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Abstract

Let G be a multipartite multigraph without loops. Then G is said to be inter-
nally fair if its edges are shared as evenly as possible among all pairs of its partite
sets. An internally fair factorization of G is an edge-decomposition of G into in-
ternally fair regular spanning subgraphs. A holey factor of G is a regular subgraph
spanning all vertices but one partite set. An internally fair holey factorization is an
edge-decomposition of G into internally fair holey factors. In this paper, we settle
the existence of internally fair (respectively, internally fair holey) factorizations of
the complete equipartite multigraph into factors (respectively, holey factors) with
prescribed regularity.

1 Introduction

This paper addresses the existence of a general type of balance in edge-colorings of graphs
that have an accompanying partition of the vertex set, namely the existence of internally
fair edge-colorings. When considering different criteria for balance in edge-colorings, the
goal usually is to share edges of each color as evenly as possible among certain substruc-
tures. Since such edge-colorings frequently give rise to interesting combinatorial structures
which are useful as ingredients in the construction of combinatorial designs, balance in
edge-colorings has been of great interest to a wide combinatorics community. Very well-
known results on balance in edge-colorings include de Werra’s work where he proved (see
[11, 12, 13, 14]) that the edges of any bipartite graph G can be colored with k colors such
that (i) for each pair of vertices the edges joining these vertices are shared as evenly as
possible among the k colors, (ii) at each vertex the incident edges are shared as evenly
as possible among the k colors, and (iii) overall, the edges in E(G) are shared as evenly
as possible among the k colors. In a more general setting, Hilton [7] proved that each
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graph where all degrees are even, has an edge-coloring with k colors (for each k) with the
property that (i) each color appears on an even number of incident edges at each vertex,
and (ii) the number of times a color appears on incident edges at a vertex v differs from
the number of times another color appears on incident edges at vertex v by 0 or 2. (This
result was recently extended in [5], where existence results are given for edge-colorings of
graphs that satisfy the aforementioned notion of balance together with other notions of
balance.)

The most natural graphs to consider in the setting where there is an accompanying
partition of the vertex set are the complete multipartite graphs. Indeed, it is on this
family of graphs that we focus in this paper. The particular notion of balance that we
consider in this paper is defined next.

Let K(n, p) be the complete multipartite graph with p parts and n vertices in each
part (note that K(1, p) = Kp). Let λK(n, p) denote the λ-fold complete multigraph, in
which if two vertices are joined by ε edges (ε ∈ Z2) in K(n, p) then they are joined by
λε edges in λK(n, p). An edge-coloring of λK(n, p) is said to be internally fair if within
each color class the edges are shared as evenly as possible among the pairs of parts. As
described in [6], if each color class in an edge-coloring of λK(n, p) induces a k-regular
spanning subgraph for the same value of k, then the notion of internally fair is identical
to the notion of fairness in [6], where an edge-coloring is said to be fair if the edges
between each pair of parts are shared out as evenly as possible among the color classes.

An r-factor of λK(n, p) is an r-regular spanning subgraph of λK(n, p). Suppose that
Rt = {r0, r1, . . . , rt−1} is a multiset of positive integers. The graph λK(n, p) is said to have
an Rt-factorization if the edge set of λK(n, p) can be partitioned into subsets F0, . . . , Ft−1
such that for each i ∈ Zt, Fi is an ri-factor of λK(n, p). If ri = r for all i ∈ Zt, then
λK(n, p) is said to have an r-factorization. A 2-factorization of λK(n, p) where all the
factors are connected is said to be a hamiltonian decomposition.

It is useful to represent factorizations of λK(n, p) as edge-colorings: two edges are
colored the same if and only if they are in the same factor of λK(n, p). In this context,
if λK(n, p) has partition P = {V0, . . . , Vp−1} of the vertex set, then an internally fair Rt-
factorization of λK(n, p) has the property that for all p1, p2, p3, p4 ∈ Zp with p1 < p2, p3 <
p4 and for all i ∈ Zt, ||Fi(p1, p2)|− |Fi(p3, p4)|| 6 1 where for 0 6 j < k 6 p− 1, Fi(j, k) is
the set of edges in the ri-factor Fi joining a vertex in Vj to a vertex in Vk. In 2002 Leach and
Rodger [8] completely settled the existence problem for fair hamiltonian decompositions
of K(n, p) (so each factor is not only 2-regular, but also connected) showing that they
exist if and only if n(p − 1) is even. More recently the authors [6] settled the existence
problem for fair 1-factorizations of K(n, p) showing that they exist if and only if np is
even.

It is not difficult to see that a 1-factorization of K(n, p) corresponds to a quasigroup
of order np with diagonal holes of size n. The discovery of holey quasigroups has allowed
big breakthroughs in combinatorial design theory during the 1980’s. Holey quasigroups
with certain properties have been used in many instances as substitutes for complete
quasigroups when the required complete quasigroups with the imposed set of properties
cannot exist. For example, an easy observation shows that there are no idempotent
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symmetric quasigroups of even order; however, symmetric quasigroups with holes of size
2 do exist, and these structures are often usefully employed to construct certain designs.
Therefore from a design theoretic perspective, it is also of interest to consider partitions
of the edges of λK(n, p), each element inducing a factor of λK(n, p)−Vi for some part Vi
in the natural partition of λK(n, p). For each part Vi ∈ P , an r-factor of λK(n, p) − Vi
is said to be a holey r-factor (or holey parallel class) of λK(n, p) − Vi (Vi is said to
be the deficiency of the holey parallel class). A holey r-factorization of λK(n, p) is a
partition of E(λK(n, p)) into holey parallel classes. When n = 1, a holey r-factor (or
a holey parallel class) is said to be a near r-factor (or an almost parallel class). The
corresponding holey r-factorization is then said to be a near r-factorization (or an almost
resolvable r-factorization). Suppose that R(fp) = {ri,j|ri,j ∈ Z+, i ∈ Zp, j ∈ Zfp(i)} is
a multiset of positive integers where fp : Zp → Z+ is a function. Then λK(n, p) with
partition P = {V0, . . . , Vp−1} of the vertex set is said to have a holey R(fp)-factorization
if the edge set of λK(n, p) can be partitioned into subsets Fi,j where for each i ∈ Zp and
for each j ∈ Zfp(i), Fi,j is an ri,j-factor of λK(n, p)− Vi. If ri,j = r for each i ∈ Zp and for
each j ∈ Zfp(i), then λK(n, p) is said to have a holey r-factorization. To see the design
theoretic connection, it is easy to observe that, for example, a holey 1-factorization of
K(n, p) is the same as a (2, 1)-frame of type np (for a definition of frames, see for example
page 261 of [3]), and a holey hamiltonian decomposition of K(n, p) is the same as an
(l,m)-cycle frame of type np where l = n(p− 1) is the length of each cycle and m = 1 is
the number of cycles containing each pair of vertices (for a definition of cycle frames, see
[2] for example).

A holey R(fp)-factorization is said to be internally fair if for all p1, p2, p3, p4 ∈ Zp with
p1 < p2, p3 < p4, for all i ∈ Zp \ {p1, p2, p3, p4}, and for all j ∈ Zfp(i), ||Fi,j(p1, p2)| −
|Fi,j(p3, p4)|| 6 1 where for 0 6 m < n 6 p − 1, Fi,j(m,n) is the set of edges in the
ri,j-factor Fi,j joining a vertex in Vm to a vertex in Vn. For each holey factor F with
deficiency Vi (i ∈ Zp), a part Vk in P is said to be permitted for F if k 6= i. Informally,
the internally fair condition requires that the edges in each holey factor F be shared as
evenly as possible among the pairs of parts permitted for F in P . In [6] it was shown
that if ri,j = 1 for all i ∈ Zp, and for all j ∈ Zfp(i), then this factorization can also be
made fair, namely that ||Fi1,j1(p1, p2)| − |Fi2,j2(p1, p2)|| 6 1 for all i1, i2 ∈ Zp \ {p1, p2},
and for all jk ∈ Zfp(ik) (k = 1, 2). In [6] the authors settled the existence problem for
fair holey 1-factorizations of K(n, p) showing that they exist if and only if n(p − 1) is
even and p 6= 2. In [4] a complete characterization was also found for when fair holey
hamiltonian decompositions of K(n, p) exist, which simultaneously settles the existence
of cycle frames of type np for cycles of the longest length.

As one might expect, holey factorizations of λK(n, p) can be represented as edge-
colorings as well: an edge-coloring of λK(n, p) is said to be a holey edge-coloring if each
color class induces a holey factor of λK(n, p). In this context, a holey edge-coloring of
λK(n, p) is said to be internally fair if the corresponding holey factorization of λK(n, p)
is internally fair.

The main aim of this paper is to extend results on fair factorizations and fair holey
factorizations of K(n, p) to the much more general setting where
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(i) color classes corresponding to the factors (or holey factors) are not required to have
the same regularity, and

(ii) K(n, p) is generalized to the λ-fold graph λK(n, p).

Note that in this more general setting the relevant fairness notion to study is the internally
fairness notion defined in this paper; the original fairness notion in [6] cannot be satisfied
in most cases where the regularities of the color classes are not all the same. Theorem
8 and Theorem 10 prove that such internally fair factorizations and internally fair holey
factorizations exist for any prescribed regularity of the factors (or holey factors) as long as
the (holey) factors satisfy some obvious necessary conditions. The main idea in proving
these theorems is to apply the technique of amalgamations (which is described in the
next section) to some carefully constructed edge-colorings of complete multigraphs with
high multiplicity. The related edge-colorings are obtained by ordering a certain number
of factors of the complete multigraph and coloring consecutive factors with the same color
until the associated color class reaches the desired regularity.

Let G be a graph on the vertex set Zg. The difference of the edge e = {u, v} in G,
named so that u < v, is defined as d = Dg(e) = Dg(u, v) = min{v−u, g−(v−u)}; and then
the vertices u and v are said to be distance d apart. For any subset D ⊆ {1, 2, . . . , bg/2c},
let G(D, g) be the graph with V (G(D, g)) = Zg and E(G(D, g)) = {{u, v}|Dg(u, v) ∈ D}.

The following result, known as Stern-Lenz Lemma, characterizes when the graph
G(D, g) has a 1-factorization. (For an in-depth study of Stern-Lenz Lemma, see for
example [9]).

Lemma 1. G(D, g) has a 1-factorization if and only if D contains an element d where
g/gcd({d, g}) is even.

2 Amalgamations

A graph H is said to be an amalgamation of a graph G if there exists a function ψ from
V (G) onto V (H) and a bijection ψ

′
: E(G)→ E(H) such that e = {u, v} ∈ E(G) if and

only if ψ
′
(e) = {ψ(u), ψ(v)} ∈ E(H). The function ψ is called an amalgamation function.

We say that G is a detachment of H, where each vertex v of H splits into the vertices
of ψ−1({v}). An n-detachment of H is a detachment in which each vertex of H splits
into n vertices. Amalgamating a finite graph G to form the corresponding amalgamated
graph H can be thought of as grouping the vertices of G and forming one supervertex
for each such group by squashing together the original vertices in the same group. An
edge incident with a vertex in G is then incident with the corresponding new vertex in
H; in particular an edge joining two vertices from the same group becomes a loop on the
corresponding new vertex in H.

In what follows, G(j) denotes the subgraph of G induced by the edges colored j, dG(u)
denotes the degree of vertex u in G, and mG(u, v) denotes the number of edges between
u and v in G. The following theorem was proved in much more generality by Bahmanian
and Rodger in [1], but this is sufficient for our purposes.
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Theorem 2. Let H be a k-edge-colored loopless graph. Then there exists an n-detachment
G of H with amalgamation function ψ : V (G)→ V (H) such that G satisfies the following
properties:

(i) dG(u) ∈ {bdH(w)/nc, ddH(w)/ne} for each w ∈ V (H) and each u ∈ ψ−1(w),

(ii) dG(j)(u) ∈ {bdH(j)(w)/nc, ddH(j)(w)/ne} for each w ∈ V (H) and each u ∈ ψ−1(w)
and each j ∈ Zk,

(iii) mG(u, v) ∈ {bmH(w, z)/n2c, dmH(w, z)/n2e} for every pair of distinct vertices w, z
∈ V (H), each u ∈ ψ−1(w) and each v ∈ ψ−1(z).

Having the internally fairness notion defined in the Introduction for (holey) edge-
colorings of λK(n, p) which result from (holey) factorizations of λK(n, p), we derive the
following two corollaries of Theorem 2.

Corollary 3. Let Rt = {r0, r1, . . . , rt−1} be a multiset of positive integers. If there exists
an internally fair t-edge-coloring of λn2Kp in which each color class i is nri-regular (for
each i ∈ Zt), then there exists an internally fair Rt-factorization of λK(n, p).

Proof. Using the notation in Theorem 2, let H = λn2Kp. Then by Theorem 2 there exists
an n-detachment G of H such that

(i) the degree of each vertex in G is λn(p− 1),

(ii) each color class in G induces a spanning ri-regular subgraph (since we are given
that dH(j)(w) = nri for each w ∈ V (H) and each j ∈ Zt), and

(iii) there are exactly λ edges between each pair of vertices u and v of G for which
ψ(u) 6= ψ(v), and no edges otherwise.

So, by (i) and (iii) it is clear that G = λK(n, p) with partition {ψ−1(w) | w ∈ V (H)} of
the vertex set, and by (ii) each color class i ∈ Zt induces an ri-factor of λK(n, p). This
yields an Rt-factorization of λK(n, p). There is a one-to-one correspondence between
the edges joining any pair of vertices w and z in H and the edges between the two
corresponding parts of G = λK(n, p), one of which contains the vertices in ψ−1(w) and
the other contains the vertices in ψ−1(z). Hence, since the edge-coloring of λn2Kp is
internally fair, the edge-coloring of λK(n, p) is also internally fair.

Corollary 4. Let R(fp) = {ri,j|ri,j ∈ Z+, i ∈ Zp, j ∈ Zfp(i)} be a multiset of posi-
tive integers where fp : Zp → Z+ is a function. If there exists an internally fair holey∑p−1

i=0 fp(i)-edge-coloring of λn2Kp in which each color class (i, j) with i ∈ Zp = V (λn2Kp)
and j ∈ Zfp(i) is an nri,j-regular subgraph of λn2Kp− i then there exists an internally fair
holey R(fp)-factorization of λK(n, p).

Proof. Using the notation in Theorem 2, let H = λn2Kp. Then by Theorem 2 there exists
an n-detachment G of H such that

the electronic journal of combinatorics 24(3) (2017), #P3.52 5



(i) the degree of each vertex in G is λn(p− 1),

(ii) each color class (i, j) with i ∈ Zp and j ∈ Zfp(i) in G induces a spanning ri,j-
regular subgraph of G− ψ−1(i) (since we are given that dH((i,j))(w) = nri,j for each
i ∈ V (λn2Kp) = Zp, for each w ∈ V (H) \ {i} and for j ∈ Zfp(i)), and

(iii) there are exactly λ edges between each pair of vertices u and w of G for which
ψ(u) 6= ψ(w), and no edges otherwise.

So, by (i) and (iii) it is clear that G = λK(n, p) with partition {ψ−1(w) | w ∈ V (H)} of
the vertex set, and by (ii) that each color class (i, j) with i ∈ Zp and j ∈ Zfp(i) in G induces
a holey ri,j-factor of λK(n, p). So this is a holey R(fp)-factorization of λK(n, p). There
is a one-to-one correspondence between the edges colored c joining any pair of vertices
u and w in H and the edges colored c between the two corresponding parts ψ−1(u) and
ψ−1(w) of G = λK(n, p). Hence, since the holey edge-coloring of λn2Kp is internally fair,
the holey edge-coloring of λK(n, p) is also internally fair.

3 Coloring Results

In this section we obtain edge-colorings of λn2Kp that can then be used in conjunction
with Corollary 3 and Corollary 4 to produce Theorem 8 and Theorem 10.

Proposition 5. Suppose that
∑t−1

i=0 ri = λn(p−1), and for each i ∈ Zt ri is even whenever
np is odd. Then there exists an edge-coloring of λn2Kp with t colors such that

(i) the edge-coloring is internally fair, and

(ii) each color class induces an nri-regular subgraph.

Proof. Suppose that
∑t−1

i=0 ri = λn(p − 1), and for each i ∈ Zt, ri is even whenever np is
odd. First suppose that p is even. Then clearly, Kp has a 1-factorization consisting of p−1
1-factors F0, F1, . . . , Fp−2. Let F = (F0, F1, . . . , Fλn2(p−1)−1) be a sequence of λn2(p − 1)

1-factors of Kp where Fi = Fj if i ≡ j (modulo p−1). For each i ∈ Zt, let s(i) =
∑i

j=0 nrj

and let G(i) be the subgraph induced by the edges in
⋃s(i)−1
k=s(i−1) Fk. Color all edges in G(i)

with i. Then {E(G(i)) | i ∈ Zt} is a partition of the edge set of λn2Kp. Clearly this
coloring of λn2Kp satisfies condition (ii). To see that it also satisfies condition (i), first
note that condition (i) is equivalent to requiring that for each i ∈ Zt, color i appears on
b(nrip/2)/(p(p− 1)/2)c = bnri/(p− 1)c or d(nrip/2)/(p(p− 1)/2)e = dnri/(p− 1)e edges
between each pair of vertices. Also note that for each i ∈ Zt, {Fi+l | l ∈ Zp−1} is a 1-
factorization of Kp. So for each i ∈ Zt, there are b(nri(p/2))/(p(p−1)/2)c = bnri/(p−1)c
or d(nri(p/2))/(p(p−1)/2)e = dnri/(p−1)e edges colored i between each pair of vertices,
as required.

Finally, suppose that p is odd. Then either n is even or for each i ∈ Zt, ri is even. Kp

has a 2-factorization consisting of (p − 1)/2 2-factors F0, F1, . . . , F(p−3)/2 (by Petersen’s
Theorem [10]). Let F = (F0, F1, . . . , Fλn2(p−1)/2−1) be a sequence of λn2(p−1)/2 2-factors
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of Kp where Fi = Fj if i ≡ j (modulo (p− 1)/2). For each i ∈ Zt, let s′(i) =
∑i

j=0(n/2)rj

and let G(i) be the subgraph induced by the edges in
⋃s′(i)−1
k=s′(i−1) Fk. Color all edges in

G(i) with i. Then {E(G(i)) | i ∈ Zt} is a partition of the edge set of λn2Kp. Clearly this
coloring of λn2Kp satisfies condition (ii). To see that it also satisfies condition (i), note
that for each i ∈ Zt, {Fi+l | l ∈ Z(p−1)/2} is a 2-factorization ofKp. So for each i ∈ Zt, there
are b(nri(p/2))/(p(p−1)/2)c = bnri/(p−1)c or d(nri(p/2))/(p(p−1)/2)e = dnri/(p−1)e
edges colored i between each pair of vertices, as required.

The following result was proved in [6].

Proposition 6. Suppose p > 2 is even. There exists a set F = {Fd | d ∈ Z(p−2)/2} of
(p− 2)/2 almost resolvable 2-factorizations of 2Kp such that for each vertex v ∈ V (2Kp),

(i) the almost parallel classes in
⋃
F∈F F with deficiency v form a 2-factorization of

Kp−1.

The next result follows directly from the constructions in the proof of Proposition 3.3
in [6].

Proposition 7. Suppose p > 1 is odd and V = Zp−1 ∪ {∞}. There exists a set F ′
=

{F ′d | d ∈ Z(p−3)/2} of (p − 3)/2 almost resolvable 2-factorizations of 2Kp and an almost
resolvable 1-factorization F ′(p−3)/2 of Kp on the vertex set V such that

(i) for each vertex v ∈ V the almost parallel classes with deficiency v in F = F ′ ∪
{F ′(p−3)/2} are edge-disjoint (therefore each edge in Kp−1 on the vertex set V \ {v}
occurs in an almost parallel class in F with deficiency v),

(ii) for each v 6=∞ and for each d ∈ Z(p−3)/2, F
′
d(v) is a hamilton cycle on V \{v}, and

(iii) F ′(p−3)/2(∞) = {{i, i+ (p− 1)/2} | i ∈ Z(p−1)/2}, and for each d ∈ Z(p−3)/2 F
′
d(∞) =

{{i, i+ d+ 1} | i ∈ Zp−1}.

Note that by (iii) F ′(p−3)/2(∞) is a holey 1-factor with deficiency∞ consisting of edges

that are distance (p−1)/2 apart, and for each d ∈ Z(p−3)/2 F
′
d(∞) is a holey 2-factor with

deficiency ∞ consisting of edges that are distance d+ 1 apart. (∗)

4 Main Results

Throughout the rest of the paper we assume that the partition of the vertices of K(n, p)
is naturally the parts of K(n, p).

Theorem 8. There exists an internally fair Rt-factorization of λK(n, p) if and only if

(i)
∑t−1

i=0 ri = λn(p− 1), and

(ii) for each i ∈ Zt, ri is even whenever np is odd.
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Proof. Suppose that there exists an internally fair Rt-factorization of λK(n, p). For each
i ∈ Zt, j ∈ Zp and each v ∈ Vj, the degree of v in the ri-factor of λK(n, p) contributes ri
to the degree of v in λK(n, p). The degree of v in λK(n, p) is λn(p − 1). So, condition
(i) must hold. For each i ∈ Zt, an ri-factor of λK(n, p) contains npri/2 edges. Hence ri
must be even whenever np is odd, which shows the necessity of condition (ii).

The sufficiency of this set of conditions follows immediately by Proposition 5 and
Corollary 3.

The following lemma gives a set of necessary conditions for an internally fair holey
R(fp)-factorization of λK(n, p) to exist.

Lemma 9. If there exists an internally fair holey R(fp)-factorization of λK(n, p) then

(i) p 6= 2,

(ii) for each i ∈ Zp,
∑fp(i)−1

j=0 ri,j = λn, and

(iii) for each i ∈ Zp and for each j ∈ Zfp(i), ri,j is even whenever n(p− 1) is odd.

Proof. Suppose that there exists an internally fair holey R(fp)-factorization of λK(n, p).
There are no holey factors in λK(n, 2), so p 6= 2, which shows the necessity of condition
(i). For each i, k ∈ Zp, each v ∈ Vi and each j ∈ Zfp(k), the degree of v in the holey
rk,j-factor of λK(n, p) contributes zero to the degree of v in λK(n, p) if k = i (since it has
deficiency Vk = Vi), and is ri,j if k 6= i. Hence for each i ∈ Zp, if v ∈ Vi then

degλK(n,p)(v) =
∑

06k6p−1

k 6=i

fp(k)−1∑
j=0

rk,j = λn(p− 1). (1)

Summing (1) over all p we get

p−1∑
i=0

∑
06k6p−1

k 6=i

fp(k)−1∑
j=0

rk,j = pλn(p− 1). (2)

In (2), for each i ∈ Zp and for each j ∈ Zfp(i), ri,j appears p− 1 times in the summation
on the left. So we get

p−1∑
i=0

fp(i)−1∑
j=0

ri,j = pλn. (3)

Finally, from (1) and (3) we see that for each i ∈ Zp,
fp(i)−1∑
j=0

ri,j =

p−1∑
i=0

fp(i)−1∑
j=0

ri,j −
∑

06k6p−1

k 6=i

fp(k)−1∑
j=0

rk,j = λn,

the electronic journal of combinatorics 24(3) (2017), #P3.52 8



which shows the necessity of condition (ii). For each i ∈ Zp, for each j ∈ Zfp(i) a holey ri,j-
factor of λK(n, p) contains n(p− 1)ri/2 edges. Hence ri must be even whenever n(p− 1)
is odd, which shows the necessity of condition (iii).

Now we prove that the necessary conditions in Lemma 9 are also sufficient.

Theorem 10. There exists an internally fair holey R(fp)-factorization of λK(n, p) if
and only if

(i) p 6= 2,

(ii) for each i ∈ Zp,
∑fp(i)−1

j=0 ri,j = λn, and

(iii) for each i ∈ Zp and for each j ∈ Zfp(i), ri,j is even whenever n(p− 1) is odd.

Proof. The necessity of these conditions is proved in Lemma 9, so we turn to a proof of
the sufficiency. The result is trivial if p = 1, so to prove the sufficiency we can assume
that p > 3.

First suppose that p is even. Then by condition (iii), if n is odd then ri,j is even
for each i ∈ Zp and for each j ∈ Zfp(i). By Proposition 6, there exist (p − 2)/2 almost
resolvable 2-factorizations of 2Kp, F0, . . . , F(p−4)/2, on the vertex set Zp such that for
each v ∈ Zp the almost parallel classes with deficiency v in F0, . . . , F(p−4)/2 form a 2-
factorization of Kp−1 on the vertex set Zp \ {v}. Extend this list for all i > 0 by defining
Fi = Fj if and only if i ≡ j (modulo (p− 2)/2). From this extended list, form a sequence
T = (T0, . . . , T(λn2p/2)−1) of λn2p/2 almost parallel classes of λn2Kp where for i ∈ Zp and
for k ∈ Zλn2/2, Ti+kp is the almost parallel class in Fk with deficiency i. For each i ∈ Zp
and for each l ∈ Zfp(i), let s(i, l) =

∑l
j=0(n/2)ri,j, and let G(i, l) be the subgraph of λn2Kp

induced by the edges in
⋃s(i,l)−1
k=s(i,l−1) Ti+kp. Color all edges in G(i, l) with (i, l). Then for

each i ∈ Zp, and for each l ∈ Zfp(i), color class (i, l) consists of the ri,ln(p− 1)/2 edges of
ri,ln/2 almost parallel classes which all have the same deficiency i ∈ V (λn2Kp), and hence
each color class is an ri,ln-regular subgraph of λn2Kp− i. Furthermore, by condition (i) of
Proposition 6, for each i ∈ V (2Kp) the almost parallel classes with deficiency i in any set
of (p − 2)/2 consecutive almost resolvable 2-factorizations of 2Kp from the extended list
F0, . . . , Fλn2/2−1 form a 2-factorization ofKp−i, which ensures that each color class induces
a balanced multigraph (a multigraph G is said to be balanced if the multiplicity between
any two pairs of vertices differs by at most 1). Hence, the ri,ln(p−1)/2 edges in each color
class are shared out evenly among the (p−1)(p−2)/2 pairs of vertices in Zp\{i}, so between
any such pair of vertices there are d(ri,ln(p− 1)/2)/((p− 1)(p− 2)/2)e = dri,ln/(p− 2)e
or b(ri,ln(p − 1)/2)/((p − 1)(p − 2)/2)c = bri,ln/(p − 2)c edges colored (i, l). Therefore

this (
∑p−1

i=0

∑fp(l)−1
l=0 ri,l)-edge-coloring is internally fair. By Corollary 4 we conclude that

there exists an internally fair holey R(fp)-factorization of λK(n, p).
Next suppose that p is odd. It is important to note that (p − 1)/gcd({d, p − 1}) is

even when d is odd. So by Lemma 1,

G(D, p− 1) has a 1-factorization whenever D contains an odd number. (∗ ∗)
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Throughout this case we will focus on the ordering F ′0, F
′
1, . . . , F

′
(p−5)/2, F

′
(p−3)/2 and

the reverse ordering F ′(p−3)/2, F
′
(p−5)/2, . . . , F

′
1, F

′
0 of the (p − 3)/2 almost resolvable 2-

factorizations of 2Kp in F ′
and one almost resolvable 1-factorization F ′(p−3)/2 of Kp from

Proposition 7 on the vertex set V = Zp−1 ∪ {∞}. In order to reduce redundancies we
limit our attention to the first ordering and make a few remarks (noting that similar
observations hold for the reverse ordering as well).

Notice that by (∗ ∗),
for 0 6 i 6 (p− 5)/2 there exists a 1-factorization of the graph consisting of the edges

in E(F ′i (∞))∪E(F ′i+1(∞)) on the vertex set Zp−1 (into four 1-factors if i < (p− 5)/2 and
three 1-factors if i = (p − 5)/2), and notice that F ′(p−3)/2(∞) is a 1-factor on the vertex

set Zp−1. (∗ ∗ ∗)
Also notice that by (ii) of Proposition 7,

for each v 6= ∞ and for each d ∈ Z(p−3)/2, F
′
d(v) is a hamilton cycle on V \ {v}, and

since |V \ {v}| is even there exists a 1-factorization of each of these hamilton cycles into
two 1-factors on the vertex set V \{v}, each 1-factor being formed by taking every second
edge on the hamilton cycle. (∗ ∗ ∗ ∗)

As in the previous case where p is even, the plan is to proceed by finding a certain
coloring of λn2Kp and then applying Corollary 4 to get the required internally fair holey
R(fp)-factorization of λK(n, p). Let λn2 = s(p − 2) + t where 0 6 t 6 p − 3. We will
consider eight cases depending on both the value of t (modulo 4) and whether p ≡ 1 or 3
(modulo 4). A rough indication as to why these subcases arise is as follows. The critical
problem to address is ensuring that each color class induces a balanced multigraph. For
each vertex v we select s near 1-factorizations of Kp with deficiency v, and are then left
to find t more near 1-factors with deficiency v. This is easy to do in all cases except when
v = ∞, where we regularly need to join pairs of near 2-factors in order to construct the
near 1-factors, as described in (∗ ∗ ∗). Dealing with this gives rise to the eight situations
which are considered to be two cases, each with four subcases. Let O = O0, . . . , O(p−3)/2
be an arbitrary ordering of the list L = F ′0, F

′
1, . . . , F

′
(p−5)/2, F

′
(p−3)/2. Extend the list O

to a list O∗ = O∗0, O
∗
1, . . . , O

∗
s(p−1)/2−1 of s(p− 3)/2 almost resolvable 2-factorizations and

s almost resolvable 1-factorizations by defining O∗i = Oj if i ≡ j (modulo (p − 1)/2).
Additionally, define t/2 (if t is even) or (t+ 1)/2 (if t is odd) almost resolvable factoriza-
tions as follows: If t is even, then O∗s(p−1)/2 = F ′0, O

∗
s(p−1)/2+1 = F ′1, . . . , O

∗
s(p−1)/2+t/2−1 =

F ′t/2−1. If t is odd, then O∗s(p−1)/2 = F ′(p−3)/2, O
∗
s(p−1)/2+1 = F ′(p−5)/2, . . . , O

∗
s(p−1)/2+(t−3)/2 =

F ′(p−t)/2, O
∗
s(p−1)/2+(t−1)/2 = F ′(p−t−2)/2. For each v ∈ Zp−1 ∪ {∞} form a sequence T (v) =

(T (v, 0), T (v, 1), . . . , T (v, q)) (where q = (s(p − 1) + t)/2 − 1 if t is even, and q =
(s(p − 1) + t − 1)/2 if t is odd) of almost parallel classes of Kp, by defining T (v, k)
for each v ∈ Zp−1 ∪ {∞} and for each k ∈ Zq+1 to be the almost parallel class (a near
1-factor or a near 2-factor) in O∗k with deficiency v.

Now for each v ∈ Zp−1 ∪ {∞} form a longer new sequence W (v) = (W (v)0,
W (v)1, . . .) from T (v) as follows. First suppose v ∈ Zp−1. For each v ∈ Zp−1 and for
0 6 k 6 (s(p − 1) + t)/2 − 1, if O∗k 6= F ′(p−3)/2 then replace T (v, k) in T (v) with the two

the electronic journal of combinatorics 24(3) (2017), #P3.52 10



near 1-factors with deficiency v, say W ′
v(k) and W ′′

v (k), formed from T (v, k) (using (∗ ∗ ∗
∗)). (Note that for v ∈ Zp−1 if O∗k = F ′(p−3)/2, then T (v, k) is already a near 1-factor with

deficiency v, which we also name with Wv(k).) We now use two specific orderings of the
list L to define W (∞) depending on the parity of t.

Case 1: Suppose t is even (modulo 4).

Let O be the ordering F ′0, F
′
1, . . . , F

′
(p−5)/2, F

′
(p−3)/2.

Subcase 1.1: Suppose t ≡ 0 (modulo 4) and p ≡ 1 (modulo 4).

For each k such that k is even (modulo (p − 1)/2) and 0 6 k 6 (p − 9)/2 (modulo
(p− 1)/2), replace T (∞, k) and T (∞, k + 1) with the four near 1-factors with deficiency
∞, say W ′

∞(k, k+ 1),W ′′
∞(k, k+ 1),W ′′′

∞(k, k+ 1) and W ′′′′
∞ (k, k+ 1), formed from T (∞, k)

and T (∞, k+ 1) using (∗ ∗ ∗). For k ≡ (p− 5)/2 (modulo (p− 1)/2) replace T (∞, k) and
T (∞, k+1) with the three near 1-factors with deficiency∞, say W ′

∞(k, k+1),W ′′
∞(k, k+1)

and W ′′′
∞(k, k + 1), formed from T (∞, k) and T (∞, k + 1) using (∗ ∗ ∗). See Example 11.

Subcase 1.2: Suppose t ≡ 2 (modulo 4) and p ≡ 1 (modulo 4).

For each k ≡ 0 (modulo (p − 1)/2) replace T (∞, k) with the two near 1-factors with
deficiency ∞, say W ′

∞(k) and W ′′
∞(k), formed from T (∞, k) (notice that for each k ≡ 0

(modulo (p− 1)/2) T (∞, k) = {{i, i+ 1} | i ∈ Zp−1}, which can be factored into two near
1-factors on Zp−1 using (∗ ∗)). For each k such that k is odd (modulo (p − 1)/2) and
1 6 k 6 (p−7)/2 (modulo (p−1)/2), replace T (∞, k) and T (∞, k+1) with the four near
1-factors with deficiency∞, say W ′

∞(k, k+1),W ′′
∞(k, k+1),W ′′′

∞(k, k+1) and W ′′′′
∞ (k, k+1),

formed from T (∞, k) and T (∞, k+ 1) using (∗ ∗ ∗). Note that for k ≡ (p− 3)/2 (modulo
(p− 1)/2) T (∞, k) is already a near 1-factor with deficiency∞, which we also name with
W∞(k). See Example 12.

Subcase 1.3: Suppose t ≡ 0 (modulo 4) and p ≡ 3 (modulo 4).

For each k such that k is even (modulo (p − 1)/2) and 0 6 k 6 (p − 7)/2 (modulo
(p− 1)/2), replace T (∞, k) and T (∞, k + 1) with the four near 1-factors with deficiency
∞, say W ′

∞(k, k+ 1),W ′′
∞(k, k+ 1),W ′′′

∞(k, k+ 1) and W ′′′′
∞ (k, k+ 1), formed from T (∞, k)

and T (∞, k+1) using (∗ ∗ ∗). (Note that for k ≡ (p−3)/2 (modulo (p−1)/2) T (∞, k) is
already a near 1-factor with deficiency∞, which we also name with W∞(k).) See Example
13.

Subcase 1.4: Suppose t ≡ 2 (modulo 4) and p ≡ 3 (modulo 4).

For each k ≡ 0 (modulo (p − 1)/2) replace T (∞, k) with the two near 1-factors with
deficiency ∞, say W ′

∞(k) and W ′′
∞(k), formed from T (∞, k) (notice that for each k ≡ 0

(modulo (p − 1)/2) T (∞, k) = {{i, i + 1} | i ∈ Zp−1}, which can be factored into two
near 1-factors on Zp−1 using (∗ ∗)). For each k such that k is odd (modulo (p − 1)/2)
and 1 6 k 6 (p − 9)/2 (modulo (p − 1)/2), replace T (∞, k) and T (∞, k + 1) with the
four near 1-factors with deficiency ∞, say W ′

∞(k, k + 1),W ′′
∞(k, k + 1),W ′′′

∞(k, k + 1) and
W ′′′′
∞ (k, k+1), formed from T (∞, k) and T (∞, k+1) using (∗ ∗ ∗). Finally, for k ≡ (p−5)/2

(modulo (p − 1)/2) replace T (∞, k) and T (∞, k + 1) with the three near 1-factors with
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deficiency ∞, say W ′
∞(k, k + 1),W ′′

∞(k, k + 1) and W ′′′
∞(k, k + 1), formed from T (∞, k)

and T (∞, k + 1) using (∗ ∗ ∗). See Example 14.

Case 2: Suppose t is odd (modulo 4).

Let O be the ordering F ′(p−3)/2, F
′
(p−5)/2, . . . , F

′
1, F

′
0.

Subcase 2.1: Suppose t ≡ 1 (modulo 4) and p ≡ 1 (modulo 4).

Note that for k ≡ 0 (modulo (p − 1)/2) T (∞, k) is already a near 1-factor with
deficiency ∞, which we now name with W∞(k). For each k such that k is odd (modulo
(p−1)/2) and 1 6 k 6 (p−7)/2 (modulo (p−1)/2), replace T (∞, k) and T (∞, k+1) with
the four near 1-factors with deficiency ∞, say W ′

∞(k, k + 1),W ′′
∞(k, k + 1),W ′′′

∞(k, k + 1)
and W ′′′′

∞ (k, k + 1), formed from T (∞, k) and T (∞, k + 1) using (∗ ∗ ∗). Finally for
each k ≡ (p − 3)/2 (modulo (p − 1)/2) replace T (∞, k) with the two near 1-factors
with deficiency ∞, say W ′

∞(k) and W ′′
∞(k), formed from T (∞, k) (notice that for each

k ≡ (p− 3)/2 (modulo (p− 1)/2) T (∞, k) = {{i, i+ 1} | i ∈ Zp−1}, which can be factored
into two near 1-factors on Zp−1 using (∗ ∗)). See Example 15.

Subcase 2.2: Suppose t ≡ 3 (modulo 4) and p ≡ 1 (modulo 4).

For k ≡ 0 (modulo (p − 1)/2) replace T (∞, k) and T (∞, k + 1) with the three near
1-factors with deficiency ∞, say W ′

∞(k, k + 1),W ′′
∞(k, k + 1) and W ′′′

∞(k, k + 1), formed
from T (∞, k) and T (∞, k + 1) using (∗ ∗ ∗). For each k such that k is even (modulo
(p−1)/2) and 2 6 k 6 (p−5)/2 (modulo (p−1)/2), replace T (∞, k) and T (∞, k+1) with
the four near 1-factors with deficiency ∞, say W ′

∞(k, k + 1),W ′′
∞(k, k + 1),W ′′′

∞(k, k + 1)
and W ′′′′

∞ (k, k+ 1), formed from T (∞, k) and T (∞, k+ 1) using (∗ ∗ ∗). See Example 16.

Subcase 2.3: Suppose t ≡ 1 (modulo 4) and p ≡ 3 (modulo 4).

Note that for k ≡ 0 (modulo (p − 1)/2) T (∞, k) is already a near 1-factor with
deficiency ∞, which we now name with W∞(k). For each k such that k is odd (modulo
(p−1)/2) and 1 6 k 6 (p−5)/2 (modulo (p−1)/2), replace T (∞, k) and T (∞, k+1) with
the four near 1-factors with deficiency ∞, say W ′

∞(k, k + 1),W ′′
∞(k, k + 1),W ′′′

∞(k, k + 1)
and W ′′′′

∞ (k, k+ 1), formed from T (∞, k) and T (∞, k+ 1) using (∗ ∗ ∗). See Example 17.

Subcase 2.4: Suppose t ≡ 3 (modulo 4) and p ≡ 3 (modulo 4).

For k ≡ 0 (modulo (p − 1)/2) replace T (∞, k) and T (∞, k + 1) with the three near
1-factors with deficiency ∞, say W ′

∞(k, k + 1),W ′′
∞(k, k + 1) and W ′′′

∞(k, k + 1), formed
from T (∞, k) and T (∞, k + 1) using (∗ ∗ ∗). For each k such that k is even (modulo
(p−1)/2) and 2 6 k 6 (p−7)/2 (modulo (p−1)/2), replace T (∞, k) and T (∞, k+1) with
the four near 1-factors with deficiency ∞, say W ′

∞(k, k + 1),W ′′
∞(k, k + 1),W ′′′

∞(k, k + 1)
and W ′′′′

∞ (k, k + 1), formed from T (∞, k) and T (∞, k + 1) using (∗ ∗ ∗). Finally for
each k ≡ (p − 3)/2 (modulo (p − 1)/2) replace T (∞, k) with the two near 1-factors
with deficiency ∞, say W ′

∞(k) and W ′′
∞(k), formed from T (∞, k) (notice that for each

k ≡ (p− 3)/2 (modulo (p− 1)/2) T (∞, k) = {{i, i+ 1} | i ∈ Zp−1}, which can be factored
into two near 1-factors on Zp−1 using (∗ ∗)). See Example 18.
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W (v) has been defined for all v ∈ Zp−1 ∪ {∞} in all possible cases. This is used to
define the color classes as follows. For each v ∈ Zp−1 ∪ {∞} and for each l ∈ Zfp(v), let

s(v, l) =
∑l

j=0 rv,jn, and let G(v, l) be the subgraph of λn2Kp induced by the edges in⋃s(v,l)−1
z=s(v,l−1)W (v)z. Color all edges in G(v, l) with (v, l). Then for each v ∈ Zp−1 ∪ {∞},

and for each l ∈ Zfp(v), color class (v, l) consists of the rv,ln(p − 1)/2 edges of rv,ln near
1-factors which all have the same deficiency v, and hence each color class is an rv,ln-
regular subgraph of λn2Kp−v. Furthermore, by condition (i) of Proposition 7, each color
class (v, l) is balanced. Hence, the rv,ln(p− 1)/2 edges in each color class are shared out
evenly among the (p− 1)(p− 2)/2 pairs of vertices in Zp−1 ∪ {∞} \ {v}, so between any
such pair of vertices there are d(rv,ln(p − 1)/2)/((p − 1)(p − 2)/2)e = drv,ln/(p − 2)e or
b(rv,ln(p− 1)/2)/((p− 1)(p− 2)/2)c = brv,ln/(p− 2)c edges colored (v, l). Therefore this
edge-coloring is internally fair. By Corollary 4 we conclude that there exists an internally
fair holey R(fp)-factorization of λK(n, p).

As was suggested in the last proof, examples are now provided of the orderings that
are a crucial part of the proof of Theorem 10.

Example 11. If p = 13 and λn2 = 26, then the ordering of the 26 near 1-factors with
deficiency i ∈ Zp−1 is as follows:

W (i) = (W (i)0,W (i)1, . . . ,W (i)25) = (W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),
W ′
i (3),W ′′

i (3),W ′
i (4),W ′′

i (4),Wi(5),W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),W ′
i (3),

W ′′
i (3),W ′

i (4),W ′′
i (4),Wi(5),W ′

i (0),W ′′
i (0),W ′

i (1),W ′′
i (1)).

The ordering of the 26 near 1-factors with deficiency ∞ is as follows:
W (∞) = (W (∞)0,W (∞)1, . . . ,W (∞)25) = (W ′

∞(0, 1),W ′′
∞(0, 1),W ′′′

∞(0, 1),
W ′′′′
∞ (0, 1),W ′

∞(2, 3),W ′′
∞(2, 3),W ′′′

∞(2, 3),W ′′′′
∞ (2, 3),W ′

∞(4, 5),W ′′
∞(4, 5),W ′′′

∞(4, 5),
W ′
∞(0, 1),W ′′

∞(0, 1),W ′′′
∞(0, 1),W ′′′′

∞ (0, 1),W ′
∞(2, 3),W ′′

∞(2, 3),W ′′′
∞(2, 3),W ′′′′

∞ (2, 3),
W ′
∞(4, 5),W ′′

∞(4, 5),W ′′′
∞(4, 5),W ′

∞(0, 1),W ′′
∞(0, 1),W ′′′

∞(0, 1),W ′′′′
∞ (0, 1)).

Example 12. If p = 13 and λn2 = 24, then the ordering of the 24 near 1-factors with
deficiency i ∈ Zp−1 is as follows:

W (i) = (W (i)0,W (i)1, . . . ,W (i)23) = (W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),
W ′
i (3),W ′′

i (3),W ′
i (4),W ′′

i (4),Wi(5),W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),W ′
i (3),

W ′′
i (3),W ′

i (4),W ′′
i (4),Wi(5),W ′

i (0),W ′′
i (0)).

The ordering of the 24 near 1-factors with deficiency ∞ is as follows:
W (∞) = (W (∞)0,W (∞)1, . . . ,W (∞)23) = (W ′

∞(0),W ′′
∞(0),W ′

∞(1, 2),W ′′
∞(1, 2),

W ′′′
∞(1, 2),W ′′′′

∞ (1, 2),W ′
∞ (3, 4),W ′′

∞(3, 4),W ′′′
∞(3, 4),W ′′′′

∞ (3, 4),W∞(5),W ′
∞(0),W ′′

∞(0),
W ′
∞(1, 2),W ′′

∞(1, 2),W ′′′
∞(1, 2),W ′′′′

∞ (1, 2),W ′
∞ (3, 4),W ′′

∞(3, 4),W ′′′
∞(3, 4),W ′′′′

∞ (3, 4),
W∞(5),W ′

∞(0),W ′′
∞(0)).

Example 13. If p = 11 and λn2 = 22, then the ordering of the 22 near 1-factors with
deficiency i ∈ Zp−1 is as follows:

W (i) = (W (i)0,W (i)1, . . . ,W (i)21) = (W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),
W ′
i (3),W ′′

i (3),Wi(4),W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),W ′
i (3),W ′′

i (3),Wi(4),
W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1)).
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The ordering of the 22 near 1-factors with deficiency ∞ is as follows:
W (∞) = (W (∞)0,W (∞)1, . . . ,W (∞)21) = (W ′

∞(0, 1),W ′′
∞(0, 1),W ′′′

∞(0, 1),
W ′′′′
∞ (0, 1),W ′

∞(2, 3),W ′′
∞(2, 3),W ′′′

∞(2, 3),W ′′′′
∞ (2, 3),W∞(4),W ′

∞(0, 1),W ′′
∞(0, 1),

W ′′′
∞(0, 1),W ′′′′

∞ (0, 1),W ′
∞(2, 3),W ′′

∞(2, 3),W ′′′
∞(2, 3),W ′′′′

∞ (2, 3),W∞(4),W ′
∞(0, 1),

W ′′
∞(0, 1),W ′′′

∞(0, 1),W ′′′′
∞ (0, 1)).

Example 14. If p = 11 and λn2 = 20, then the ordering of the 20 near 1-factors with
deficiency i ∈ Zp−1 is as follows:

W (i) = (W (i)0,W (i)1, . . . ,W (i)19) = (W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),
W ′
i (3),W ′′

i (3),Wi(4),W ′
i (0),W ′′

i (0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),W ′
i (3),W ′′

i (3),Wi(4),
W ′
i (0),W ′′

i (0)).
The ordering of the 20 near 1-factors with deficiency ∞ is as follows:

W (∞) = (W (∞)0,W (∞)1, . . . ,W (∞)19) = (W ′
∞(0),W ′′

∞(0),W ′
∞(1, 2),W ′′

∞(1, 2),
W ′′′
∞(1, 2),W ′′′′

∞ (1, 2),W ′
∞ (3, 4),W ′′

∞(3, 4),W ′′′
∞(3, 4),W ′

∞(0),W ′′
∞(0),W ′

∞(1, 2),W ′′
∞(1, 2),

W ′′′
∞ (1, 2),W ′′′′

∞ (1, 2),W ′
∞(3, 4),W ′′

∞(3, 4),W ′′′
∞(3, 4),W ′

∞(0), W ′′
∞(0)).

Example 15. If p = 13 and λn2 = 27, then the ordering of the 27 near 1-factors with
deficiency i ∈ Zp−1 is as follows:

W (i) = (W (i)0,W (i)1, . . . ,W (i)26) = (Wi(0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),W ′
i (3),

W ′′
i (3),W ′

i (4),W ′′
i (4),W ′

i (5),W ′′
i (5),Wi(0),W ′

i (1),W ′′
i (1),W ′

i (2),W ′′
i (2),W ′

i (3),W ′′
i (3),

W ′
i (4),W ′′

i (4),W ′
i (5),W ′′

i (5),Wi(0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2)).
The ordering of the 27 near 1-factors with deficiency ∞ is as follows:
W (∞) = (W (∞)0,W (∞)1, . . . ,W (∞)26) = (W∞(0),W ′

∞(1, 2),W ′′
∞(1, 2),W ′′′

∞(1, 2),
W ′′′′
∞ (1, 2),W ′

∞(3, 4),W ′′
∞(3, 4),W ′′′

∞(3, 4),W ′′′′
∞ (3, 4),W ′

∞(5),W ′′
∞(5),W∞(0),W ′

∞(1, 2),
W ′′
∞(1, 2),W ′′′

∞(1, 2),W ′′′′
∞ (1, 2),W ′

∞(3, 4),W ′′
∞(3, 4),W ′′′

∞(3, 4),W ′′′′
∞ (3, 4),W ′

∞(5),
W ′′
∞(5),W∞(0),W ′

∞(1, 2),W ′′
∞(1, 2),W ′′′

∞(1, 2),W ′′′′
∞ (1, 2)).

Example 16. If p = 13 and λn2 = 25, then the ordering of the 25 near 1-factors with
deficiency i ∈ Zp−1 is as follows:

W (i) = (W (i)0,W (i)1, . . . ,W (i)24) = (Wi(0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),W ′
i (3),

W ′′
i (3),W ′

i (4),W ′′
i (4),W ′

i (5),W ′′
i (5),Wi(0),W ′

i (1),W ′′
i (1),W ′

i (2),W ′′
i (2),W ′

i (3),W ′′
i (3),

W ′
i (4),W ′′

i (4),W ′
i (5),W ′′

i (5),Wi(0),W ′
i (1),W ′′

i (1)).
The ordering of the 25 near 1-factors with deficiency ∞ is as follows:
W (∞) = (W (∞)0,W (∞)1, . . . ,W (∞)24) = (W ′

∞(0, 1),W ′′
∞(0, 1),W ′′′

∞(0, 1),W ′
∞(2, 3),

W ′′
∞(2, 3),W ′′′

∞(2, 3),W ′′′′
∞ (2, 3),W ′

∞(4, 5),W ′′
∞(4, 5),W ′′′

∞(4, 5),W ′′′′
∞ (4, 5),W ′

∞(0, 1),
W ′′
∞(0, 1),W ′′′

∞(0, 1),W ′
∞(2, 3),W ′′

∞(2, 3),W ′′′
∞(2, 3),W ′′′′

∞ (2, 3),W ′
∞(4, 5),W ′′

∞(4, 5),
W ′′′
∞(4, 5),W ′′′′

∞ (4, 5),W ′
∞(0, 1),W ′′

∞(0, 1),W ′′′
∞(0, 1)).

Example 17. If p = 11 and λn2 = 23, then the ordering of the 23 near 1-factors with
deficiency i ∈ Zp−1 is as follows:

W (i) = (W (i)0,W (i)1, . . . ,W (i)22) = (Wi(0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),W ′
i (3),

W ′′
i (3),W ′

i (4),W ′′
i (4),Wi(0),W ′

i (1),W ′′
i (1),W ′

i (2),W ′′
i (2),W ′

i (3),W ′′
i (3),W ′

i (4),W ′′
i (4),

Wi(0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2)).
The ordering of the 23 near 1-factors with deficiency ∞ is as follows:
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W (∞) = (W (∞)0,W (∞)1, . . . ,W (∞)22) = (W∞(0),W ′
∞(1, 2),W ′′

∞(1, 2),W ′′′
∞(1, 2),

W ′′′′
∞ (1, 2),W ′

∞(3, 4),W ′′
∞(3, 4),W ′′′

∞(3, 4),W ′′′′
∞ (3, 4),W∞(0),W ′

∞(1, 2),W ′′
∞(1, 2),

W ′′′
∞(1, 2),W ′′′′

∞ (1, 2),W ′
∞(3, 4),W ′′

∞(3, 4),W ′′′
∞(3, 4),W ′′′′

∞ (3, 4),W∞(0),W ′
∞(1, 2),

W ′′
∞(1, 2),W ′′′

∞(1, 2),W ′′′′
∞ (1, 2)).

Example 18. If p = 11 and λn2 = 21, then the ordering of the 21 near 1-factors with
deficiency i ∈ Zp−1 is as follows:

W (i) = (W (i)0,W (i)1, . . . ,W (i)20) = (Wi(0),W ′
i (1),W ′′

i (1),W ′
i (2),W ′′

i (2),W ′
i (3),

W ′′
i (3),W ′

i (4),W ′′
i (4),Wi(0),W ′

i (1),W ′′
i (1),W ′

i (2),W ′′
i (2),W ′

i (3),W ′′
i (3),W ′

i (4),W ′′
i (4),

Wi(0),W ′
i (1),W ′′

i (1)).
The ordering of the 21 near 1-factors with deficiency ∞ is as follows:
W (∞) = (W (∞)0,W (∞)1, . . . ,W (∞)20) = (W ′

∞(0, 1),W ′′
∞(0, 1),W ′′′

∞(0, 1),W ′
∞(2, 3),

W ′′
∞(2, 3),W ′′′

∞(2, 3),W ′′′′
∞ (2, 3),W ′

∞(4),W ′′
∞(4),W ′

∞(0, 1),W ′′
∞(0, 1),W ′′′

∞(0, 1),W ′
∞(2, 3),

W ′′
∞(2, 3),W ′′′

∞(2, 3),W ′′′′
∞ (2, 3),W ′

∞(4),W ′′
∞(4),W ′

∞(0, 1),W ′′
∞(0, 1),W ′′′

∞(0, 1)).
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