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Abstract

An abstract polytope is flat if every facet is incident on every vertex. In this
paper, we prove that no chiral polytope has flat finite regular facets and finite regular
vertex-figures. We then determine the three smallest non-flat regular polytopes in
each rank, and use this to show that for n > 8, a chiral n-polytope has at least
48(n− 2)(n− 2)! flags.
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1 Introduction

In many applications involving convex polytopes, what is most important is the combina-
torial type of the polytope: how many faces are there in each dimension, and which faces
are incident. An abstract polytope is essentially a partially ordered set that resembles the
incidence relation for a convex polytope or a tiling of a surface or space.

Regular (abstract) polytopes are those that are maximally symmetric. The automor-
phism group of a regular polytope can be written in a standard form, and in fact the
polytope can be recovered from a group presentation in this form. This means that many
questions about regular polytopes can be translated to questions in group theory. Fur-
thermore, this makes it possible to collect a large amount of data about regular polytopes,
using standard group theory algorithms.

In [4], Conder catalogs the regular polytopes with up to 4000 flags (where a flag is a
maximal chain of incidences). He excludes degenerate polytopes, such as the digon, which
consists of two edges and two vertices, with both edges incident on each vertex. However,
many of the listed polytopes possess the minor degeneracy of being flat, meaning that
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Rank Flat Non-flat
3 2292 8186
4 7530 353
5 1561 8
6 52 0

Table 1: Number of non-degenerate polytopes, up to duality, with up to 4000 flags

every facet is incident to every vertex. In ranks 4 and higher, more than 95% of the listed
polytopes are flat. See Table 1 for a summary of the counts.

Chiral polytopes are those that are fully symmetric under combinatorial rotations, but
without mirror symmetry. Each chiral polytope is built out of regular and chiral polytopes
of one dimension lower. One of the fundamental problems in the study of chiral polytopes
is the amalgamation problem: which polytopes can be assembled together to form a chiral
polytope? In Theorem 3.1, we will prove that no finite chiral polytope is built from flat
regular polytopes that are arranged in a regular way around each vertex. Using this,
we are able to describe several other restrictions on the structure of chiral polytopes in
Section 3.

Another important problem is the determination of the smallest chiral polytopes in
each rank. Section 5.1 describes what is currently known. In Section 4, we determine the
smallest non-flat regular polytopes in each rank. Using this and Theorem 3.1, we prove
in Theorem 5.5 that, for n > 8, a chiral n-polytope has at least 48(n− 2)(n− 2)! flags.

2 Background

2.1 Abstract polytopes

Let us start with the definition of an abstract polytope, taken from [13, Sec. 2A]. Consider
a partially-ordered set P with a unique minimal element and a unique maximal element.
If the maximal chains of P all have the same length, then we can endow P with a rank
function, where the minimal element has rank −1, the elements that directly cover it have
rank 0, and so on. We then say that P is an (abstract) n-polytope or polytope of rank n
if its maximal element has rank n and if P also satisfies the following conditions.

1. (Diamond condition): Whenever F < G and rank(G) − rank(F ) = 2, there are
exactly two elements H with rank(H) = rank(F ) + 1 such that F < H < G.

2. (Strong connectivity): Suppose F < G and rank(G)− rank(F ) > 3. If F < H < G
and F < H ′ < G, then there is a chain

H = H0 6 H1 > H2 6 H3 > H4 6 · · · > Hk = H ′

such that F < Hi < G for each i.
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For example, the face-lattice of any convex n-polytope is an (abstract) n-polytope. In
analogy with convex polytopes, we call the elements of P faces, and a face of rank k is a
k-face. The faces of rank 0, 1, and n−1 are called vertices, edges, and facets, respectively.
The maximal chains of P are called flags, and two flags that differ in only a single element
are said to be adjacent.

If F < G are faces of an n-polytope, then the section G/F consists of all faces H
such that F 6 H 6 G. If F is a facet of the n-polytope P and F−1 is the minimal
face, then the section F/F−1 is an (n − 1)-polytope. Usually, when we speak of a facet
of P , we have in mind this polytope, rather than just an element of rank n− 1. If v is a
vertex of P and Fn is the maximal face, then the section Fn/v is also an (n−1)-polytope,
called the vertex-figure at v. Given both a facet F and a vertex v, the section F/v is an
(n − 2)-polytope, called a medial section of P ; it is both a vertex-figure of the facet F
and a facet of the vertex-figure at v.

For each integer p > 2, there is a unique 2-polytope with p vertices, denoted by {p}.
When p > 3, this is simply the face-lattice of a p-gon; the case p = 2 yields the digon,
which has two edges and two vertices, with each edge incident on each vertex. There is
also a unique infinite 2-polytope, denoted {∞}, which is the face-lattice of the tiling of
the real line by unit line segments.

Given faces F < G where rank(G) = rank(F ) + 3, the section G/F is a 2-polytope
with some number p(F,G) of vertices. If P has the property that p(F,G) depends only
on the rank of F and G (rather than on the particular choice of faces in those ranks),
then we say that P is equivelar. In this case, there are numbers p1, . . . , pn−1 such that,
given any (i− 2)-face F and (i+ 1)-face G with F < G, the section G/F is the polytope
{pi}. We then say that P has Schläfli symbol (or type) {p1, . . . , pn−1}.

If P and Q are both n-polytopes, then a covering π : Q → P is a function that
preserves the partial order, the rank of each face, and with the property that if two
flags of Q are adjacent, then their images under π are also adjacent. (Such a function is
automatically surjective.) We say then that Q covers P . An isomorphism of n-polytopes
is a bijection that preserves rank and the partial order.

If the facets of a polytope P are all isomorphic to K, and the vertex-figures are all
isomorphic to L, then we say that P is of type {K,L}. If P is of type {K,L} and it covers
all other polytopes of type {K,L}, then we call P the universal polytope of type {K,L},
and often denote it simply by {K,L}. This notation is naturally recursive, so that one
may refer to a polytope such as {{K,L}, {L,M}}.

The dual of P , denoted P∗, is the polytope with the same underlying set as P but with
the partial order reversed. If P has Schläfli symbol {p1, . . . , pn−1}, then P∗ has Schläfli
symbol {pn−1, . . . , p1}, and if P is of type {K,L}, then P∗ is of type {L∗,K∗}. When we
say that something is true of P up to duality, we mean that it is either true of P or of P∗.

2.2 Regular and chiral polytopes

The automorphism group of P , denoted Γ(P), consists of the isomorphisms from P to
itself. This group acts freely on the flags of P . A polytope is regular if Γ(P) acts
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transitively on the flags. The automorphism group of a regular polytope is a string C-
group (defined below), and every string C-group is the automorphism group of a regular
polytope.

We now define string C-groups. Suppose that Γ = 〈ρ0, . . . , ρn−1〉, where the generators
ρi satisfy at least the relations

ρ2i = 1, for 0 6 i 6 n− 1, (1)

(ρiρj)
2 = 1, for i, j ∈ {0, . . . , n− 1} with |i− j| > 2. (2)

Such a group is called a string group generated by involutions (sggi). Then Γ is a string
C-group if it also satisfies the following intersection condition for all subsets I and J of
{0, . . . , n− 1}:

〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉. (3)

Regular polytopes are equivelar. If P is a regular polytope of type {p1, . . . , pn−1},
then Γ(P) is a quotient of the string Coxeter group

[p1, . . . , pn−1] := 〈ρ0, . . . , ρn−1 |ρ2i = 1 for 0 6 i 6 n− 1,

(ρi−1ρi)
pi = 1 for 1 6 i 6 n− 1,

(ρiρj)
2 = 1 for i, j ∈ {0, . . . , n− 1} with |i− j| > 2〉.

(4)

The facets of a regular n-polytope are all isomorphic to some regular polytope K, and the
vertex-figures are isomorphic to some regular polytope L.

A polytope is chiral if the flags fall into two orbits under the action of Γ(P) with
the property that adjacent flags lie in different orbits. Basic information about chiral
polytopes can be found in [16], and a survey of important problems can be found in [15].
The facets of a chiral polytope are all isomorphic, as are the vertex-figures. Both the
facets and the vertex-figures are either chiral or regular. Furthermore, the facets of the
facets and the vertex-figures of the vertex-figures must be regular.

If P is a chiral polytope of type {K,L}, with at least one of K and L regular, then
there is a unique minimal regular polytope R that covers P . The polytope R is called
the mixed regular cover of P . Furthermore, if both K and L are regular, then R is also
of type {K,L} (see [14, Sec. 4]).

2.3 Degenerate and flat polytopes

A polytope of type {p1, . . . , pn−1} is said to be degenerate if at least one of the numbers pi
is 2. A polytope is called flat if every facet is incident with every vertex. More generally,
if 0 6 k < m 6 n − 1, then an n-polytope is (k,m)-flat if every k-face is incident with
every m-face. We summarize some properties of flatness below (see [13, Prop. 2B16,
Section 4E]).

Proposition 2.1. Let P be an equivelar n-polytope.

1. If P is degenerate, then it is flat.
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2. If 0 6 i 6 k < m 6 j 6 n− 1 and P is (k,m)-flat, then P is also (i, j)-flat.

3. If m 6 n− 2, then P is (k,m)-flat if and only if the facets of P are (k,m)-flat.

4. If k > 1, then P is (k,m)-flat if and only if the vertex-figures of P are (k−1,m−1)-
flat.

A polytope of type {p1, . . . , pn−1} is called tight if it has exactly 2p1 · · · pn−1 flags,
which is the minimum possible for a polytope of that type. Tightness and flatness are
related by the following result.

Proposition 2.2 ([8, Theorem 4.4]). For n > 2, an equivelar n-polytope is tight if and
only if it is (i, i+ 2)-flat for every i satisfying 0 6 i 6 n− 3.

3 Restrictions on chiral polytopes

The study of chiral polytopes is, in many ways, still in its infancy. A number of general
methods for constructing chiral polytopes have been discovered (see [1, 6, 10, 14]), but few
structural results are known. Perhaps the most fundamental question is: which regular
polytopes can occur as the facets of a chiral polytope? We start with a simple result.

Theorem 3.1. There are no chiral polytopes with flat, finite, regular facets and finite
regular vertex-figures.

Proof. Suppose that P is a chiral polytope of type {K,L}, where K and L are finite
regular polytopes, and K is flat. The mixed regular cover of P is a regular polytope R
of type {K,L}. Now, since K is flat, so are P and R, by Proposition 2.1(c). This means
that P and R both have the same number of vertices; namely, the number of vertices that
K has. Then since P and R have isomorphic vertex-figures, and R covers P , it follows
that R ∼= P , which is impossible since P is chiral and R is regular.

Theorem 3.1 leads to several further restrictions on the structure of chiral polytopes.

Theorem 3.2. If K is a regular n-polytope that is (1, n − 1)-flat, then no finite chiral
(n+ 1)-polytope has K as a facet.

Proof. Let P be a finite chiral (n + 1)-polytope of type {K,L}, and suppose that K is a
(finite) regular polytope that is (1, n − 1)-flat. Then by Theorem 3.1, the vertex-figures
L of P must be chiral. Now, the facets of L are isomorphic to the vertex-figures of K,
which by Proposition 2.1(d) must be isomorphic to a regular, (0, n − 2)-flat polytope of
rank n − 1. Then Theorem 3.1 implies that the vertex-figures of L must be chiral. But
this is impossible, since the vertex-figures of the vertex-figures of a chiral polytope are
always regular.
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For example, let P be the universal polytope of type {{4, 3}, {3, 6}(1,1)} (denoted by
{4, 3, 6} ∗ 288 in [12]). Then the vertex-figures of P are (0, 2)-flat, and thus P itself is
(1, 3)-flat. By Theorem 3.2, no finite chiral polytope has P as a facet. Note that this
gives a negative answer to Problem 28 in [15].

As a consequence of Theorem 3.2, we find that finite chiral polytopes cannot be arbi-
trarily flat.

Corollary 3.3. There are no finite chiral n-polytopes that are (1, n−3)-flat or (2, n−2)-
flat.

Proof. Suppose P is a finite chiral n-polytope that is (1, n− 3)-flat. Then the facets of P
are (n−1)-polytopes that are also (1, n−3)-flat, and Theorem 3.2 implies that these facets
cannot be regular. So the facets of P are isomorphic to a finite chiral (n − 1)-polytope
Q that is (1, n− 3)-flat. But then Q itself must have regular facets, and those facets are
(n− 2)-polytopes that are (1, n− 3)-flat, contradicting Theorem 3.2.

The second half follows since the dual of a (2, n−2)-flat n-polytope is (1, n−3)-flat.

By Proposition 2.2, a tight polytope must be (1, 3)-flat. Thus, Corollary 3.3 implies
the following.

Corollary 3.4. There are no tight chiral n-polytopes with n > 6.

The Schläfli symbols of tight chiral polyhedra were classified in [9]. Tight chiral 4-
polytopes and 5-polytopes are further restricted due to Theorem 3.1.

Theorem 3.5. If P is a tight chiral 4-polytope, then it has chiral facets or chiral vertex-
figures (or both). If P is a tight chiral 5-polytope, then it has chiral facets, vertex-figures,
and medial sections.

Proof. Suppose that P is a tight chiral 4-polytope. Then the facets and vertex-figures of
P are both tight, and thus flat. Then Theorem 3.1 implies that the facets and vertex-
figures cannot both be regular, so at least one of them is chiral. If instead P is a tight
chiral 5-polytope, then the same result says that either the facets or the vertex-figures are
tight chiral 4-polytopes. In either case, since the facets of the facets and the vertex-figures
of the vertex-figures of P must both be regular, the medial sections of P must be chiral,
which forces the facets and vertex-figures to both be chiral.

The list of chiral polytopes at [3] includes many tight chiral 4-polytopes. So far, no
tight chiral 5-polytopes have been discovered. The obvious candidates, with facets and
vertex-figures isomorphic to tight chiral 4-polytopes, seem to always collapse to something
regular or something non-polytopal.

Problem 1. Fully classify the tight chiral polyhedra and 4-polytopes.

Problem 2. Determine whether there are any tight chiral 5-polytopes.

Our next goal will be to determine a lower bound for the number of flags of a chiral
n-polytope. To do so, we will need to determine the smallest non-flat regular polytopes
in each rank.
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4 Non-flat regular polytopes

Recall that a polytope is flat if every vertex is incident on every facet. Thus, if a polytope
is not flat, then it has at least one more vertex than its facets have. This yields the
following simple consequences.

Proposition 4.1. If P is an equivelar non-flat n-polytope of type {p1, . . . , pn−1}, with
n > 3, then P has at least pn−1 + n− 2 facets and at least p1 + n− 2 vertices.

Proof. If n = 3, then the facets are p1-gons, so in order for P to be non-flat, it must have
at least p1 + 1 vertices. Similarly, the vertex-figures are p2-gons, so P must have at least
p2 + 1 facets in order to be non-flat. The claim then follows by induction on n.

Corollary 4.2. A non-flat equivelar n-polytope has at least n+1 facets and n+1 vertices.

Proof. In light of Proposition 4.1, the only way to have fewer than n+ 1 facets or vertices
is for p1 or pn−1 to be 2. But then P is flat, by Proposition 2.1(a).

In fact, the fewer vertices that a polytope has (in a fixed rank), the flatter it must be.

Proposition 4.3. Suppose P is an equivelar n-polytope of type {p1, . . . , pn−1} with k
vertices, k 6 p1 + n− 3. Then P is (0, k + 2− p1)-flat.

Proof. First, suppose that k = p1 + n − 3. Then Proposition 4.1 implies that P is flat,
i.e., (0, n − 1)-flat, as desired. For the case n = 3, we are done, since P has at least p1
vertices.

Now suppose that the claim is true for (n− 1)-polytopes with k′ 6 p1 + (n− 1)− 3,
and suppose that P has k < p1 +n− 3 vertices. Then the facets have k′ 6 k < p1 +n− 3
vertices. Therefore, k′ 6 p1 + (n − 1) − 3, and by inductive hypothesis, the facets are
(0, k′ + 2 − p1)-flat. Then Proposition 2.1(c) shows that P is (0, k′ + 2 − p1)-flat. Since
k′ 6 k, this implies that P is (0, k + 2− p1)-flat, by Proposition 2.1(b).

Corollary 4.4. Suppose P is an equivelar n-polytope with k vertices, k 6 n. Then P is
(0, k − 1)-flat.

Proof. If p1 = 2, then [13, Prop. 2B16] says that P is (0, 1)-flat, which implies that it is
(0, k − 1)-flat. Otherwise, if p1 > 3, then having k 6 n implies that k 6 p1 + n− 3, and
so Proposition 4.3 implies that P is (0, k + 2 − p1)-flat. Since k + 2 − p1 6 k − 1, this
implies that P is (0, k − 1)-flat, by Proposition 2.1(b).

The preceding four results apply to any equivelar polytope, most notably regular
and chiral polytopes. This is already enough to determine the smallest non-flat regular
polytopes in each rank.

Proposition 4.5. The simplex is the unique smallest non-flat regular n-polytope.
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Proof. We use induction on n. The claim is clearly true for n = 2. In general, if P is
a non-flat regular n-polytope, then its facets are non-flat regular (n − 1)-polytopes. By
inductive hypothesis, the facets each are at least as large as simplices, with n! flags. Then
since Proposition 4.1 implies that P has at least n + 1 facets, it follows that P has at
least (n + 1)! flags. Furthermore, the only way for P to have exactly (n + 1)! flags is if
it has n + 1 facets that all have n! flags. By inductive hypothesis, the facets must be
simplices, and if there are n + 1 facets, then pn−1 = 3 by Proposition 4.1. So P must be
a simplex.

Before we continue to find small non-flat regular polytopes, let us describe a family
of regular polytopes, which we will call central extensions of simplices. Consider a se-
quence p1, . . . , pn−1, where each pi is either 3 or 6. Let Λ(p1, . . . , pn−1) be the quotient of
[p1, . . . , pn−1] by the relations that make each (ρi−1ρi)

3 central.

Proposition 4.6. Λ(p1, . . . , pn−1) is the automorphism group of a regular n-polytope of

type {p1, . . . , pn−1} and with
p1 · · · pn−1

3n−1 (n+ 1)! flags.

Proof. We start by verifying that the order of each ρi−1ρi is pi. Let Λ = Λ(p1, . . . , pn−1).
Clearly Λ covers [3, . . . , 3], and so the order of each ρi−1ρi is divisible by 3. Now, consider
one pk such that pk = 6. It is straightforward to verify that there is an epimorphism
π : Λ→ 〈x, y | x2 = y2 = (xy)2 = 1〉 such that

ρjπ =

{
x, if j 6 k − 1

y, if j > k

It follows that whenever pk = 6, the order of ρk−1ρk is divisible by 2. It’s clear then that
the order of each ρi−1ρi is pi.

The subgroup
N = 〈(ρ0ρ1)3, . . . , (ρn−2ρn−1)3〉

is central in Λ, and has order p1 · · · pn−1/3n−1. Furthermore, the quotient of Λ by N is the
group of the n-simplex {3, . . . , 3}, of order (n + 1)!. That proves that Λ has the desired
order.

It remains to prove that Λ is a string C-group. First, note that Λ(6, p2, . . . , pn−1) covers
Λ(3, p2, . . . , pn−1), and this cover is one-to-one on the subgroup 〈ρ1, . . . , ρn−1〉. Then the
quotient criterion (see [13, Thm. 2E17]) implies that the former is a string C-group
provided that the latter is. The same argument works with Λ(p1, . . . , pn−2, 6). So to
prove the result, it suffices to prove it for Λ(3, p2, . . . , pn−2, 3). This already settles the
case n = 3.

Suppose now that n > 4, that p1 = pn−1 = 3, and that the subgroups 〈ρ0, . . . , ρn−2〉
and 〈ρ1, . . . , ρn−1〉 are both string C-groups. Let ϕ ∈ 〈ρ0, . . . , ρn−2〉 ∩ 〈ρ1, . . . , ρn−1〉. To
prove that Λ itself is a string C-group, it suffices to show that ϕ ∈ 〈ρ1, . . . , ρn−2〉 (by
[13, Prop. 2E16(a)]). Let π : Λ → Λ/N ∼= [3, . . . , 3], and note that N 6 〈ρ1, . . . , ρn−2〉
since p1 = pn−1 = 3. Denoting the image of ρi under π by ρi, we have that ϕ lies in
〈ρ0, . . . , ρn−2〉 ∩ 〈ρ1, . . . , ρn−1〉. Since Γ/N = [3, . . . , 3] is a string C-group, it follows that
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ϕ ∈ 〈ρ1, . . . , ρn−2〉, and thus ϕ ∈ 〈ρ1, . . . , ρn−2〉N = 〈ρ1, . . . , ρn−2〉. Thus, Λ is a string
C-group provided that its facet subgroup and vertex-figure subgroup are string C-groups,
and the result follows by induction on the rank of Λ.

Let P(p1, . . . , pn−1) be the polytope (a central extension of a simplex) whose auto-
morphism group is Λ(p1, . . . , pn−1). The group of the vertex-figure is Λ(p2, . . . , pn−1),
which has index (n + 1)p1/3 in Λ(p1, . . . , pn−1). Thus, the polytope P(p1, . . . , pn−1) has
(n+ 1)p1/3 vertices, while its facets P(p1, . . . , pn−2) have np1/3 vertices. This shows that
these polytopes are not flat.

Next, let us show that any polytope built out of central extensions of simplices is itself
a central extension of a simplex.

Proposition 4.7. Suppose that n > 4, and that P is an n-polytope with facets iso-
morphic to P(p1, . . . , pn−2) and vertex-figures isomorphic to P(p2, . . . , pn−1), then P ∼=
P(p1, . . . , pn−1).

Proof. Clearly P is a quotient of P(p1, . . . , pn−1). The facets K of P have np1/3 vertices,
and so P itself has at least np1/3 vertices. Since P is covered by P(p1, . . . , pn−1), which
has (n+ 1)p1/3 vertices, the number of vertices of P must divide (n+ 1)p1/3. It follows
that P itself has (n+ 1)p1/3 vertices and that P ∼= P(p1, . . . , pn−1).

Our goal now is to find the several smallest non-flat regular polytopes in each rank.

Proposition 4.8. Suppose P is the second smallest non-flat regular n-polytope, and n >
3. Then P has 2(n+ 1)! flags. Furthermore, if n > 4, then P is a central extension of a
simplex.

Proof. We prove the claim by induction on n. The claim can be shown to be true for
n = 3 and n = 4, using [12]. Suppose that n > 5. Since P is the second smallest non-flat
regular n-polytope, it is not a simplex. Then up to duality, we may assume that the facets
of P are not simplices. These facets have at least 2n! flags, by inductive hypothesis, and
there are at least n+1 of them (by Corollary 4.2), so P has at least 2(n+1)! flags. On the
other hand, the polytopes P(p1, . . . , pn−1) with a single pi = 6 have exactly 2(n+1)! flags,
and so if P is the second smallest, it must have exactly 2(n + 1)! flags. It follows that
the facets have exactly 2n! flags, and by inductive hypothesis, these facets are central
extensions of simplices. Similarly, the vertex-figures cannot have more than 2n! flags,
since there are at least n+ 1 vertices, so the vertex-figures are either simplices or central
extensions of simplices. Proposition 4.7 then implies that P is itself a central extension
of a simplex.

Proposition 4.9. Suppose P is the third smallest non-flat regular n-polytope.

1. If n = 3, then P has 60 flags.

2. If n = 4, then P has 384 flags.

3. If n > 5, then P is a central extension of a simplex, with 4(n+ 1)! flags.
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Proof. For n = 3, 4, and 5, we may verify the claim directly using [4]. For n > 6, the
proof is essentially the same as the proof of Proposition 4.8.

Proposition 4.10. Suppose P is the fourth smallest non-flat regular n-polytope, with
n > 5. Then P has at least (16/3)(n+ 1)! flags.

Proof. The claim can be verified for n = 5 using [4]. Now suppose that n > 6. Up to
duality, we may assume that the facets of P have at least as many flags as the vertex-
figures. If P is a central extension of a simplex with more than 4(n + 1)! flags, then it
has at least 8(n + 1)! flags. Otherwise, if P is not a central extension of a simplex, then
its facets must have at least (16/3)n! flags, and there are at least n + 1 facets, so P has
at least (16/3)(n+ 1)! flags.

Of course, there is no particular reason to stop at the fourth smallest polytopes —
except that we have reached the limits of the data we have on small regular polytopes,
which has established the base cases in the previous several results. Table 2 summarizes
our results.

Rank smallest
second

smallest
third

smallest
fourth

smallest
3 24 48 60 64
4 120 240 384 480
5 720 1440 2880 3840

n > 6 (n+ 1)! 2(n+ 1)! 4(n+ 1)! > (16/3)(n+ 1)!

Table 2: Number of flags of the smallest non-flat regular polytopes

A solution to the following problem would be a good step toward a fuller understanding
of small non-flat regular polytopes.

Problem 3. In each rank, determine the smallest non-flat regular polytope that is not a
central extension of a simplex.

5 Small chiral polytopes

The restrictions in the previous section help us describe general lower bounds on the size
of chiral polytopes. We will need the following result.

Proposition 5.1. Chiral polytopes have at least 3 vertices and at least 3 facets.

Proof. If P is a polytope with 2 vertices, then every edge is incident on both vertices.
Thus, the two vertices are indistinguishable, and there is an automorphism of P that
swaps the vertices while fixing all other faces. This yields two adjacent flags that lie in
the same orbit, and so P is not chiral. The proof of the other claim is essentially the
same.
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Now we can provide lower bounds on the size of a chiral polytope, depending on
whether the facets and vertex-figures are regular or chiral.

Theorem 5.2. Let P be a chiral n-polytope with regular facets and vertex-figures. If
n = 5, then P has at least 4004 flags. If n > 6 then P has at least (16/3)n · n! flags.

Proof. There are only three chiral 5-polytopes with at most 4000 flags, and all have chiral
facets and vertex-figures (see [3]). Since the number of flags of a polytope is always
divisible by 4, P must have at least 4004 flags in this case.

Now suppose that n > 6, and that P is of type {K,L}, with K and L regular. By
Theorem 3.1, both K and L must be non-flat since P is chiral. Furthermore, either K or
L must not be a central extension of a simplex, because otherwise Proposition 4.7 would
imply that P is also a central extension of a simplex, which is regular. Up to duality,
we may assume that K is not a central extension of a simplex, and thus it has at least
(16/3)n! flags. Since L is not flat, it has at least n facets, and so P itself also has at least
n facets. Thus P has at least (16/3)n · n! flags.

Theorem 5.3. Let P be a chiral n-polytope with chiral facets and regular vertex-figures.
If n = 6, then P has more than 18432 flags. If n > 7 then P has at least 16(n−1)(n−1)!
flags.

Proof. For n = 6, the result follows from [7, Thm 1.1], which proves that the unique
smallest chiral 6-polytope has 18432 flags; it has chiral facets and vertex-figures. Let K
be the facet type of P . Since the facets of the facets of a chiral polytope must be regular,
K has regular facets. Furthermore, since the vertex-figures of K are also the facets of the
regular vertex-figures of P , K has regular vertex-figures. So K is a chiral (n−1)-polytope
with regular facets and vertex-figures. By Proposition 5.1, P must have at least 3 facets,
and combining this with Theorem 5.2 yields the desired result.

Theorem 5.4. Let P be a chiral n-polytope with chiral facets and chiral vertex-figures. If
n = 7, then P has more than 55296 flags. If n > 8 then P has at least 48(n− 2)(n− 2)!
flags.

Proof. The proof is essentially the same as for Theorem 5.3; the facets of P must be
chiral with regular facets and either regular or chiral vertex-figures, and there are at least
3 facets. Applying Theorem 5.2 and (the dual of) Theorem 5.3 for the facets provides the
desired result.

We note that if n > 8, then 48(n − 2)(n − 2)! < 16(n − 1)(n − 1)! < (16/3)n · n!,
providing us with the following theorem.

Theorem 5.5. For n > 8, a chiral n-polytope has at least 48(n− 2)(n− 2)! flags.

Compare Theorem 5.5 to [2, Thm. 1.1], which states that for n > 9, the smallest
nondegenerate regular n-polytope has 2 ·4n−1 flags. Note that these regular polytopes are
all flat, and in fact, they all have flat regular facets and flat regular vertex-figures.
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5.1 The smallest chiral polytopes in each rank

The smallest chiral n-polytopes for n = 3, 4, and 5 can be found in [5]. In rank 3, the
smallest chiral polytope is the torus map {4, 4}(1,2), with 40 flags. In rank 4, the smallest
chiral polytopes have 240 flags. This includes the universal {{4, 4}(1,2), {4, 3}} and the
universal {{4, 4}(2,1), {4, 4}(1,2)}; the former has chiral facets and regular vertex-figures,
and the latter has chiral facets and chiral vertex-figures. The smallest chiral 5-polytope
is the universal {{{3, 4}, {4, 4}(2,1)}, {{4, 4}(1,2), {4, 3}}}, with 1440 flags. This polytope
has chiral facets and vertex-figures.

The smallest chiral 4-polytope with regular facets and vertex-figures is a polytope of
type {3, 3, 8} with 384 flags. It has automorphism group

〈σ1, σ2, σ3 | σ3
1 = σ3

2 = σ8
3 = (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = σ−13 σ1σ3σ
−1
2 σ1σ

−2
3 σ2 = 1〉.

There are no chiral 5-polytopes with up to 4000 flags and regular facets or vertex-
figures (see [3]). The smallest known chiral 5-polytopes with either regular facets or
regular vertex-figures are described in [7]. One is of type {3, 3, 4, 6}, with regular facets
and chiral vertex-figures, and the other is of type {3, 4, 6, 3}, with chiral facets and regular
vertex-figures. Both have 4608 flags. The smallest chiral 6-polytope has the former 5-
polytope as facets, the latter as vertex-figures, and has 18432 flags. We summarize our
data in Table 3.

Rank
regular facets

regular vertex-figures
chiral facets

regular vertex-figures
chiral facets

chiral vertex-figures
3 40 - -
4 384 240 240
5 > 4004 > 4004,6 4608 1440
6 > 23040 > 18432 18432
7 > 188160 > 69120 > 55296

n > 8 > (16/3)n · n! > 16(n− 1)(n− 1)! > 48(n− 2)(n− 2)!

Table 3: Number of flags of the smallest chiral polytopes

Let frr(n), fcr(n), and fcc(n) be the minimal number of flags among chiral n-polytopes
with regular facets and vertex-figures, with chiral facets and regular vertex-figures, and
with chiral facets and vertex-figures, respectively. It is straightforward to prove that
fcr(n) > 3frr(n − 1) and that fcc(n) > 3fcr(n − 1). From the data available, it seems
likely that frr(n) > fcr(n) > fcc(n), but it is unclear whether this trend will continue to
hold.

Problem 35 in [15] asks to find the size of the smallest chiral n-polytope for each n. It
may be useful to split that problem into the following subproblems:

Problem 4. Determine the functions frr(n), fcr(n), and fcc(n).

Problem 5. Determine whether it is always the case that frr(n) > fcr(n) > fcc(n).
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The next smallest step in this direction would be to solve the following problem:

Problem 6. Determine the smallest chiral 5-polytope with regular facets and regular
vertex-figures.
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