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Abstract

Extending the notion of (random) k-out graphs, we consider when the k-out
hypergraph is likely to have a perfect fractional matching. In particular, we show
that for each r there is a k = k(r) such that the k-out r-uniform hypergraph
on n vertices has a perfect fractional matching with high probability (i.e., with
probability tending to 1 as n — o0) and prove an analogous result for r-uniform
r-partite hypergraphs. This is based on a new notion of hypergraph expansion
and the observation that sufficiently expansive hypergraphs admit perfect fractional
matchings. As a further application, we give a short proof of a stopping-time result
originally due to Krivelevich.

Keywords: random hypergraphs, perfect fractional matchings, k-out model, hy-
pergraph expansion

1 Introduction

Hypergraphs constitute a far-reaching generalization of graphs and a basic combinatorial
construct but are notoriously difficult to work with. A hypergraph is a collection H of
subsets ( “edges”) of a set V' of “vertices.” Such an H is r-uniform (or an r-graph) if
each edge has cardinality r (so 2-graphs are graphs). A perfect matching in a hypergraph
is a collection of edges partitioning the vertex set. For any r > 2, deciding whether
an r-graph has a perfect matching is an NP-complete problem [18]; so instances of the
problem tend to be both interesting and difficult. Of particular interest here has been
trying to understand conditions under which a random hypergraph is likely to have a
perfect matching.
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The most natural model of a random r-graph is the “Erdds-Rényi” model, in which
each r-set is included in H with probability p, independent of other choices. One is then
interested in the “threshold,” roughly, the order of magnitude of p = p.(n) required to
make a perfect matching likely. Here the graph case was settled by Erdés and Rényi
[7, 8], but for r > 2 the problem—which became known as Shamir’s Problem following
[6]—remained open until [17]. In each case, the obvious obstruction to containing a perfect
matching is existence of an isolated vertex (that is, a vertex contained in no edges), and
a natural guess is that this is the main obstruction. A literal form of this assertion—the
stopping time version—says that if we choose random edges sequentially, each uniform
from those as yet unchosen, then we w.h.p.! have a perfect matching as soon as all
vertices are covered. This nice behavior does hold for graphs [3], but for hypergraphs
remains conjectural (though at least the value it suggests for the threshold is correct).

An interesting point here is that taking p large enough to avoid isolated vertices pro-
duces many more edges than other considerations—e.g., wanting a large ezpected number
of perfect matchings—suggest. This has been one motivation for the substantial body of
work on models of random graphs in which isolated vertices are automatically avoided,
notably random regular graphs (e.g., [23]) and the k-out model. The generalization of the
latter to hypergraphs, which we now introduce, will be our main focus here.

The k-out model. For a (“host”) hypergraph H on V, H(k-out) is the
random subhypergraph U,cy E,, where FE, is chosen uniformly from the k-
subsets of H, := {A € H : v € A} (or—but we won'’t see this—FE, = H,, if
|H,| < k), these choices made independently.

The k-out model for H = K,,, (the complete bipartite graph) was introduced by
Walkup [22], who showed that w.h.p. K, ,,(2-out) is Hamiltonian, so in particular contains
a perfect matching, and Frieze [13] proved the nonbipartite counterpart of the matching
result, showing that Ky, (2-out) has a perfect matching w.h.p. (Hamiltonicity in the latter
case turned out to be more challenging; it was studied in [9, 14, 4] and finally resolved
by Bohman and Frieze [2], who proved K, (3-out) is Hamiltonian w.h.p.). The idea of a
general host G was introduced by Frieze and T. Johansson [11]; see also e.g., Ferber et al.
[10] for (inter alia) a nice connection with G, .

For hypergraphs the k-out model seems not to have been studied previously (random
regular hypergraphs have been considered, e.g., in [5]). Here the two most important
examples would seem to be H = K (the complete r-graph on n vertices) and H = Kjyr
(the complete r-partite r-graph with n vertices in each part). It is natural to expect
that for each of these there is some k = k(r) for which H(k-out) has a perfect matching
w.h.p.. Note that, while almost certainly correct, these are likely to be difficult, as either
would imply the aforementioned resolution of Shamir’s Problem, as well as the following
natural guess regarding a beautiful problem of Frieze and Sorkin [12], which is what got
us interested in the first place.

L As usual we use with high probability (w.h.p.) to mean with probability tending to 1 as the relevant
parameter—here always n—tends to infinity.
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Conjecture 1. Fiz r and let w(A), A € K], be independent Exp(l) “weights.” Then

w.h.p. some perfect matching has weight O(n==1),

(And similarly for H = K-, which is the version in [12]; the (corresponding) conjecture
is not stated there, but, again, is an obvious guess.)

These cautionary notes notwithstanding, we would like to regard the following linear
relaxations as small steps toward actual perfect matchings in the k-out model. (Relevant
definitions are recalled in Section 2.)

Theorem 2. For each r, there is a k such that w.h.p. K,(f)(k—out) admits a perfect frac-
tional matching and w = 1/r is the only fractional cover of weight n/r.

Theorem 3. For each r, there is a k such that w.h.p. H = K- (k-out) admits a perfect
fractional matching and each minimum weight fractional cover of H is constant on each
block of the r-partition.

Our upper bounds on the k’s are quite large (roughly "), but in fact we don’t even
know that they must be larger than 2 (though this sounds optimistic), and we make
no attempt to optimize. In the more interesting case of (ordinary) perfect matchings,
consideration of the expected number of perfect matchings shows that k& does need to be
be at least exponential in r.

We will make substantial use of the next observation (or, in the r-partite case, of the
analogous Proposition 7, whose statement we postpone), in which the notion of expansion
may be of some interest. Recall that an independent set in a hypergraph is a set of vertices
containing no edges.

Proposition 4. Suppose H is an r-graph in which, for all disjoint XY C V with X
independent and

Y] < (r=1IX], (1)
there is some edge meeting X but not Y. Then H has a perfect fractional matching. If,
moreover we replace “<” by “<” in (1), then w = 1/r is the only fractional cover of
weight n/r.

It’s not hard to see that for » > 2 the proof of this can be tweaked to give the stronger
conclusion even under the weaker hypothesis. (For r = 2 this is clearly false, e.g., if G is
a matching.)

Related notions of expansion (respectively stronger than and incomparable to ours)
appear in [19] and [15]. An additional application of Proposition 4, given in Section 5, is
a short alternate proof of the following result of Krivelevich [19].

Theorem 5. Let {H;}i~0 denote the random r-graph process on V' in which each step
adds an edge chosen uniformly from the current non-edges, let T denote the first t for
which H; has no isolated vertices. Then Hy has a perfect fractional matching w.h.p..

Outline. Section 2 includes definitions and brief linear programming background. Sec-
tion 3 treats K,(f), proving Proposition 4 and Theorem 2, and the corresponding results
for K- are proved in Section 4. Finally, Section 5 returns to Ky(f), using Proposition 4
to give an alternate proof of Theorem 5.

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(3) (2017), #P3.60 3



2 Preliminaries

Except where otherwise specified, H is an r-graph on V' = [n]. As usual, we use [t] for
{1,2,...,t} and ()t() for the collection of ¢-element subsets of X. Throughout we use
log for In and take asymptotics as n — oo (with other parameters fixed), pretending
(following a common abuse) that all large numbers are integers and assuming n is large
enough to support our arguments.

We need to recall a minimal amount of linear programming background (see e.g.,
[21] for a more serious discussion). For a hypergraph H, a fractional (vertex) cover is
amap w : V — [0,1] such that > _ w(v) > 1 for all e € H; the weight of a cover w
is |w| = >, w(v); and the fractional cover number, 7°(H), is the smallest such weight.
Similarly a fractional matching of H is a ¢ : H — [0,1] such that }_ . ¢(e) < 1 for
all v € V; the weight of such a ¢ is defined as for fractional covers; and the fractional
matching number, v*(H), is the mazimum weight of a fractional matching.

In this context, LP-duality says that v*(H) = 7*(H) for any hypergraph. For r-graphs
the common value is trivially at most n/r (e.g., since w = 1/r is a fractional cover). A
fractional matching in an r-graph is perfect if it achieves this bound; that is, if Y~ p. = n/r
(equivalently > . . = 1 Vv, which would be the definition of perfection in a nonuniform

).

Finally, given ‘H we say a nonempty X C V is A-expansive if for all Y C V'\ X of size
at most A|X|, there is some edge meeting X but not Y.

3 Proofs of Proposition 4 and Theorem 2

Proof of Proposition 4. It is enough to show that if w is a fractional cover with ty :=
1/r —min, w(v) > 0, then |w| > n/r, with the inequality strict if we assume the stronger
version of (1). We give the argument under this stronger assumption; for the weaker, just
replace the few strict inequalities below by nonstrict ones. Given w as above, set, for each
t>0,

Wy={veln : wv)<i-t}, Wi={ven] : wk)=2I+t}

Since w is a fractional cover, each edge meeting W, must also meet W%~V (or the
weight on the edge would be less than 1); so, since W, is independent, the hypothesis of
Proposition 4 gives |[W#=Y| > (r — 1)|W,| for t € (0,t] (the t’s for which W, # 0).

For s € R, define f(s) = [{v € [n] : w(v) > s}|. Then

1 1
/ f(s)ds = / D s ds
0

0 vE[n]

- Z /0 Lww)zsy ds = Z w(v) = 7°(H).

v€[n] vE[n]

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(3) (2017), #P3.60 4



We also have |W!| = f(1/r +t) and |W;| = n — f(1/r —t), implying
ffr+t/(r=1)) = (r=1)(n - f(1/r =1)),
with the inequality strict if ¢ € (0, ¢]. Thus,

1 1/r 1
P00 = [ o= [ s [ e
- /% F(Ur —t)dt + /(H)Q/T Ut/ = 1)

r—1
2/010 {f(l/r_tHf(1/rj;t_/§r—1))} it
>/01/T[f(1/r—t)+(r—1)”‘{@{‘”} dt:;. O

We should perhaps note that the converse of Proposition 4 is not true in general
(failing, e.g., if > 2 and H is itself a perfect matching). But in the graphic case (r = 2)
the converse is true (and trivial), and the proposition provides an alternate proof of the
following characterization, which is [20, Thm. 2.2.4] (and is also contained in [1, Thm.

2.1}, e.g.).

Corollary 6. A graph has a perfect fractional matching iff [N (I)| = |I| for all independent
I.

(where N(I) is the set of vertices with at least one neighbor in I).

Proof of Theorem 2. Given r, let (without trying to optimize) k = (2r2)" and ¢ = k=" =

1/(2r?), and let H = KT(LT)(k;—out). Theorem 2 (with this k) is an immediate consequence
of Proposition 4 and the next two routine lemmas. (As usual a(H) is the size of a largest
independent set in H.) O

Lemma 3.1. W.h.p. a(H) < cn.
Lemma 3.2. W.h.p. every X C V(H) with | X| < cn is (r — 1)-ezpansive.

Proof of Lemma 3.1. The probability that S € ([Z’]) is independent in H is

-] <o [ ().

(where (a), = a(a—1)--- (a—b+1)), and summing this over S of size cn bounds P(a > ¢n)
by

2"exp [—cnk(c —r/n)" ] =exp[n(In2 — (1 — o(1))kc")],
which tends to 0 as desired. O
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Proof of Lemma 3.2. For X, Y disjoint subsets of [n], let B(X,Y) be the event that Y
meets all edges meeting X. Then, with x = |X| and y = |Y|,

kx kx kx
P(B(X,Y)) < |1— W} < [1 _ (%)’“—1] < [r(y+r)] ’

(n_l)'r‘—l
the last inequality following from
1—(1—2)™ <mz (2)

(valid for = € [0, 1] and nonnegative integer m). The probability that the conclusion of
the lemma fails is thus less than

S () [T < 3 () [
= Yl (@) -+
< > [@er) (r2r — Da/n)*"]" =o(1),

where the sums are over 1 < z < ¢n. O

4 Proof of Theorem 3

As in the proof of Theorem 2 we first show that the conclusions of Theorem 3 are implied
(deterministically) by sufficiently good expansion and then show that K, -(k-out) w.h.p.
expands as desired. We take V' =V, U--- UV, to be our r-partition (so |V;| =n Vi) and
below always assume H C K-

Proposition 7. Suppose ¢ € (0,1/2) and X > 2r® are fized and H satisfies: for any
ielr], TCV, U; CV; forj#iand U= U;4U;, there is an edge meeting T but not U
provided either

(1) |T| < en and |Uj| < AN|T| Vj #1i, or
(1) |T| = en and |U;| < (1 —e)n Vj #i.

Then H admits a perfect fractional matching, and every minimum weight fractional cover
of H is constant on each V.

Proof. Define a balanced assignment tobeaw : V' — Rwith )\, w(v) = 0and w(e) > 0
for all e € H.

We claim that (under our hypotheses) the only balanced assignment is the trivial
w = 0. To get Proposition 7 from this, let f be a minimum weight fractional cover, and
let wy(v) = f(v)=> ey, f(u)/n, for each i and v € V;. Then wy is a balanced assignment:
> ey, Wr(v) = 0 is obvious and nonnegativity holds since f(e) > 1 and, by minimality,
Y vev f(0) <n. Thus wy = 0, implying f is as promised.

Suppose then that w is a balanced assignment. For X C V and ¢t > 0, set X' = {v €
X:wkw) >t} Xy ={ve X wh) <—t}, XT=X%and X~ = X, and define the value
of X tobe )(X) =73 c¢|w)| Let S={ie€r]:|V;| <en}and B=[r]\S.
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Lemma 4.1. If X C V™~ and | X| < en, then ¥(X) < repy(V1)/A.

Proof. For any t > 0, note that every edge meeting X, meets V*/(~1 since otherwise, we
could find an edge of negative weight. So since |X;| < |X| < en, condition (i) implies
V=] > X\|X,|. Thus,

o0 1 o0 _
¢(V+)=/O ]V“\du:r—/ (VY E=D| dt

)\ oo
> 2 [T = 2, 0

r —

Lemma 4.2. If |(V;)| > en, then max;es [V;'"7V] = (1 - e)n.
Proof. Since any edge meeting (V;); meets U]#Vt/(r_l) and |V;+\ < (1 —¢)nfor j € B,
there must (see (ii)) be some j € S with |Vt/(r 1)| > (1—¢)n. O

We now claim ¢ (V;) < 2r%)(V) /X for all i. Fori € S, we do a little better: Lemma 4.1
gives (V,7) < rp(V1) /A, and balance (of w) then implies ¥(V;) = 2¢(V,7) < rp(V)/A.
For ¢« € B write W for V; (just to avoid some double subscripts) and set 7" = sup{¢
|W:| > en}. Then

W) = p(Wr) + (W= A\ Wr) < p(Wr) + TIW™\ Wrl.

Since |Wr| < en, Lemma 4.1 gives ¢ (Wr) < riy(VT)/A. On the other hand, |W;| > en
for t € [0,T), with Lemma 4.2, implies that there is a j € S with |Vjt/(r_1)| > (1 —¢)n for
all such ¢. Thus

(1= TW-\Wr| < (1-¢e)nT < fo |Vt/r Y0at < I |Vt/7" Y| at
= (r=Dp(V;") < r?p(VH)/A
So, combining, we have 1 (W) = 2¢(W~) < 2r?))(V) /A (establishing the claim) and

W(V) =3, 0(Vi) < 2r°9(V)/A.
But since 2r® < A, this forces ¢(V) = 0 and so w = 0. O

Proof of Theorem 3. Set A = 4r3, ¢ = (2rA\)~! and k = 2re™" (so k is a little more than
7). We show that w.h.p. H = K, (k-out) is as in Proposition 7. As earlier, let B(X,Y))
be the event that every edge meeting X meets Y.

Suppose first that 7" and U are fixed with |U;| = M\T| < Aen. Then

k|T|

P(B(T,U)) < [1 - (1 _ ¥)r—1} _ <#>MT'
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Summing over choices of T" and U bounds the probability that H violates the assumptions
of the proposition for some 7" and U as in (i) by

en  (n\ (n\"— r k en en en\A(r—1) /. k
T e (t) ()\t) ' (%) t S T2 (T)t (E) e (%) t
< X (A /)R er)™ ] = o(1).

Now say T" and U are fixed with |T'| = en and |U;| = (1 — €)n. Then
P(B(T,U)) < (1 — Y L exp [—k|T|e™"] < exp[—kne'].

So summing over possibilities for (7, U) bounds the probability of a violation with 7" and
U as in (ii) by
2" exp [—kne"] < exp [n(r — ke")] = o(1). O

5 Proof of Theorem 5

We now turn to our proof of Theorem 5, for which we work with the following standard
device for handling the process {#:}.

Let &g, S € ([’ﬂ), be independent random variables, each uniform from [0, 1], and for
A € [0,1], let G(A) be the r-graph on [n] with edge set E(A\) ={S : s < A}. Members
of £(A) will be called A-edges. Note that with probability one, G(0) is empty, G(1) is
complete, and the £g’s are distinct.

Provided the £g’s are distinct, this defines the discrete process {H;} in the natural way,
namely by adding edges S in the order in which their associated £g’s appear in [0, 1]. We
will work with the following quantities, where v = elogn for some small fixed (positive)
e and ¢ is a suitably slow w(1).

e A =min{\: G(\) has no isolated vertices};
e Wa={veln] : dop(v) <7k
° 0= _1_10?2_95") and § = log(gjgsm;
r—1 r—1
e N={v:3e€c&(B), vee enW, #£0}
(so N is W, together with its £(5)-neighbors).

Preview. With the above framework, our assignment is to show that G(A) has a perfect
matching w.h.p.. Perhaps the nicest part of this—and the point of coupling the different
G(\)’s—is that, so long as A € [0, 3], which we will show holds w.h.p., the desired
assertion on G(A) follows deterministically from a few properties ((b)-(d) of Lemma 5.1)
involving G(o), G(B) or both; so by showing that the latter properties hold w.h.p. we
avoid the need for a union bound to cover possibilities for A. Production of the fractional
matching is then similar to (though somewhat simpler than) what happens in [19]: the
relatively few vertices of W, (and some others) are covered by an (ordinary) matching,
and the hypergraph induced by what’s left has the expansion needed for Proposition 4.
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Lemma 5.1. With the above setup (for fived r) and Z = n(logn)~'/", w.h.p.
(a) A € [o,5];
(b) a(G(0)) < Z;

(¢) no B-edge meets W, more than once and no u ¢ W, lies in more than one (-edge
meeting N \ {u};

(d) each X CV \ W, of size at most Z is r-expansive in G(o).

Proof. For (a), note that the expected number of isolated vertices in G(A) is h(\) =

n(l— )\)(::D. The upper bound (i.e. A <  w.h.p.) then follows from h(5) = o(1), and
the lower bound is given by Chebyshev’s Inequality (applied to the number of isolated
vertices).

For (b), we have

P@)>2) < (Ha-/b) <
exp [Zlog(en/Z) —
= exp|Zlog(en/Z) —

12)" exp [-B(7)]
1—o(1) ( /r)logn(Z/n)"]
Q(n)] = o(1).

(en
(

The proofs of (c¢) and (d) are similarly routine but take a little longer. Aiming for (c), set
p = P(¢ < ), where ( is binomial with parameters ("_2) and o. Since p = E( ~ logn,
a standard large deviation estimate (e.g., [16, Thm. 2.1]) gives

p < exp[—pp(—(p—7)/p)] < n~ ',

where p(z) = (x+ 1)log(z + 1) —z for z > —1 and ¢ =~ slog(l/e)

Failure of the first assertion in (c) implies existence of § € K¢ and (distinct) u,v € S
with S € G(B) and u,v € W,. The probability that this occurs for a given S, u, v is less
than Sp? (the p* bounding the probability that each of u,v lies in at most v edges not
containing the other), so the probability that the assertion fails is less than

(")r*Bp* ~ nr(logn)p* = o(1).

If the second part of (c) fails, then we must be able to find a u ¢ W, as well as one of
the following configurations, in which x,y € W,, S; € G(53), and a,b € [n] (and vertices
and edges within a configuration are distinct):

(i) x, 51, S with z,u € S; N Sy;

)
(i) z,y,S1,Se with x,u € Sy, y,u € Ss;
(iii) z,a,Sy, S, S3 with z,u € Sy, x,a € Sy, u,a € Ss;
)

(iv) z,y,a, 51,5, 53 with z,u € S, y,a € S, u,a € Ss;
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(v) z,a,51, S, Ss with z,a € Sy, u,a € Sy N Ss;

(vi) z,a,b, Sy, 5, 55,5, with z,a € S, x,b € Sy, u,a € S3, u,b € Sy;
(Vll) x,y,a,b,S,S5,53, 54 with x,a € 51, y,b € Sy, u,a € Sz, u,b € Sy;
(viii) z,a,b, Si,S2, 53 with x,a,b € S1,u,a € Sy, u,b € Ss.

Thus, with M = (’Z:g), summing probabilities for these possibilities bounds the probabil-

ity of violating the second part of (c¢) by
TLZPMQﬁQ + n3p2M252 4 n3pM3B3 + n4p2M353 + Tl3pM3ﬁ3
+ it pMABY P pPMABY + ntpME ("R 3 = o(1).
For (d) it is enough to bound (by o(1)) the probability that for some (nonempty)
X CVofsizex < ZandY CV\ X of size rz,

there are at least yx /v o-edges meeting both X and Y . (3)

For given X, Y the expected number of such edges is less than

n—2

)U < gr?élen . poy
r—2

x- m( T
(The first inequality is a significant giveaway for small =, but we have lots of room.) So,

again using [16, Thm. 2.1], we find that the probability of (3) is less than

exp[—(yz/r)log(v/(erb)] < exp[—Q(yx loglogn)],
while the number of possibilities for (X, Y) is less than

() (1) < expl(r + 1)a(1 + log(n/x))] = exp[O(x logn)).
and the desired o(1) bound follows. ]

Proof of Theorem 5. By Lemma 5.1 it is enough to show that if (a)-(d) of the lemma hold
then G(A) has a perfect fractional matching; so we assume we have these conditions and
proceed (working in G(A)).

According to (c¢) (and the definition of A), G(A) admits a matching, M, covering W,
(each edge of which contains exactly one vertex of W,). Let W be the set of vertices
covered by M (so W consists of W, plus some subset of N\ W,), and H = G(A) — W
(as usual meaning that the edges of H are the edges of G(A) that miss W). It is enough
to show that H has a perfect fractional matching, which will follow from Proposition 4 if
we show

each independent set X of H is (r — 1)-expansive. (4)

Proof. Since such an X is also independent in G(o), (b) gives | X| < Z, and (d) then says
X is r-expansive in G(o), a fortiori in G(A). On the other hand, since X N W, = (), (c)
guarantees that the S-edges (so also the A-edges) meeting X and not contained in V(H)
can be covered by some U C W of size at most | X| (namely, (c) says each € X lies in at
most one such edge). It follows that the A-edges meeting X that do belong to H cannot
be covered by (r — 1)|X| vertices of V(H) \ X. O

O
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