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Abstract

We introduce group actions on the integer partitions and their variances. Using
generating functions and Burnside’s lemma, we study arithmetic properties of the
counting functions arising from group actions. In particular, we find a modulo 4
congruence involving the number of ordinary partitions and the number of partitions
into distinct parts.
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1 Introduction

In the theory of integer partitions, the conjugation is one of the most important operations
on partitions. The Durfee square of size d× d in the partition λ is defined by the largest
integer d such that the partition λ has at least d parts > d. Using the Durfee square, we
can represent the partition λ by (d, π1, π2), where d is the size of the Durfee square and
π1 and π2 are partitions into parts 6 d. Let D be the set of partitions represented by the
Durfee square decomposition

D := {(d, π1, π2) : d > 0, π1 and π2 are partitions into parts 6 d}.

For the symmetric group G = S2, we define a group action on D by

σ(d, π1, π2) = (d, πσ(1), πσ(2)),
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for σ ∈ G. When σ = (12), this group action corresponds to the conjugation of the
partition. In the light of that we can understand the conjugation of partitions as a group
action, it is natural to ask whether there are interesting consequences on partitions in
the view of group actions. Moreover, once we define a group action on the set X, then
it is also natural to examine how many orbits there are. For an element x in an orbit,
we define the weight of x as an element of X and we define |X/G|(n) is the number of
orbits of weight n. For example, |D/S2|(n) is the number of partitions of n, where if two
partitions are conjugate to each other, then they are considered to be the same partition.

The goal of this paper is investigating properties of counting functions arising from
group actions on various partition setsX and groupsG. To this end, we will use Burnside’s
lemma frequently, which says that the number of orbits |X/G| is given by

|X/G| = 1

|G|
∑
g∈G

|Xg|,

where Xg is the invariant subset of X under the action of g.
One of the main results is a modulo 4 congruence involving the number of ordinary

partitions and the number of partitions into distinct parts. Before stating the result, we
introduce some notation. Let p(n) be the number of ordinary partitions of n and let d(n)
be the number of partitions of n into distinct parts. For a given partition λ, `(λ) is defined
by the largest part of λ. If λ is an empty partition, then we define `(λ) = 0.

Theorem 1. Let s(n) be the number of partitions of n of which Durfee decompositions
(d, π1, π2) satisfy `(π1) = `(π2). Then, for all non-negative integers n,

p(n) + s(n) ≡ 2d(n) (mod 4).

Remark 2. By Euler’s pentagonal number theorem, we know that

2d(n) ≡

{
2 (mod 4), if n = k(3k−1)

2
for an integer k,

0 (mod 4), otherwise.

In the next section we prove Theorems 1, and we consider multi-partitions and uni-
modal sequences under group actions in the remainder of the paper.

2 Proof of Theorem 1

Let C2 be the set defined by

C2 := {(d, ν1, ν2) : d > 0, ν1 and ν2 are compositions into non-negative integers 6 d}.

Note that we allow νi’s can have zeros as parts and recall that two sequences that differ
in the order of their terms define different compositions, while they are considered to be
the same partition. The weight of an element (d, ν1, ν2) ∈ C2 is defined by d2 plus the
sum of parts in ν1 and the first part of ν2. For the convenience, the empty composition is
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considered to be {0} so that we can define the first part of an empty composition is zero.
For the symmetric group G = S2, we define a group action on C2 by exchanging the first
part of νi and νσ(i) for i = 1 or 2. By employing Burnside’s lemma, we find that

|C2/S2|(n) =
1

2

(
|C(1)

2 |(n) + |C(12)
2 |(n)

)
.

Here and in the sequel, for a given set X, |X|(n) denotes the number of elements in the
set X with the weight n. Now we will count how many partitions there are among the
elements in the invariant subsets. To this end, we define

|C2/S2|D(n) :=
1

2

(
|C(1)

2 ∩D|(n) + |C(12)
2 ∩D|(n)

)
,

where D is the set of partitions represented by Durfee square decompositions. By em-
ploying general combinatorial arguments [1], we obtain that

∞∑
n=0

|C(1)
2 ∩D|(n)qn =

∞∑
n=0

qn
2

(q)2n
∞∑
n=0

|C(12)
2 ∩D|(n)qn =

∞∑
n=0

qn
2

n∑
k=0

q2k

(q)2k
,

which implies that

∞∑
n=0

|C2/S2|D(n)qn =
1

2

(
1

(q)∞
+
∞∑
n=0

qn
2

n∑
k=0

q2k

(q)2k

)
. (1)

Here we have used the usual q-series notation,

(a)n = (a; q)n :=
n−1∏
j=0

(1− aqj)

for n ∈ N0 ∪ {∞}.
By using the inclusion-exclusion principle, we derive that

1

(q)2n
= 2

n∑
k=0

qk

(q)2k
−

n∑
k=0

q2k

(q)2k
. (2)

Therefore, we find that

f(q) :=
∞∑
n=0

|C2/S2|D(n)qn =
∞∑
n=0

qn
2

n∑
k=0

qk

(q)2k
.

It turns out that we can reformulate f(q) by using a false theta function.
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Lemma 3. We have

f(q) =
1

(q)∞

(
1−

∞∑
n=1

qn(3n−1)(1− q2n)

)
.

Before proving the above lemma, we show that Lemma 3 implies Theorem 1.

Proof of Theorem 1. We first note that (1) implies that

f(q) =
∞∑
n=0

|C2/S2|D(n)qn =
1

2

(
∞∑
n=0

p(n)qn +
∞∑
n=0

s(n)qn

)
. (3)

From Euler’s pentagonal number theorem [1, Cor 1.7], we find that

(q2; q2)∞ = 1 +
∞∑
n=1

(−1)nqn(3n−1)(1 + q2n).

Therefore, by Lemma 3, we obtain that

f(q) ≡ (q2; q2)∞
(q)∞

≡ (−q)∞ (mod 2).

From (3) and the fact that

(−q)∞ =
∞∑
n=0

d(n),

we conclude Theorem 1.

Now we turn to prove Lemma 3.

Proof of Lemma 3. First we recall that a Bailey pair relative to a is a pair of sequences
(αn, βn)n>0 satisfying

βn =
n∑
k=0

αk
(q)n−k(aq)n+k

. (4)

If (αn, βn) is a Bailey pair relative to 1, then Bailey Lemma (see [12] for example) implies
that

1

(q)∞

∞∑
n=0

qn
2

αn =
∞∑
n=0

qn
2

βn. (5)

From [11], we find that

α0 = 1,

αn = −qn(n−1)(1− q2n) for n > 0,

βn =
qn

(q)2n

(6)
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consists of a Bailey pair relative to 1. Recall (see [4], for example) that if (αn, βn) is a
Bailey pair relative to a, then

α′n = anqn
2

αn,

β′n =
n∑
k=0

akqk
2

(q)n−k
βk

is also a Bailey pair relative to a. Using this with (6), we obtain a new Bailey pair relative
to 1,

α′0 = 1,

α′n = −qn(2n−1)(1− q2n) for n > 0,

β′n =
n∑
k=0

qk
2+k

(q)n−k(q)2k
.

(7)

Using Andrews’ finite Heine transformation [3, Corollary 4]

n∑
k=0

(q−n)k(α)k(β)kq
k

(q)k(γ)k(q1−n/τ)k
=

(αβτ/γ)n
(τ)n

n∑
k=0

(q−n)k(γ/α)k(γ/β)kq
k

(q)k(γ)k(γq1−n/(αβτ))k

with α, β → 0 and γ = τ = q, we derive that

β′n =
n∑
k=0

qk
2+k

(q)n−k(q)2k
=

n∑
k=0

qk

(q)2k
. (8)

From (7), (8), and (5), we obtain the desirable identity.

Note that
∞∑
n=0

|C2/S2|D(n)qn =
∞∑
n=0

qn
2

(q)n

n∑
k=0

qk
2+k

(q)k

[
n
k

]
, (9)

where we use the q-binomial coefficient defined by[
n
k

]
=

(q)n
(q)k(q)n−k

. (10)

Recall that the q-binomial coefficient

[
n
k

]
generates the partitions which fit inside a (n−

k)× k rectangle. From (9), we can see that |C2/S2|D(n) is the number of partitions of n
with certain Durfee dissections (See [2] for more details on Durfee dissections.).

Corollary 4. Let D2(n) be the number of partitions of n with 2 successive Durfee squares
of sizes d1 × d1 and d2 × d2 such that there is a part of size d2 below the second Durfee
square. Then, for all non-negative integers n,

|C2/S2|D(n) = D2(n) =
1

2
(p(n) + s(n)) .
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3 Other Results

In this section, we study the number of orbits in the sets of multi-partitions and in the
sets of unimodal sequences under group actions.

3.1 Multi-partitions

Let P2 be the set of bi-partitions

P2 := {(λ1, λ2) : λ1 and λ2 are ordinary partitions}.

For the group G = S2, we define a group action on P2 by

σ(λ1, λ2) = (λσ(1), λσ(2)).

Let |P2/S2|(n) be the number of orbits with weight n. Then, |P2/S2|(n) is the number
of bi-partitions of n, where bi-partitions in the same orbit define the same bi-partition.
By simple combinatorial arguments and Burnside’s formula, we find that

∞∑
n=0

|P2/S2|(n)qn =
1

2

(
1

(q)2∞
+

1

(q2; q2)∞

)
.

Let p−2(n) be the number of bi-partitions of n. Then, we have

∞∑
n=0

p−2(n)qn =
1

(q)2∞
.

From the famous Ramanujan congruence p(5n + 4) ≡ 0 (mod 5) and a bi-partition con-
gruence [6] p−2(5n+ 3) ≡ 0 (mod 5), we can easily see that

|P2/S2|(5n+ 3) ≡ 0 (mod 5).

We define the set of tri-partitions

P3 := {(λ1, λ2, λ3) : λ1, λ2, and λ3 are ordinary partitions}.

For G = S3, we define a group action on P3 by

σ(λ1, λ2, λ3) = (λσ(1), λσ(2), λσ(3)).

We may think each partition λi is on a vertex of a regular triangle. Then, we can
understand |P3/S3|(n) is the number of tri-partitions of n, where the partitions are con-
sidered to be the same if they are invariant under a reflection or a rotation fixing the
triangle. From Burnside’s lemma, we observe that

∞∑
n=0

|P3/S3|(n)qn =
1

6

(
1

(q)3∞
+

3

(q)∞(q2; q2)∞
+

2

(q3; q3)∞

)
.
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Proposition 5. For all non-negative integers n,

|P3/S3|(3n+ 2) ≡ 0 (mod 3).

Moreover,

∞∑
n=0

|P3/S3|(3n+ 2)qn =
3

2

(
(q3; q3)9∞

(q)12∞
+

(q3; q3)3∞(q6; q6)3∞
(q)4∞(q2; q2)4∞

)
.

Proof. H.-C. Chan [5] defined the cubic partition function c(n) by

∞∑
n=0

c(n)qn =
1

(q)∞(q2; q2)∞
,

and proved that c(3n+ 2) ≡ 0 (mod 3). Therefore, it suffices to show that

p−3(3n+ 2) ≡ 0 (mod 9), (11)

where p−3(n) is defined by
∞∑
n=0

p−3(n)qn =
1

(q)3∞
.

We define the Dedekind eta function η(z) by

η(z) = q1/24(q)∞ with q = exp(2πiz).

Since η9(3z)
η3(z)

is a modular form of weight 3 and level 3 with character
(−3
·

)
and the dimen-

sion of such modular forms space is 2, we find that

η9(3z)

η3(z)
|U3 = 9

η9(3z)

η3(z)
(12)

by checking the first two coefficients. Here, U3 is an operator defined by (
∑
a(n)qn) |U3 :=∑

a(3n)qn. (For more details on modular forms, see [10] for example.) From (12), we
find that

η9(3z)

η3(z)
|U3 =

(
(q3; q3)9∞

∞∑
n=0

p−3(n)qn+1

)∣∣U3

= (q)9∞

∞∑
n=0

p−3(3n+ 2)qn+1

= 9q
(q3; q3)9∞

(q)3∞
,

(13)

which proves p−3(3n + 2) ≡ 0 (mod 9) as desired. We also note that η3(3z)η3(6z)
η(z)η(2z)

is a

modular form of weight 2 and level 6. Proceeding as before (for this time, we need to
check the first three coefficients), we deduce that

η3(3z)η3(6z)

η(z)η(2z)
|U3 = 3

η3(3z)η3(6z)

η(z)η(2z)
.
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In terms of cubic partitions, the above modular identity is equivalent to

(q)3∞(q3; q3)∞

∞∑
n=0

c(3n+ 2)qn = 3
(q3; q3)3∞(q6; q6)3∞

(q)∞(q2; q2)∞
. (14)

From (13) and (14), we can obtain the desirable generating function for |P3/S3|(3n+2).

3.2 Unimodal sequences

Recall that a unimodal sequence is a sequence which is weakly increasing up to a point
(called the peak), and then weakly decreasing thereafter. The weight of such a sequence
is the sum of all of its terms. We define the set of unimodal sequeces

U := {(p, π1, π2) : p > 0, π1 and π2 are partitions into parts 6 p}.

For an element (p, π1, π2), its weight is defined by p plus the sum of parts in π1 and π2.
Recall that C2 is the set defined by

C2 := {(d, ν1, ν2) : d > 0, ν1 and ν2 are compositions into non-negative integers 6 d}.

To match the weights, in this subsection, the weight of an element (d, ν1, ν2) ∈ C2 is
redefined by d plus the sum of parts in ν1 and ν2. For the symmetric group G = S2, we
define a group action on C2 by exchanging the first part of ν1 and the first part of ν2. By
employing Burnside’s lemma, we find that

|C2/S2|(n) =
1

2

(
|C(1)

2 |(n) + |C(12)
2 |(n)

)
.

Here we will count how many unimodal sequences there are among the elements in the
invariant subsets. To this end, we define

|C2/S2|U(n) :=
1

2

(
|C(1)

2 ∩ U |(n) + |C(12)
2 ∩ U |(n)

)
.

Then, we can see that

∞∑
n=0

|C2/S2|U(n)qn =
1

2

(
∞∑
n=0

qn

(q)2n
+
∞∑
n=0

qn
n∑
k=0

q2k

(q)2k

)

=
∑
n>k>0

qn+k

(q)2k
,

where we have used (2) for the last equality. From this, we find that |C2/S2|U(n) is the
number of unimodal sequences of weight n such that the largest part in the partition
before the peak is larger than or equal to the largest part in the partition after the peak.

From [9, Theorem 1.1], we find that

∞∑
n=0

qnβn =
1

(aq)∞(q)∞

∑
n,r>0

(−a)nqn(n+1)/2+(2n+1)rαr, (15)
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where (αn, βn) is a Bailey pair relative to a. Therefore, by plugging the Bailey pairs (7)
and (8) into (15), we derive that

∑
n>k>0

qn+k

(q)2k
=

1

(q)2∞

∞∑
n=0

(−1)nqn(n+1)/2

(
1−

∞∑
r=1

q(2n+1)r+r(2r−1)(1− q2r)

)

=
1

(q)2∞

∑
n,r>0

(−1)nqn(n+1)/2+(2n+1)r+r(2r+1)

− 1

(q)2∞

∑
n>0,r>0

(−1)nqn(n+1)/2+(2n+1)r+r(2r−1)

=
1

(q)2∞

(∑
n,r>0

+
∑
n,r<0

)
(−1)nqn(n+1)/2+(2n+1)r+r(2r+1),

where we replace n and r by −n−1 and −r in the second summation for the last equality.
In summary, we have obtained a Hecke-type double sum expression for the |C2/S2|U(n)
generating function.

Theorem 6. We have

∞∑
n=0

|C2/S2|U(n)qn =
1

(q)2∞

(∑
n,r>0

+
∑
n,r<0

)
(−1)nqn(n+1)/2+2nr+2r(r+1). (16)

We may think the double sum in the right hand side of (16) as a false theta series in
the sense of that it has a wrong sign compare to the theta series

fa,b,c(x, y, q) =

(∑
r,s>0

−
∑
r,s<0

)
(−1)r+sxrysqa(

r
2)+brs+c(

s
2), (17)

which is closely related to mock theta functions [7].
In a recent paper [8], the author and J. Lovejoy introduced a unimodal T-sequence. In

a unimodal T-sequence, we have a peak and there are partitions into parts 6 the peak in
the right, in the left, and below of the peak. We define the set of unimodal T-sequences

T := {(p, π1, π2, π3) : p > 0, π1, π2, and π3 are partitions into parts 6 p}.

We also define a corresponding composition set C3 by

C3 := {(p, ν1, ν2, ν3) : p > 0, ν1, ν2 and ν3 are compositions

into non-negative integers 6 d}.

For an element in T (resp. C3), its weight is defined by the size of the peak (i.e. p) plus
the sum of parts in the partitions (resp. compositions).
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For G = S3, we define a group action on C3 by switching the first part of νi and the
first part of νσ(i). As before, we investigate

|C3/S3|T (n) :=
1

6

∑
g∈S3

|Cg
3 ∩ T |(n).

Then, we find that

∞∑
n=0

|C3/S3|T (n)qn =
1

6

∞∑
n=0

(
qn

(q)3n
+

3qn

(q)n

n∑
k=0

q2k

(q)2k
+ 2qn

n∑
k=0

q3k

(q; q)3k

)
.

By employing the inclusion-exclusion principle on the largest parts, we find that

1

(q)3n
= 3

n∑
k=0

qk(1− qk)
(q)3k

+
n∑
k=0

q3k

(q)3k
.

From (2), (8), and the above, we derive that

∞∑
n=0

|C3/S3|T (n)qn =
∞∑
n=0

qn

(q)n

n∑
k=0

qk

(q)2k
−
∞∑
n=0

qn
n∑
k=0

qk(1− qk)
(q)3k

=
∞∑
n=0

qn

(q)2n

n∑
k=0

qk
2+k

(q)k

[
n
k

]
−
∑
n>k>0

qn+k(1− qk)
(q)3k

.

Proposition 7. Let T1(n) be the number of unimodal T-sequences of weight n such that
the partition below the peak has the Durfee rectangle of size (k + 1)× k. Let T2(n) be the
number of unimodal T -sequences of weight n such that if the largest part of the partition
in the right of the peak is k, then the largest part of the partition in the left (resp. below)
of the peak is less than or equal to (resp. less than) k. Then, for all non-negative integers
n,

|C3/S3|T (n) = T1(n)− T2(n).

In particular, T1(n) > T2(n) for all positive integers n.
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