppose T falls under Case (2c) of the fi crystal operator rules. There is a
chain starting from cell x (in row rx and column cx) and ending at cell xH (in row rH
and column cH) consisting of elements j and j′. Applying fi to T changes the entry in
x from i to j′ and changes the entry in xH from j′ to j. Moving j′ from cell xH to cell
x moves the corresponding bracketed j in the reading word rw(T) to the left, and thus
does not change the {i, j} bracketing relations in rw(T′). On the other hand, moving the
bold i from cell x to cell xH and then changing it to j moves the bold i in rw(T) to the
right through elements i and j corresponding to rows rx, rx + 1, . . . , rH , and then changes
it to j. Note that according to Lemma B.1, each j in rows rx + 1, rx + 2, . . . , rH has a
corresponding i from rows rx, rx + 1, . . . , rH − 1 that it is bracketed with, and vise versa.
Thus, moving the bold i to the position corresponding to xH does not change the fact
that it is the rightmost unbracketed i in rw(T). Thus, the bold j in rw(T′) corresponds
to the unprimed j in cell xH of T′.

Case 4.2. Suppose T has a primed bold i and T∗ falls under Case (2c) of the fi crystal
operator rules. This means that there is a chain (expanding in North and East directions)
in T starting from i′ in cell x∗ and ending in cell x∗H with entry i consisting of elements i
and j′. The crystal operator fi changes the entry in cell x∗ from i′ to i and changes the
entry in x∗H from i to j′. For the reading word rw(T) this means moving the bracketed i in
the unprimed reading word to the right (which does not change the bracketing relations)
and moving the bold i in the primed reading word through letters i and j corresponding to
columns cx, cx + 1, . . . , cH , which are bracketed with each other according to Lemma B.1.
Thus, after changing the bold i to j makes it the leftmost unbracketed j in rw(T′). Hence
the bold primed j in T′ corresponds to cell x∗H . Therefore y from the ei crystal operator
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rules is cell xH of (T′)∗.

B.2 Proof of Theorem 4.5

Let T′ = fi(T).

Case 1. If T (or T∗) falls under Case (1) of the fi crystal operator rules, then according
to Lemma B.2, ei acts on T′ (or on (T′)∗) by changing the entry in cell yW = x back to i
and changing the entry in y = xE back to j′. Thus, the statement of the theorem is true.

Case 2. If T (or T∗) falls under Case (2a) of the fi crystal operator rules, then according
to Lemma B.2, ei acts on T′ (or on (T′)∗) by changing the entry in the cell y = x back
to i. Thus, the statement of the theorem is true.

Case 3. If T falls under Case (2b) of the fi crystal operator rules, then according to
Lemma B.2, ei acts on cell y = x∗ of (T′)∗. Note that according to Lemma B.1, there is
a maximal chain of letters i and j′ in (T′)∗ starting at y and ending at a diagonal cell yT .
Thus, ei changes the entry in cell y = x∗ in (T′)∗ from j to j′, so the entry in cell x in T′

goes back from j′ to i. Thus, the statement of the theorem is true.

Case 4. If T (or T∗) falls under Case (2c) of the fi crystal operator rules, then according
to Lemma B.2, ei acts on cell y = xH of T′ (or of (T′)∗). Note that according to
Lemma B.1, there is a maximal (since c(xE) 6= j′ and c(xE) 6= i) chain of letters i and j′

in T′ (or (T′)∗) starting at y and ending at cell yT = x. Thus, ei changes the entry in
cell y = xH in (T′)∗ from j back to j′ and changes the entry in yT = x from j′ back to i.
Thus, the statement of the theorem is true.
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[12] Witold Kraśkiewicz. Reduced decompositions in Weyl groups. European J. Combin.,
16(3):293–313, 1995.

[13] Tao Kai Lam. B and D analogues of stable Schubert polynomials and related insertion
algorithms. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–Massachusetts
Institute of Technology.

[14] Ricky Ini Liu. A simplified Kronecker rule for one hook shape. Proc. Amer. Math.
Soc., 145(9):3657–3664, 2017.

[15] Jennifer Morse and Anne Schilling. Crystal approach to affine Schubert calculus. Int.
Math. Res. Not. IMRN, (8):2239–2294, 2016.

[16] Luis Serrano. The shifted plactic monoid. Math. Z., 266(2):363–392, 2010.

[17] Mark Shimozono and Dennis E. White. A color-to-spin domino Schensted algorithm.
Electron. J. Combin., 8(1):Research Paper 21, 50, 2001.

[18] Richard P. Stanley. On the number of reduced decompositions of elements of Coxeter
groups. European J. Combin., 5(4):359–372, 1984.

[19] John R. Stembridge. Shifted tableaux and the projective representations of symmetric
groups. Adv. Math., 74(1):87–134, 1989.

the electronic journal of combinatorics 24(3) (2017), #P3.51 32


	Introduction
	Background
	Type C Stanley symmetric functions
	Type A crystal of words

	Crystal isomorphism
	Kraskiewicz insertion
	Mixed insertion

	Explicit crystal operators on shifted primed tableaux
	Semistandard unimodal tableaux
	Outlook
	Proof of Theorem 4.3
	Preliminaries
	Proof of Theorem 4.3

	Proof of Theorem 4.5
	Preliminaries
	Proof of Theorem 4.5


