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Abstract

A majority coloring of a digraph is a coloring of its vertices such that for each
vertex v, at most half of the out-neighbors of v have the same color as v. A digraph
D is majority k-choosable if for any assignment of lists of colors of size k to the
vertices there is a majority coloring of D from these lists. We prove that every
digraph is majority 4-choosable. This gives a positive answer to a question posed
recently by Kreutzer, Oum, Seymour, van der Zypen, and Wood (2017). We obtain
this result as a consequence of a more general theorem, in which majority condition
is profitably extended. For instance, the theorem implies also that every digraph
has a coloring from arbitrary lists of size three, in which at most 2/3 of the out-
neighbors of any vertex share its color. This solves another problem posed by the
same authors, and supports an intriguing conjecture stating that every digraph is
majority 3-colorable.
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1 Introduction

Let D be a directed graph. Let d+(v) denote the number of out-neighbors of vertex v. A
coloring c of the vertices of D is called majority coloring if for every vertex v the number
of its out-neighbors in color c(v) is at most 1

2
d+(v). This concept was introduced recently

by van der Zypen [7], in connection to neural networks, and studied by Kreutzer, Oum,
Seymour, van der Zypen, and Wood in [3]. It is proved there, among other results, that
every digraph is majority 4-colorable. The proof is very simple: first, notice that every
digraph with no directed cycles is majority 2-colorable (just apply greedy coloring), next,
split the edges of a given digraph into two acyclic digraphs, and take the product of the
two colorings. It is conjectured in [3] that actually three colors are sufficient for majority
coloring of any digraph. This would be best possible since a majority coloring of an odd
directed cycle must be a proper coloring of the underlying undirected graph.

Another interesting problem posed in [3] concerns list version of the majority coloring.
Suppose that each vertex v of a digraph D is assigned with a list of colors L(v). Then D is
majority colorable from these lists if there is a majority coloring c of D with c(v) ∈ L(v).
If D is majority colorable from any lists of size k, then we say that D is majority k-
choosable. The authors of [3] asked if there is a finite number k such that every digraph
is majority k-choosable. We answer this question in the affirmative by proving a more
general theorem which implies that actually every digraph is majority 4-choosable. As
another consequence we infer that every digraph is 3-choosable so that at most 2

3
d+(v) of

the out-neighbors of any vertex v have the same color as v. This solves another problem
posed in [3], and extends a result of Seymour from [5], asserting that every digraph has
3-coloring in which at least one out-neighbor of each vertex (of positive out-degree) is
colored differently.

There are many variants of majority coloring that may be studied in a variety of
contexts (see [3]). Perhaps our approach might be useful in some of these situations. We
shall discuss briefly these issues in the final section.

2 The results

Our main result reads as follows.

Theorem 1. Let D be a directed graph. Suppose that each vertex v is assigned with a
list L(v) of four colors. Suppose further that for each vertex v, each color x in L(v) is
assigned a real number rv(x), the rank of color x in L(v). Assume that for every vertex
v, the color ranks rv(x) satisfy the following condition:∑

x∈L(v)

rv(x) > 2d+(v). (∗)

Then there is a vertex coloring of D from lists L(v) satisfying the following constraint:
If x is a color assigned to v, then the number of out-neighbors of v in color x is at most
rv(x).
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Proof. Let us remark first that we do not impose any restrictions on color ranks, except
condition (∗). These ranks may be positive, negative, or zero. If rv(x) = 0 and v is
colored with x, then to satisfy the assertion of the theorem, none of the out-neighbors of
v may be colored with x. If rv(x) is strictly negative, then actually v cannot be colored
with x at all (no set may have negative cardinality).

The proof goes by induction on the number of vertices in D. It is not hard to check
that the theorem is true for one-vertex digraph. Indeed, by condition (∗), at least one
color rank in the list must be non-negative, and we may use it to color the only vertex
in the digraph. So, let n > 2, and assume that the assertion of the theorem is true for
all digraphs with at most n− 1 vertices. Let D be a digraph on n vertices satisfying the
assumptions of the theorem, and let v be any vertex of D. Consider a new digraph D′

obtained by deleting vertex v with color ranks modified as follows. Let a and b be the
two colors with highest ranks, rv(a) and rv(b), in the list L(v). For each in-neighbor u of
vertex v, decrease the ranks ru(a) and ru(b) by one, provided these colors are contained
in the list L(u). All the remaining color ranks in these or other lists are left unchanged.

We claim that digraph D′ with modified color ranks still satisfies condition (∗). Indeed,
for each in-neighbor u of v, the left hand side of (∗) decreased by at most two, while the
right-hand side of (∗) decreased by exactly two (since the out-degree d+(u) decreased by
exactly one). So, by the inductive assumption there is a coloring of D′ satisfying the
assertion of the theorem.

We now extend this coloring to the deleted vertex v in the following way. First notice
that

rv(a) + rv(b) > d+(v). (1)

Indeed, by the maximality of ranks of colors a and b in the list L(v), the inequality
rv(a) + rv(b) < d+(v) would imply

∑
x∈L(v) rv(x) < 2d+(v), contrary to the assumption.

Let na and nb denote the number of out-neighbors of v colored with colors a and b,
respectively. Obviously, na + nb 6 d+(v). Hence, by (1), at least one of the following
inequalities must be satisfied:

rv(a) > na or rv(b) > nb. (2)

We chose a color whose rank satisfies one of these inequalities, and assign that color to v.
We claim that the extended coloring satisfies the assertion of the theorem. First, let u

be arbitrary in-neighbor of v. Let x denote the color assigned to u in coloring of D′. If x
is one of the colors a or b, then the number of out-neighbors of u in D′ colored with x is
at most ru(x) − 1, by inductive assumption. Thus, their number in D after coloring the
vertex v is still bounded by ru(x). If x is neither equal to a nor to b, then the constraint is
fulfilled even more. If u is an arbitrary out-neighbor of v, or any other vertex of D′, then
the corresponding constraint holds by induction, since out-neighborhoods and color ranks
for such vertices remained unchanged in D′. Finally, for the vertex v we have chosen color
a or b so that the corresponding inequality of (2) is satisfied. This completes the proof.

We obtain now easily the aforementioned consequences for majority choosability of
digraphs.
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Corollary 2. Every digraph is majority 4-choosable.

Proof. Put rv(x) = 1
2
d+(v) for each vertex v and for every color x from its list L(v), and

apply the theorem.

Corollary 3. Let D be a digraph with color lists of size three assigned to the vertices.
Then there is a coloring from these lists such that for each vertex v, at most 2

3
of its

out-neighbors have the color of v.

Proof. Let 0 < ε < 1
3

be a real number. Let v be a vertex in D, and let L(v) denote its
list with three colors. For each color x in L(v) assign the rank rv(x) = 2

3
d+(v) + ε. Now,

add a new fictitious color f with the rank rv(f) = −3ε to each list L(v). The assertion
of the corollary follows now directly from Theorem 1.

3 Discussion

There are many variants of majority coloring that may be studied for various combinatorial
structures (see [3]). For instance, in a multi-color version considered in [3], the majority
constraint is strengthened to 1

k
d+(v), where k > 2 is a fixed integer. It is easy to see

that k colors are sufficient for acyclic digraphs, and thus k2 colors suffice for arbitrary
digraph (by taking the product of the colorings). It is conjectured in [3] that k + 1 colors
are actually enough. As noted by David Wood (personal communication), the proof of
Theorem 1 can be easily extended to the multi-color setting, however, it only gives the
same quadratic bound in the list version of the problem.

The situation looks much simpler for undirected graphs. An old result of Lovász [4]
asserts that every graph is majority 2-colorable, and more generally, it is k-colorable so
that at most 1/k neighbors of each vertex share its color, for every k > 2. The proof
is very simple: just take a coloring that minimizes the total number of monochromatic
edges. The same argument works in the list version, and after slight modification it gives
a result similar to Theorem 1 (with color ranks in each list summing up to at least the
degree of the corresponding vertex).

Majority coloring may be studied for infinite graphs as well. For undirected graphs it
is known as the problem of unfriendly partitions (see [1], [2]). As proved by Shelah and
Milner [6], every infinite graph is majority 3-colorable, but there are graphs on uncount-
ably many vertices that are not majority 2-colorable. Whether every countably infinite
graph has a majority 2-coloring remains a mystery. Perhaps it would be interesting to
consider similar questions for infinite directed graphs.

We conclude the paper with the following strengthening of the majority coloring con-
jecture from [3].

Conjecture 4. Every digraph is majority 3-choosable.
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