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Abstract

The union-closed sets conjecture states that if a finite family of sets A 6= {∅} is
union-closed, then there is an element which belongs to at least half the sets in A.
In 2001, D. Reimer showed that the average set size of a union-closed family, A, is
at least 1

2 log2 |A|. In order to do so, he showed that all union-closed families satisfy
a particular condition, which in turn implies the preceding bound. Here, answering
a question raised in the context of T. Gowers’ polymath project on the union-closed
sets conjecture, we show that Reimer’s condition alone is not enough to imply that
there is an element in at least half the sets.

1 Introduction

Given the set [n] = {1, . . . , n} and a family A ⊆ 2[n] we say A is union-closed if for
A,B ∈ A we have A ∪ B ∈ A. The union-closed sets conjecture, due to P. Frankl [3],
states that if A ⊆ 2[n] is union-closed and A 6= {∅} then there is some element of [n]
which belongs to at least half the sets in A. One method of approaching this conjecture is
to look at the average frequency of an element or, equivalently, the average set size. The
following theorem of D. Reimer [2] was thus motivated by and can be shown to follow
from, the union-closed sets conjecture.

Theorem 1. If A ⊆ 2[n] and is union-closed, then∑
A∈A |A|
|A|

>
log2 |A|

2
(1)

We will say that F ⊆ 2[n] is a filter if G ⊇ F and F ∈ F implies G ∈ F . Additionally,
for A ⊆ B ⊆ [n] define [A,B] := {C : A ⊆ C ⊆ B}. In order to prove Theorem 1, Reimer
introduced the following criterion for a family A ⊆ 2[n]:
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Definition 2. We say A ⊆ 2[n] satisfies Condition 1 if there exists a filter F ⊆ 2[n] and
a bijection A 7→ FA from A to F satisfying:

1. A ⊆ FA for all A ∈ A

2. For distinct A,B ∈ A we have [A,FA] ∩ [B,FB] = ∅.

Reimer’s proof of Theorem 1 consists of two steps. He first shows that every union-
closed family A satisfies Condition 1. He then shows that Condition 1 implies Theorem 1.

In 2016, T. Gowers began a polymath project focused on the union-closed sets con-
jecture. In the comments on the initial post I. Balla first proposed:

Conjecture 3. Assume A ⊆ 2[n] satisfies Condition 1. Then there is an element x ∈ [n]
in at least half the sets of A.

Gowers reiterates Conjecture 3 in his second post focused on strengthenings of the
union-closed sets conjecture. In the comments there is a discussion of a possible coun-
terexample, and it is stated that all families with ground set at most 5 and a random
sampling of families with ground set at most 12 have been confirmed to satisfy Conjecture
3 [1].

The conjecture is certainly a natural one to consider: Reimer’s work has been perhaps
the most successful in finding a way to exploit the union-closed hypothesis, and one would
like to decide whether more can be gotten from his approach, particularly as finding a way
into the problem has proved so difficult. The polymath project’s lack of recent progress,
after much initial enthusiasm, may be considered further evidence of this difficulty.

As Reimer showed that all union-closed families satisfy Condition 1, Conjecture 3 is
clearly a strengthening of the union-closed sets conjecture. The purpose of this note is to
show that Conjecture 3 is false.

2 Counterexample

In what follows we will always have A and F as in Definition 2.

Note 4. An equivalent way of stating the second part of Condition 1 is that at least one
of A \ FB or B \ FA is non-empty.

We will use the following notation:

• Ax = {A ∈ A : x ∈ A}

• A0 is the set for which FA0 = [n]

• Ai is the set for which FAi
= [n] \ {i} for i ∈ [n]

• Bi,j is the set for which FBi,j
= [n] \ {i, j} for i 6= j ∈ [n]

Before giving the counterexample we will briefly describe how we found it and indicate
why no smaller example is possible. The following observation was our starting point.
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Fact 5. Assume A satisfies Condition 1. If every set in F has size at least n − 1 then
there is an element in at least half of the sets of A.

Proof. Without loss of generality assume F = {[n]} ∪ {[n] \ {i} : i ∈ [k]}. Hence,
|F| = |A| = k + 1. By Note 4 we know that [k] ⊆ A0. Now we will view each Ai as
a vertex labelled i in a digraph, D, on vertex set [k], with (i, j) an edge exactly when
i ∈ Aj. Again by Note 4 we know that D must contain a tournament (an orientation
of Kn). Furthermore, the number of sets containing i is simply the out-degree of i plus
1 (since i ∈ A0). Since D has k vertices and contains a tournament it has maximum
out-degree at least k−1

2
. Hence there is always an element in at least k+1

2
members of

A.

Assume n is the smallest integer such that there is a counterexample to Conjecture
3 on [n] and A is such a counterexample with corresponding filter F . We will use the
following three observations to show that n > 8, and then exhibit a counterexample when
n = 8.

Note 6. F must contain all sets of size n− 1.

Proof. Suppose instead that the elements of F of size n− 1 are [n] \ {i} for i ∈ [k] with
k < n. Since F is a filter we have {k + 1, . . . , n} ⊆ F for all F ∈ F , implying that the
condition in Note 4 is not affected if we replace each X ∈ A ∪ F by X \ {k + 1, . . . , n}.
This produces a counterexample on a smaller set, contradicting the minimality of n.

Restrict A to A′ := {Ai}ni=0. If n is even then there exists x ∈ [n] with |A′x| > n+2
2

.
Hence we need at least two sets in A\A′. (If n is odd similar reasoning shows that there
must be at least three sets in A \ A′.)

In our example we will take n to be even and F to consist of [n]\{1, 2} and [n]\{3, 4}
along with all sets of size at least n− 1. Thus |F| = |A| = n + 3, A0 = [n], and we want
to arrange that |Ax| 6 n

2
+ 1 for all x ∈ [n]. We will use the same digraph, D, as in the

proof of Fact 5 (with (i, j) an edge if and only if i ∈ Aj). Note that the Bi,j’s do not
directly affect the digraph.

Note 7. The sum of the out-degrees in D must be at least n2−n
2

+ 2.

Proof. Recall that by Note 4 D must contain a tournament. Additionally, by Note 4 if
Bi,j ∈ A then i ∈ Aj and j ∈ Ai. Thus we must have at least one additional out-degree
for every Bi,j.

Note 8. B1,2 and B3,4 must both be non-empty,

Proof. Without loss of generality 1 ∈ B3,4, since B1,2 and B3,4 must satisfy the condition
of Note 4. Additionally, if B1,2 = ∅ then to satisfy Note 4 all other sets in A must contain
1 or 2. However, A0 contains both 1 and 2, so one of 1 or 2 must appear in at least half
the sets, contradicting that A is a counterexample.
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By Note 8 we must have at least 2 vertices with out-degree no more than n
2
− 1. The

remaining out-degrees must still be no more than n
2
. Combining this with Note 7 we

have the inequality 2(n
2
− 1) + (n − 2)(n

2
) > n2−n

2
+ 2, i.e. n > 8. (If |A \ A′| > 2 then

we get even more “extra” degrees and the lower bound on n increases.) When n is odd
similar consideration gives n > 13; so, since our example does indeed use n = 8 it is of
the smallest possible size.

Counterexample 9. Here we will take our universe to be [8]. Our family A consists of
the following 11 sets:

• A0 = [8]

• A1 = {2, 4, 6, 7, 8}

• A2 = {1, 3, 5, 8}

• A3 = {1, 4, 7, 8}

• A4 = {2, 3, 5, 6}

• A5 = {1, 3, 7}

• A6 = {2, 3, 5}

• A7 = {2, 4, 6}

• A8 = {4, 5, 6, 7}

• B1,2 = {8}

• B3,4 = {1}

We (or our computers) can easily check that the requirement in Note 4 is satis-
fied (a short maple script can be found at http://sites.math.rutgers.edu/~ajr224/

counterexample-check.txt.) and that each element appears in at most 5 sets. The
bijection between A and F is given explicitly in the appendix.
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3 Appendix

Below is the complete bijection between A and F in our counterexample. All the sets are
represented by their indicator vectors:

A0 7→ FA0

1
1
1
1
1
1
1
1


7→



1
1
1
1
1
1
1
1



A1 7→ FA1

0
1
0
1
0
1
1
1


7→



0
1
1
1
1
1
1
1



A2 7→ FA2

1
0
1
0
1
0
0
1


7→



1
0
1
1
1
1
1
1



A3 7→ FA3

1
0
0
1
0
0
1
1


7→



1
1
0
1
1
1
1
1



A4 7→ FA4

0
1
1
0
1
1
0
0


7→



1
1
1
0
1
1
1
1


A5 7→ FA5

1
0
1
0
0
0
1
0


7→



1
1
1
1
0
1
1
1



A6 7→ FA6

0
1
1
0
1
0
0
0


7→



1
1
1
1
1
0
1
1



A7 7→ FA7

0
1
0
1
0
1
0
0


7→



1
1
1
1
1
1
0
1



A8 7→ FA8

0
0
0
1
1
1
1
0


7→



1
1
1
1
1
1
1
0



B1,2 7→ FB1,2

0
0
0
0
0
0
0
1


7→



0
0
1
1
1
1
1
1



B3,4 7→ FB3,4

1
0
0
0
0
0
0
0


7→



1
1
0
0
1
1
1
1
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