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Abstract

We study the relationship between rational slope Dyck paths and invariant sub-
sets of Z, extending the work of the first two authors in the relatively prime case. We
also find a bijection between (dn, dm)–Dyck paths and d-tuples of (n,m)-Dyck paths
endowed with certain gluing data. These are the first steps towards understanding
the relationship between rational slope Catalan combinatorics and the geometry of
affine Springer fibers and knot invariants in the non relatively prime case.

Keywords: rational Dyck paths, rational Catalan combinatorics, simultaneous core
partitions, invariant integer subsets, semigroups

1 Introduction

Catalan numbers, in one of their incarnations, count the number of Dyck paths, that is,
the lattice paths in a square which never cross the diagonal. In recent years, a number
of interesting results and conjectures [3, 4, 7, 9, 12, 13, 14, 16, 24, 28] about “rational
Catalan combinatorics” have been formulated. An (n,m)-Dyck path is a lattice path in
an n×m rectangle, going from the bottom-right corner (m, 0) to the top-left corner (0, n)
and never going above the diagonal, which is the line that connects them. We will denote
the set of all (n,m)-Dyck paths by Yn,m. For coprime m and n there are a number of
interesting maps involving Yn,m, see Figure 1:
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(a) J. Anderson constructed a bijection A between Yn,m and the set Coren,m of simul-
taneous (n,m)-core partitions.

(b) Armstrong, Loehr, and Warrington defined a “sweep” map ζ : Yn,m → Yn,m and
conjectured that it is bijective. This conjecture was proved by Thomas and Williams
in [26].

(c) The first two authors defined two maps D and G between Yn,m and the set Mn,m of
(n,m)-invariant subsets of Z>0 containing 0. If combined with a natural bijection
between Coren,m and Mn,m, the map D coincides with A. Furthermore, one can
prove that ζ = G ◦ D−1. As a consequence, the map G is also bijective.

Yn,m

Mn,m

Yn,m

Coren,m

D G

ζ

A

Figure 1: Rational Catalan maps in the coprime case

The goal of the present paper is a partial generalization of the diagram in Figure 1
to the non-coprime case. Let (n,m) be relatively prime, and d be a positive integer. Let
N = dn and M = dm. The set YN,M is well defined for all n,m, d, and the definition of ζ
can be carried over with minimal changes. However, while the sets CoreN,M and MN,M

are still in bijection with each other, the sets become infinite. Indeed, an (N,M)-invariant
subset of Z>0 can be identified with a collection of d (n,m)-invariant subsets, one for each
remainder mod d. These subsets won’t necessarily have minimum element 0, and so we
will want to shift or translate each a fixed amount. More abstractly, this defines a map
ε : MN,M → (Mn,m)d and different shifts correspond to different preimages under ε.

To resolve this problem, we introduce a certain equivalence relation ∼ on MN,M . It
satisfies that ∆1 ∼ ∆2 implies ε̄(∆1) = ε̄(∆2), where ε̄ : MN,M → (Mn,m)d → (Mn,m)d/Sd,
so ε̄ is well defined on MN,M/∼. The following theorem is the main result of the paper.

Theorem 1.1. For all positive N,M one can define maps

D,G : MN,M/∼ −→ YN,M

such that the following results hold:

(a) The maps D and G are bijective.

(b) The “sweep” map factorizes similarly to the coprime case: ζ = G ◦ D−1.
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(c) Let d = gcd(N,M), n = N/d, and m = M/d. The composition

cold := Dd ◦ ε ◦ D−1 : YN,M → (Yn,m)d/Sd,

can be described as follows: color the N + M steps in an (N,M)-Dyck path with d
colors, i.e., by Z/dZ, so that there are n + m steps of the same color i, and these
steps will form an (n,m)-Dyck path after possibly translating connected components

by integer multiples of
−−−−−→
(m,−n) to make the i-colored steps connected.

As we do not have a canonical way of assigning colors, we must pass to Sd orbits
above. We shall see in Section 3.2 that the coloring is finer than Sd orbits and in fact
corresponds to an isomorphims class of a labeled directed graph with d nodes.

YN,M

MN,M/∼

YN,M

(Mn,m)d /Sd

(Yn,m)d /Sd

D G

ζ

ε̄
Dd

cold

Figure 2: Rational Catalan maps in the non-coprime case.

We illustrate all these maps in Figure 2. We also give an explicit description of the
“coloring map” cold, as well as its inverse given proper gluing data. In the “classical” case
M = N we get d = N and m = n = 1, therefore cold colors a Dyck path in n colors such
that the pairs of steps of the same color form a (1, 1)-Dyck path. In this case the coloring
is equivalent to presenting a Dyck path as a regular sequence of parentheses, with every
opening and its corresponding closing parenthesis corresponding to the pair of steps of
the same color.

We conjecture a relation between the constructions of this paper, combinatorial iden-
tities and link invariants. Recall that the “compositional rational shuffle conjecture” of
[7] (proved in [24]) relates a certain sum over (N,M)-Dyck paths to certain matrix ele-
ments of operators acting on symmetric functions. Here we propose a different sum over
(N,M)-invariant subsets, and plan to clarify the relation between the two in the future
work. We define the generating series:

CN,M(q, t) =
∑

∆∈MN,M

qgap(∆)tdinv(∆), (1)

where
gap(∆) = |Z>0 \∆|.

For d = 1 it agrees with the rational q, t-Catalan polynomial [12, 3]

cN,M(q, t) =
∑

D∈YN,M

qarea(D)tdinv(D),
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and it follows from the results of [24] that:

Cn,m(q, t) = cn,m(q, t) =
∑

D∈YN,M

qarea(D)tdinv(D) = (Pn,m(1), hn). (2)

Here Pn,m is a certain operator defined in [16, 7] and acting on the space of symmetric
functions. In particular, the left hand side of (2) is symmetric in q and t. It was also
proved in [16] that the right hand side of (2) equals the “refined Chern-Simons invariant”
(in the sense of [1]) of the (n,m) torus knot, and conjectured that it equals the Poincaré
polynomial of the (a = 0) part of the Khovanov-Rozansky homology [19] of this knot.

For d > 1, the formula for cN,M(q, t) generalizing (2) was conjectured in [7] and proved
in [24]. However, CN,M is now an infinite power series while cN,M is a finite polynomial.

Conjecture 1.2. For general d > 1, the following statements hold:

(a) One has CN,M(q, t) = 1
(1−q)d−1 (P d

n,m(1), hN), where Pn,m is the same operator as in

(2).

(b) The series CN,M(q, t)/(1− q) agrees with the Poincaré series of the (a = 0) part of
the Khovanov-Rozansky homology of the (N,M) torus link.

The part (a) immediately implies that CN,M(q, t)(1 − q)d−1 is symmetric in q and t.
To support the conjecture, we use a recent result of Elias and Hogancamp [10] to prove
the following:

Theorem 1.3. Conjecture 1.2(b) holds for M = N .

In the case M = N , part (a) of the conjecture is equivalent to [10, Conjecture 1.15]
(see also [27]), but, to our knowledge, it is still open. For general M and N , it fits into
the framework of conjectures of [1, 16, 17], and we refer the reader to these references for
more details.

2 Relatively prime case

Let (n,m) be a pair of relatively prime positive integers. Consider an n×m rectangle Rn,m.
Let Yn,m be the set of Young diagrams that fit under the diagonal in Rn,m. We will often
abuse notation by identifying a diagram D ∈ Yn,m with its boundary path (sometimes
also called a rational Dyck path), and with the corresponding partition. We will also
think about the rectangle Rn,m as a set of boxes, identified with a subset in Z>0 with the
bottom-left corner box identified with (0, 0). In our convention, n is the height of Rn,m

and m is its width; and the boundary path of D ⊂ Rn,m follows the boundary from the
bottom-right corner to the top-left corner. See Example 2.14 below. In Section 3.3.1, it
will also be convenient to identify the path D with a function (or its plot) [0, n+m]→ R2.

There are two important combinatorial statistics on the set Yn,m : area and dinv.

Definition 2.1. Let D ∈ Yn,m. Then area(D) is equal to the number of whole boxes that
fit between the diagonal of Rn,m and the boundary path of D.

Note that area(D) ranges from 0 for the full diagram to

δ =
(m− 1)(n− 1)

2
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for the empty diagram. The coarea(D) = δ − area(D) is then just the number of boxes
in the Young diagram D. One natural approach to the dinv statistic is to define the
map ζ : Yn,m → Yn,m and then set dinv(D) := area(ζ(D)). In the case m = n + 1 the
map ζ was first defined by Haglund ([18]), then it was generalized by Loehr to the case
m = kn+ 1 for any k ∈ Z>0 ([20]), and to the general case of any relatively prime (n,m)
by Gorsky and Mazin in [12]. In [4] it was put into even larger framework of so called
sweep maps. Below is one of the equivalent possible definitions.

Definition 2.2. The rank of a box (x, y) ∈ Z2 is given by the linear function

rank(x, y) = mn−m− n− nx−my.

Note that the boxes of non-negative ranks are exactly those that fit under the bottom-
right to top-left diagonal of Rn,m. Let D ∈ Yn,m. One ranks the steps of the boundary
path of D as follows.

Definition 2.3. The rank of a vertical step of D is equal to the rank of the box imme-
diately to the left of it. The rank of a horizontal step is equal to the rank of the box
immediately above it.

In other words, the ranks of steps can be defined inductively as follows. We follow the
boundary path of D starting from the bottom-right corner. The first step is ranked −m.
Otherwise, the rank of each step equal to the rank of the previous step plus n, if the
previous step is horizontal, and it equals to the rank of the previous step minus m, if the
previous step is vertical. Note the last step is ranked 0 (and is vertical).

Note that for relatively prime (n,m) all the ranks of the steps of a diagram D ∈ Yn,m
are distinct.

Definition 2.4. The boundary path of the diagram ζ(D) is obtained from the boundary
path of D by rearranging the steps in the increasing order of ranks.

The definition of the map ζ is illustrated in Example 2.14. One can verify that the
diagram ζ(D) fits under the diagonal of Rn,m (see [12] and [4]). The following result is
considerably harder, see also [13, 18, 20, 28] for partial results in this direction.

Theorem 2.5 ([26]). The map ζ is bijective.

The following approach to studying the map ζ was suggested in [12].

Definition 2.6. We say that a subset ∆ ⊂ Z>0 is (n,m)-invariant and 0-normalized if
∆ +m ⊂ ∆, ∆ + n ⊂ ∆, and min(∆) = 0. Let Mn,m be the set of all such subsets ∆.

In [12] two maps D and G from the set Mn,m to Yn,m were constructed.

Definition 2.7. Let ∆ ∈Mn,m. The diagram D(∆) consists of all boxes in Rn,m whose
ranks belong to ∆.

Clearly, D(∆) fits under the diagonal. In particular, one gets that D(Γn,m) = ∅, where
Γn,m := {an+ bm | a, b ∈ Z>0} is the semigroup generated by n and m, and D(Z>0) is the
full diagram containing all the boxes below the diagonal. Note that the (n,m)-invariance
of ∆ implies that D(∆) is indeed a Young diagram. Note also that D is a bijection.
Indeed, it is not hard to see that rank provides a bijection between the boxes below the
diagonal in Rn,m and the integers in Z>0 \ Γn,m.
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It is also important to sometimes consider the periodic extension P (∆) of the boundary
path of D(∆). Equivalently, it can be defined as the infinite lattice path separating the
boxes in Z2 which ranks belong to ∆ from the boxes which ranks belong to the complement
Z\∆. We will call such paths (n,m)-periodic. See Figure 3 for an example.

Remark 2.8. J. Anderson in [2] defined a bijection between Yn,m and the set Coren,m of
(n,m)-cores, that is, Young diagrams with no hooks of length n or m. The standard
bijection between Coren,m and Mn,m identifies Anderson’s bijection with the map D, see
e.g [13] for details.

Definition 2.9. The numbers 0 = a0 < a1 < . . . < an−1, such that

{a0, . . . , an−1} = ∆ \ (∆ + n)

are called the n-generators of ∆. The numbers {b0 < b1 < . . . < bm−1} such that

{b0, . . . , bm−1} = (∆−m) \∆

are called the m-cogenerators of ∆.

Remark 2.10. Let D = D(∆). The ranks of the vertical steps of D are exactly the n-
generators of ∆, and the ranks of the horizontal steps of D are exactly the m-cogenerators
of ∆. We will often mark n-generators by × and m-cogenerators by �.

Definition 2.11. The diagram G(∆) has row lengths g0, . . . , gn−1 given by the following
formula:

gk = ]{bi | bi > ak}.
Equivalently, the boundary path of G(∆) can be obtained by rearranging the set

S = {a0, . . . , an−1, b0, . . . , bm−1}

in increasing order and replacing n-generators by vertical steps and m-cogenerators by
horizontal steps, from bottom right to top left.

The next result follows from the above definitions.

Proposition 2.12. [12, 13] The following identity holds:

ζ(D) = G ◦ D−1(D).

Corollary 2.13. Since ζ and D are bijective, the map G is a bijection too.

Example 2.14. For example, if n = 5, m = 3, and ∆ = {0, 3, 5, 6, 7, 8, . . . } then the 5-
generators of ∆ are 0, 3, 6, 7, 9 and 3-cogenerators are −3, 2, 4. The diagram D(∆) consists
of one box, which has rank 7. The ranked boundary path of D is

h h v h v v v v

−3 2 7 4 9 6 3 0

read bottom to top, which we sort to the boundary path of ζ(D)

h v h v h v v v

−3 0 2 3 4 6 7 9

See Figure 3 for the diagrams D and ζ(D). Note, that if one takes the union of the
5-generators and 3-cogenerators and reads them in the increasing order, then one gets
−3, 0, 2, 3, 4, 6, 7, 9. Replacing generators by “v” and cogenerators by “h”, one will get
hvhvhvvv, which is the boundary path of ζ(D).

the electronic journal of combinatorics 24(3) (2017), #P3.61 6



0

3

6

9

12

−8

−5

−2

1

4

7

−7

−4

−1

2

−9

−6

−3

15 10 5 05

8

−5

−2

1

4

7

−7

−4

−1

2

−9

−6

−3

10 5 0

8

0

3

6

9

12

−8

−5

−2

1

4

7

−7

−4

−1

2

−9

−6

−3

P =

0

3

6

9 4

7 2 −3

D = ζ(D) =

0

3

6

7

9

2

−3

4

Figure 3: Here n = 5 and m = 3. On the left is (a fragment of) the periodic path
P = P ({0, 3, 5, 6, 7, 8, . . . }), center is the diagram D = D({0, 3, 5, 6, 7, 8, . . . }), and on the
right is the diagram ζ(D).

The approach with invariant subsets allows one to relate the dinv statistic to geometry.
Let V = C[t]/t2δC[t] be the ring of polynomials of degree less than 2δ = (m−1)(n−1). Let
Gr(δ, V ) be the Grassmannian of half-dimensional subspaces in V. Consider the subvariety
Jn,m ⊂ Gr(δ, V ) consisting of subspaces in V invariant under multiplication by tm and
tn :

Jn,m = {U ∈ Gr(δ, V ) : tmU ⊂ U, tnU ⊂ U}.

These varieties appear in algebraic geometry as local versions of the compactified Jaco-
bians (see Beauville [5] and Piontkowski [25]), and in representation theory as homoge-
neous affine Springer fibers, where they were first considered by Lusztig and Smelt in [22]
and then by Piontkowski [25]. Both Lusztig and Smelt, and Piontkowski showed that Jn,m
has a natural decomposition into complex affine cells enumerated by elements of Mn,m.
Moreover, the dimension of the cell C∆ corresponding to an invariant subset ∆ ∈ Mn,m

is given by
dimCC∆ = |G(∆)| = δ − dinv(∆).

Therefore, one gets the following theorem.

Theorem 2.15 ([12]). The Poincaré polynomial Pn,m(t) of the variety Jn,m is given by

Pn,m(t) =
∑

D∈Yn,m

t2(δ−dinv(D)).

Moreover, bijectivity of the map ζ (or, equivalently, the map G) implies a simpler
formula:

Pn,m(t) =
∑

D∈Yn,m

t2|D|,

where |D| = δ − area(D) is simply the number of boxes in D.
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3 Non-relatively prime case.

3.1 Sweep map

The notion of a rational Dyck path naturally generalizes to the non relatively prime case.
Let (n,m) be relatively prime, and d be a positive integer. Let N = dn and M = dn.
Consider an N ×M rectangle RN,M and the set YN,M of Young diagrams that fit under
the diagonal in RN,M . The area statistic can be generalized directly. The dinv statistic
and the map ζ are a bit more tricky. It is convenient to adjust the rank function on the
boxes in the following way:

rank(x, y) = dmn−m− n− nx−my.

The steps of the boundary path of a diagram D ∈ YN,M are ranked as before with respect
to the new rank function. The first step is still ranked −m and the inductive description
of the ranks still holds with respect to +n,−m; it still holds that the boxes with non-
negative rank are those below the diagonal. However, for d > 1 some distinct steps might
have the same rank, therefore rearranging the steps of the path according to their rank is
problematic. The following idea for overcoming this difficulty was suggested by François
Bergeron. It can also be found in [4].

Definition 3.1. Let D ∈ YN,M . The boundary path of the diagram ζ(D) is obtained from
the boundary path of D by rearranging the steps so their ranks are weakly increasing. If
two steps have the same rank, then they are ordered in the reversed order of appearance
in the boundary path of D.

Example 3.2. Consider the diagram D ∈ Y9,6 with the boundary path hvhvvhhhvhvvvvv

(see Figure 4). The ranked boundary path of D is

h v h v v h h h v h v v v v v

−2 1 −1 2 0 −2 1 4 7 5 8 6 4 2 0

which we sort to the boundary path of ζ(D)

h h h v v h v v v v h h v v v

−2 −2 −1 0 0 1 1 2 2 4 4 5 6 7 8.

Note there are two steps of rank 4 in the boundary path of D : when read bottom to
top on the path but left to right above, first there is a horizontal step, and then there is
a vertical step. In the boundary path of ζ(D) the order of these two steps is reversed.
Similarly for the two steps of rank 1.

Now the statistic dinv can be defined as

dinv(D) := area(ζ(D)).

Note that in [7] a different definition of dinv for the non relatively prime case is used:

dinv′(D) := ]

{
� ∈ D :

leg(�)

arm(�) + 1
<

n

m
6

leg(�) + 1

arm(�)

}
.

Lemma 3.3. One has
dinv(D) = dinv′(D)

for any D ∈ YN,M .
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Figure 4: Here n = 9 and m = 6. On the left is the diagram D with the boundary path
hvhvvhhhvhvvvvv marked with ranks; and on the right is the diagram ζ(D).

Proof. This result essentially follows from Corollary 1 on page 8 in [23]. For every box
� ∈ RN,M there is exactly one horizontal step h� of the Dyck path D in the same column,
and exactly one vertical step v� of D in the same row. This provides a bijection between
the boxes in RN,M and the couples: one vertical step of D and one horizontal step of D.
The reordering of the steps according to ζ gives rise to a bijective map φ : RN,M → RN,M ,
where the box φ(�) corresponds to the pair of steps of ζ(D) obtained from h� and v� by
reordering according to ζ.

With the terminology above, arm(�) is the number of boxes strictly between the box
� ∈ RN,M and the horizontal step h� of the boundary of D, whereas its leg(�) is the
number of boxes strictly between the box � and v�. Observe, v� appears in the path
before h� if and only if � ∈ D. Consider two cases:

1. Suppose � ∈ D, then one has

rank(h�) = rank(�)−m(leg(�) + 1),

and
rank(v�) = rank(�)− narm(�).

One gets φ(�) ∈ ζ(D) if and only if after the reordering the step in ζ(D) correspond-
ing to v� comes before the step corresponding to h�. According to the definition of
ζ, in this case it is equivalent to rank(v�) < rank(h�), which is in turn equivalent
to

leg(�) + 1

arm(�)
<

n

m
.

2. Suppose � ∈ RN,M\D. Similarly, one gets

rank(h�) = rank(�) +mleg(�),

and
rank(v�) = rank(�) + n(arm(�) + 1).

In this case,
leg(�)

arm(�) + 1
>

n

m

if and only if rank(v�) 6 rank(h�), if and only if φ(�) ∈ ζ(D).
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Since by definition dinv(D) = ]R+
N,M − ]ζ(D), where R+

N,M is the set of boxes in RN,M

that fit under the diagonal, one gets

dinv(D) =

]R+
N,M − ]

{
� ∈ D :

leg(�) + 1

arm(�)
<

n

m

}
− ]
{
� ∈ RN,M\D :

leg(�)

arm(�) + 1
>

n

m

}
by the above considerations. Corollary 1 on page 8 in [23] proves

]

{
� ∈ RN,M\D :

leg(�)

arm(�) + 1
>

n

m

}
= ]

{
� ∈ D :

leg(�)

arm(�) + 1
>

n

m

}
+ ](R+

N,M\D).

Therefore, we conclude that

dinv(D) = ]D − ]
{
� ∈ D :

leg(�) + 1

arm(�)
<

n

m

}
− ]
{
� ∈ D :

leg(�)

arm(�) + 1
>

n

m

}
= ]

{
� ∈ D :

leg(�)

arm(�) + 1
<

n

m
6

leg(�) + 1

arm(�)

}
= dinv′(D).

The cardinality of the sets YN,M of Dyck paths get more complicated in the non-
relatively prime. In [8] Bizley shows that

exp(
∑
d>1

1

d(m+ n)

(
d(m+ n)

dm

)
xd)

is the generating function whose coefficients give the cardinalities of YN,M , where (N,M) =
(dn, dm) for gcd(n,m) = 1.

On the other hand, the set MN,M of subsets 0 ∈ ∆ ⊂ Z>0 invariant under addition of
M and N is infinite when gcd(N,M) = d > 1. Therefore, there is no hope to construct a
bijection between the set of such subsets and YN,M . However, the map G : MN,M → YN,M
is still well defined. We define an equivalence relation ∼ on the set MN,M , so that the
relative order of N -generators and M -cogenerators, and hence the value of G, is the same
within each equivalence class. We then construct a bijection D between the equivalent
classes MN,M/∼ and YN,M , so that one gets ζ = G ◦ D−1 as in the d = 1 case.

Comparing the definition of G to Lemma 3.3, one can see that dinv is constant on
the fibres of G. Further, each fiber of G is a union of ∼ equivalence classes. In fact, each
equivalence class is precisely one fiber by the result of Thomas and Williams [26] showing
that ζ is always bijective.

Given an (N,M)-invariant subset ∆ ∈MN,M one can extract d many (n,m)-invariant
subsets from it by the following procedure: for each r ∈ {0, 1 . . . , d − 1} consider the
subset in ∆ consisting of all integers congruent to r modulo d, subtract r from all these
elements and then divide by d. In other words one has

∆r = [(∆ ∩ (dZ + r))− r] /d. (3)

Note that the subsets ∆r for r > 0 might not be 0-normalized. Note also that ∆ can be
uniquely reconstructed from ∆0, . . . ,∆d−1, so we have a bijection between the set of 0-
normalized (N,M)-invariant subsets and (ordered or Z/dZ-colored) collections of d many
(n,m)-invariant subsets, such that ∆0 is zero normalized and ∆i ⊂ Z>0 for all i.

Remark 3.4. There is a natural bijection, extending Anderson’s construction, between
the set of (N,M)-invariant subsets and the set of (N,M)-cores. If λ is an (N,M)-core
corresponding to ∆ then one can check that the d-quotient of λ ([21]) consists of d diagrams
each of which are (n,m)-cores. They naturally correspond to ∆0, . . . ,∆d−1.
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3.2 Equivalence relation

The idea of the equivalence relation is that one should fix the collection ∆0, . . . ,∆d−1 up
to shifts, but allow them to slide with respect to each other as long as the N -generators
and M -cogenerators of ∆ do not “jump” over each other. It is motivated by making the
invariant sets in the same fiber of G equivalent. Recall the map G only cares about the
relative order of the N -generators and M -cogenerators. We will analyze an equivalence
class by understanding all the positions the generators and cogenerators can fill while
retaining this relative order. This analysis will allow us to construct a representative in
the equivalence class of ∆ ∈ MN,M which has the minimal number of gaps, and it is on
that representative that we can define D. Later, we will describe the equivalence class of
∆ in terms of rank data from the ∆r along with appropriate gluing data.

Let us first explain the equivalence relation with an example.

Example 3.5. Let (N,M) = (6, 4). The following two elements of YN,M are equivalent.
Let ∆1 be given by:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
× ◦ � ◦ × � • ◦ × × • � • × • . . .

and ∆2 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
× ◦ � ◦ × ◦ • � × ◦ • × • � • . . .

.

Here ×’s are 6-generators, �’s are the 4-cogenerators, •’s are other elements of the subset,
and ◦’s are the other elements of the complement. Note that not all 6 generators and 4
cogenerators fit in the pictures. It is more illustrative to split ∆1 into its even and odd
parts:

r = 0 0 2 4 6 8 10 12 14 . . .
× � × • × • • . . .

r = 1 1 3 5 7 9 11 13 . . .
◦ ◦ � ◦ × � . . .

.

It is more compact to then stack them as

r = 0 −4 −2 0 2 4 6 8 10 12 14 16 18 . . .
� ◦ × � × • × • • • • . . .

r = 1 −3 −1 1 3 5 7 9 11 13 15 17 19 . . .
◦ ◦ ◦ ◦ � ◦ × � × • × . . .

,

reminiscent of a d-abacus.
Finally we just record ∆1

0 and ∆1
1:

−2 −1 0 1 2 3 4 5 6 7 8 9 10 . . .
∆1

0 � ◦ × � × • × • • • • . . .
∆1

1 ◦ ◦ ◦ ◦ � ◦ × � × • × . . .
.

To restore ∆1 one should multiply both ∆1
0 and ∆1

1 by two, add one to ∆1
1, and merge

them together. In other words, ∆1 = 2∆1
0 ∪ (1 + 2∆1

1). Similarly, for ∆2 one gets
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−2 −1 0 1 2 3 4 5 6 7 8 9 10 . . .
∆2

0 � ◦ × � × • × • • • • • . . .
∆2

1 ◦ ◦ ◦ ◦ ◦ � ◦ × � × • × . . .
.

Note that the sequences of N -generators and M -cogenerators are the same for ∆1 and
∆2, even if we take into account the remainder modulo 2. In both cases one gets

� × � × � × × � × × (4)

where red is for even generators and cogenerators (r = 0), and blue is for odd (r = 1).
This is the reason ∆1 ∼ ∆2. If we only knew the even and odd parts, then, in this
example, the odd part can be shifted by 1 with respect to the even part without changing
the sequence or parity of generators and cogenerators. Note that one cannot shift further:
in ∆1 one cannot shift the odd part to the left, and in ∆2 one cannot shift the odd part
to the right and still yield an invariant set equivalent to ∆1. Also note that while ∆1

0 =
∆2

0, ∆1
1 = −1+∆2

1.

Let us give a formal definition of the equivalence classes.

Definition 3.6. The skeleton of an (N,M)-invariant subset ∆ is the set consisting of its
N -generators and M -cogenerators.

Example 3.7. The skeleton of ∆1 from Example 3.5 is {−4, 0, 2, 4, 5, 8, 9, 11, 13, 17}. Note
is has 10 = 6 + 4 elements.

Note that one can uniquely reconstruct an invariant subset ∆ from its skeleton. Indeed,
the skeleton contains all the N -generators of ∆, and to distinguish the N -generators from
the M -cogenerators one should simply choose the biggest elements in each congruence
class mod N.

An attentive reader may have noticed that the above definition of the skeleton are
not obviously symmetric in N and M . It fact, it is (almost) symmetric by the following
lemma.

Lemma 3.8. Let ∆ be some (N,M)-invariant subset. An integer x is either an N-
generator or an M-cogenerator of ∆ if and only if x + M is an (N + M)-generator of
∆.

Proof. Indeed, x + M is an (N + M)-generator of ∆ if and only if x + M ∈ ∆ and
x−N /∈ ∆.

If x is an N -generator then x ∈ ∆, so x + M ∈ ∆, but x − N /∈ ∆. Hence by the
above it is an (N +M)-generator. Assume that x is an M -cogenerator. Then x /∈ ∆ but
x + M ∈ ∆. If x − N ∈ ∆ then x ∈ ∆, contradiction, therefore x − N /∈ ∆, and again
x+M is an (N +M)-generator.

Conversely, assume that x −N = x + M − (N + M) /∈ ∆ and x + M ∈ ∆. If x ∈ ∆
then x is an N -generator, and if x /∈ ∆ then x is a M -cogenerator.

Remark 3.9. One can also prove Lemma 3.8 using generating functions. Let f(t) =∑
s∈∆ t

s be the generating function for ∆, then the generating function for the set of N -
generators equals (1 − tN)f(t) while the generating function for the set of M -generators
equals (t−M − 1)f(t). Therefore the generating function for the skeleton equals:

(1− tN)f(t) + (t−M − 1)f(t) = (t−M − tN)f(t) = t−M(1− tM+N)f(t).
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Corollary 3.10. Let ∆ ∈ MN,M . Then x is in the (N,M)-skeleton of ∆ if and only if
x−N +M is in the (M,N)–skeleton of ∆.

Remark 3.11. Indeed, the distribution of generators and cogenerators in the (N,M) and
(M,N) skeletons is different (say, there are N generators in the former and M in the
latter). One can be obtained from the other by reading the distribution backwards
and swapping ×s and �s. In Example 3.5 the (6, 4)-skeleton of ∆1 is {−4, 2, 5, 11} ∪
{0, 4, 8, 9, 13, 17} whereas its (4, 6)-skeleton is {−6,−2, 2, 3, 7, 11} ∪ {0, 6, 9, 15}, pictured
as

� × × � � × � × � × ,

which one should compare to (4).

In other words, the (N,M)-skeleton and the (M,N)-skeleton of ∆ differ by a shift by
(M −N) which does not depend on ∆. In particular, all the constructions are symmetric
(up to an overall shift) in M and N . From now on we will continue to use notation as in
Definitions 3.6 above and 3.13 below.

Let ∆ be an (N,M)-invariant set, let S be its skeleton, and S0, . . . , Sd−1 be the parts
of the skeleton in different remainders modulo d = gcd(M,N) (i.e., Si = S ∩ (dZ + i)).

Definition 3.12. A shift S0, S1 + a1, . . . , Sd−1 + ad−1 is called acceptable (relative to S)
if there exists a continuous path φ = (φ1, . . . , φd−1) : [0, 1]→ Rd−1 with φ(0) = (0, . . . , 0)
and φ(1) = (a1, . . . , ad−1), such that for any 0 6 t 6 1 the sets S0, S1 + φ1(t), . . . , Sd−1 +
φd−1(t) are pairwise disjoint. In other words, we allow S1, . . . , Sd−1 to shift by translations
as long as the elements of different Si’s do not intersect. In this case we will call the tuple
(a1, . . . , ad−1) an acceptable shifting of S and an integral shifting when all ai ∈ Z.

When S is understood we will lighten notation by not specifying the shifts are relative
to S or the shiftings are of S. In fact, in the rest of this section we will assume everything
is relative to some fixed skeleton S unless stated otherwise.

Definition 3.13. Let ∆,∆′ ∈ MN,M with skeletons S =
⊔
Si, S

′ =
⊔
S ′i, respectively.

We say that ∆ is equivalent to ∆′ or ∆ ∼ ∆′ if there exist a permutation σ ∈ Sd−1 such
that S ′0, S

′
σ(1), . . . , S

′
σ(d−1) is an acceptable shift of S0, S1, . . . , Sd−1.

Equivalence class will always mean ∼ equivalence class.
Dealing with equivalence classes is complicated. Instead, we want to choose one

representative from each class—a minimal one, as defined below. Our goal is to shift
S1, . . . , Sd−1 down as much as possible, so that the parts of the skeleton are “stuck” on
one another. In fact, this will minimize the size of Z>0 \∆. Note that not every integral
acceptable shift of a skeleton is again a skeleton of some (N,M)-invariant subset, because
different parts of the skeleton might end up in the same congruence class modulo d. How-
ever, it is convenient to consider the set of all acceptable integral shifts. We will show
that there always exists a minimal integral acceptable shift and use it as an intermediate
step in the construction of the bijection D : MN,M/∼ → YN,M .

Lemma 3.14. The acceptability condition on a shifting a1, . . . , ad−1 is equivalent to sat-
isfying a system of linear inequalities of the form

ai − aj < b̃ij,

where b̃ij ∈ Z>0 ∪∞ for 0 6 i, j < d, are fixed and the condition a0 = 0. In particular,
the set of acceptable shiftings is convex.
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Proof. Fix a skeleton S. Set

b̃ij := min
x∈Si, y∈Sj , y>x

y − x, (5)

if {x, y : x ∈ Si, y ∈ Sj, y > x} 6= ∅, and b̃ij =∞ otherwise. Suppose that (a1, . . . , ad−1)

is an acceptable shifting of S. It follows that for any i, j one has ai − aj < b̃ij. Indeed,

assume otherwise, i.e., ai − aj > b̃ij. By definition, there exist x ∈ Si and y ∈ Sj such

that y − x = b̃ij > 0. However, after shifting one has

(y + aj)− (x+ ai) = b̃ij − (ai − aj) 6 0.

Therefore, for any continuous path φ : [0, 1] → Rd−1 such that φ(0) = (0, . . . , 0) and
φ(1) = (a1, . . . , ad−1), there exists t ∈ (0, 1] such that y+φi(t) = x+φj(t). Contradiction.

Conversely, suppose that (a1, . . . , ad−1) is such that all the inequalities ai−aj < b̃ij are
satisfied. Take the path φ to be the line segment connecting (0, . . . , 0) and (a1, . . . , ad−1),
i.e., take

φ(t) := (ta1, . . . , tad−1).

Then for any t ∈ [0, 1], any 1 6 i, j 6 d− 1, i 6= j, and any x ∈ Si and y ∈ Sj with y > x
one has x+ tai 6= y + taj. Indeed,

(y + taj)− (x+ tai) = (y − x)− t(ai − aj) > b̃ij − t̃bij > 0.

(The case y < x is covered similarly by the inequality aj − ai < b̃ji.)

We are interested in integral acceptable shiftings, so we can set bij = b̃ij − 1, and then
all integral acceptable shiftings satisfy

ai − aj 6 bij. (6)

Let A = AS ⊂ Rd−1 be the set defined by the inequalities (6).

Example 3.15. Let (n,m) = (3, 2) and d = 4. Consider the (12, 8)-invariant subset

∆ = {0, 1, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 27, 28, 29, 30} ∪ (Z>32).

As in Example 3.5, it is convenient to reserve a separate row for each remainder modulo
d = 4 :

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 . . .

0 � ◦ × � × • × • • • • • • • . . .

1 � � × × × • • • • • • • • • . . .

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ � � × × × • • . . .

3 ◦ ◦ ◦ ◦ ◦ ◦ � ◦ × � × • × • . . .

Here each box in the table correspond to the sum of the numbers at the top of the
column and at the left and of the row, so to recover the subset ∆ one should read the table
column by column, top to bottom, then left to right. As usual, × denotes a 12-generator,
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and � an 8-cogenerator, while • are the other elements of ∆ and ◦ the other elements in
the complement. The parts S0, S1, S2, and S3 of the skeleton of ∆ are given by

S0 = {−8, 0, 4, 8, 16}, S1 = {−7,−3, 1, 5, 9}, S2 = {22, 26, 30, 34, 38},
and S3 = {19, 27, 31, 35, 43}.

We can compute the numbers bij = b̃ij − 1, i 6= j in this example:

(bij)
3
i,j=0 =


0 5 2

2 12 9
∞ ∞ 0
∞ ∞ 2

 .

Therefore, the set AS ⊂ R3 is given by the shiftings (a1, a2, a3) satisfying

−2 6 a0 − a1 6 0, −∞ 6 a0 − a2 6 5, −∞ 6 a0 − a3 6 2,

−∞ 6 a1 − a2 6 12, −∞ 6 a1 − a3 6 9, −2 6 a2 − a3 6 0,

where a0 = 0. This simplifies to

0 6 a1 6 2, a3 > −2, 0 6 a3 − a2 6 2.

Lemma 3.16. Define

mi = max
i=i1,i2,...,ik=0

k−1∑
`=1

(−bi`+1il) (7)

where the maximum is taken over all sequences {i1, i2, ..., ik} of integers between 0 and
d−1, such that i1 = i and ik = 0. Then (m1, . . . ,md−1) ∈ A and for any i and any integral
acceptable shifting (a1, . . . , ad−1) ∈ A ∩ Zd−1 we have ai > mi.

Proof. By definition, there exists a sequence of integers i = i1, i2, . . . , ik−1, ik = 0 such

that mi =
k−1∑̀
=1

(−bi`+1i`). Then one has

ai = (ai1 − ai2) + (ai2 − ai3) + . . .+ (aik−1
− a0) > −bi2i1 − . . .− bikik−1

= mi.

Suppose (m1, . . . ,md−1) 6∈ A. Then mi −mj > bij for some 0 6 i, j < d. By definition,

there exists a sequence i = i1, i2, . . . , ik = 0 such that mi =
k−1∑̀
=1

(−bi`+1il). But then

mj < mi − bij = −bij +
k−1∑
`=1

(−bi`+1i`),

which contradicts the maximality of mj (consider the sequence j, i = i1, i2, . . . , ik = 0).
In other words, (m1, . . . ,md−1) is the minimal integral acceptable shifting.

Note all mi 6 0 as (0, . . . , 0) ∈ A. Set M0 = S0,M1 = S1+m1, . . . ,Md−1 = Sd−1+md−1

to be the shifted parts of the skeleton corresponding to the minimal integral acceptable
shift relative to S.
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Definition 3.17. Let f(i) be the remainder of any element of Mi modulo d (recall that
all elements of Mi have the same remainder). This defines a function f : {0, . . . , d−1} →
{0, . . . , d− 1}.

For every 0 6 i < d set si := bMi

d
c = {bx

d
c | x ∈Mi} and let ∆i be the (n,m)-invariant

subset such that si is the skeleton of ∆i. Note ∆i might not be 0-normalized.

Definition 3.18. Let the directed graph (digraph) G = GS on the vertex set {0, . . . , d−1}
be defined in the following way: vertices i and j are connected by an edge i → j if
f(i) < f(j) and the intersection si ∩ sj is not empty.

Lemma 3.19. The value f(i) equals the length of the longest oriented path from 0 to i
in the digraph G.

Proof. By definition, we have f(i) < f(j) for any edge i → j. Therefore, it suffices to
prove the following two conditions:

1. If f(j) > 0 then there exists i such that f(i) = f(j) − 1 and G contains the edge
i→ j.

2. f(i) = 0 implies i = 0.

Both conditions follow immediately from the minimality of the shift. Indeed, if the first
property is not satisfied for a vertex i of G then (m1, . . . ,mi−1, . . . ,md−1) is an acceptable
shifting, which contradicts Lemma 3.16.

Suppose now that f(i) = 0, i 6= 0. This and the first property imply that f(j) 6= d− 1
for any j ∈ {0, . . . , d − 1}. Therefore, again, (m1, . . . ,mi − 1, . . . ,md−1) is an acceptable
shifting. Contradiction.

Corollary 3.20. The function f can be recovered from the orientation of the graph G.

Example 3.21. Continuing Example 3.15, we compute

m1 = −b01 = 0, m2 = −b32 − b03 = −4, m3 = −b03 = −2,

so the minimal integral acceptable shifting of S is (0,−4,−3). The minimal integral
acceptable shift is then given by

M0 = S0 = {−8, 0, 4, 8, 16}, M1 = S1 + 0 = {−7,−3, 1, 5, 9},

M2 = S2 − 4 = {18, 22, 26, 30, 34}, M3 = S3 − 2 = {17, 25, 29, 33, 41}.
Note that elements of both M1 and M3 have remainder 1 modulo d = 4. Therefore, this
shift does not correspond to any (12, 8)-invariant subset. The skeletons si = bMi

4
c are

given by
s0 = {−2, 0, 1, 2, 4}, s1 = {−2,−1, 0, 1, 2},
s2 = {4, 5, 6, 7, 8}, s3 = {4, 6, 7, 8, 10},

and we get f(0) = 0, f(1) = f(3) = 1, and f(2) = 2. Note Mi = dsi + f(i). See Figure 5
for the graph G. We will also consider the (n,m)-periodic lattice paths corresponding to
s0, s1, s2, s3 (see Figure 6).

Definition 3.22. Let T dn,m denote the set of acyclically oriented graphs G on d vertices
with a unique source v0, and vertices labeled by skeletons of (n,m)-invariant subsets, such
that
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{4,5,6,7,8}

{4,6,7,8,10}{-2,-1,0,1,2}

{-2,0,1,2,4}

Figure 5: The digraph G with vertices labelled by the skeletons of the (3, 2)-invariant
subsets. The function f corresponds to the levels: 0 at the blue vertex, 1 at the green
and orange vertices, and 2 at the red vertex.
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Figure 6: The four (3, 2)-periodic paths corresponding to the skeletons from Figure 5.
Note that the elements of the skeletons are exactly the ranks of the boxes above the
horizontal steps and to the left of the vertical steps. Equivalently, they are the ranks of
the steps of the paths.
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1. All labels are non-negatively normalized, and the label of v0 is zero normalized,

2. Two skeletons intersect if and only if the corresponding vertices are connected by
an edge.

Elements of T dn,m are considered up to label preserving isomorphisms.

Note the underlying (not oriented) graph is determined by the d-tuple of (n,m)-
invariant subsets. We will refer to the orientation of the digraph G as the gluing data on
the d-tuple of invariant subsets.

The construction above provides a map

A : MN,M/∼ → T dn,m.

Moreover, the map is injective by construction, because given a labeled graph G ∈ T dn,m
one can use Lemma 3.19 to reconstruct the function f(i) and then recover the sets
M0, . . . ,Md−1 by setting Mi = dsi+f(i). We need to show that this map is also surjective,
i.e., show that for any labeled digraph G ∈ T dn,m the corresponding sets M0, . . . ,Md−1 form
a minimal integral acceptable shift of the skeleton of an (N,M)-invariant subset.

Let G ∈ T dn,m be a labeled graph. Let f be the function on the vertex set of G
constructed as in Lemma 3.19, i.e., for a vertex v, f(v) equals to the length of the longest
oriented path from the source v0 to v. Since elements of T dn,m are considered up to label
preserving isomorphisms, one can assume that the vertex set of G is VG = {0, 1, . . . , d−1}
and the function f is weakly monotone:

i < j ⇒ f(i) 6 f(j).

In particular, one gets v0 = 0. Note, that two different labeled digraphs on the vertex set
{0, 1, . . . , d − 1} might be related by a label preserving isomorphism, in which case they
correspond to the same element of T dn,m (see Figure 7 for an example).

Let the vertices 0, . . . , d− 1 of G have labels s0, . . . , sd−1 respectively.

Lemma 3.23. Given G ∈ T dn,m, there exists an (N,M)-invariant subset ∆ = ∆G with
skeleton S =

⊔
Si, such that

M0 := ds0,M1 := ds1 + f(1), . . . ,Md−1 := dsd−1 + f(d− 1)

is the minimal integral acceptable shift of S0, . . . , Sd−1. More over, we can choose ∆ by
setting

S0 := ds0, S1 := ds1 + 1, . . . , Sd−1 := dsd−1 + (d− 1).

Proof. By construction, for every i every element of Si has remainder i modulo d. It
follows that S :=

⊔
Si is the skeleton of an (N,M)-invariant set ∆. The non-negative

normalization of the si imply ∆ ∈ MN,M . It remains to show that M0,M1, . . . ,Md−1 is
the minimal integral acceptable shift of S0, S1, . . . , Sd−1. By construction, for every i we
have Mi = Si+ai where ai := f(i)−i. Recall that the minimal integral acceptable shifting
is given by (7), and by (5) the integers bij are given by

bij :=

(
min

x∈Si, y∈Sj , y>x
y − x

)
− 1.

Suppose i → j is an edge of G. Then as f is monotone we must have i < j. Since
si ∩ sj 6= ∅ it follows that there are x ∈ Si and y ∈ Sj such that bx

d
c = by

d
c, so we get
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3 {4,5,6,7,8}

1 {4,6,7,8,10}2{-2,-1,0,1,2}

0 {-2,0,1,2,4}

3 {4,5,6,7,8}

2{4,6,7,8,10} 1 {-2,-1,0,1,2}

0 {-2,0,1,2,4}

Figure 7: Two graphs corresponding to the same point of T 4
3,2 : the isomorhism switching

vertices 1 and 2 preserves the labels.

bij = (j − i) − 1. On the other hand, suppose there is no directed edge i → j. If i < j
we immediately get that bij > (d + j − i) − 1 > j. Similarly, if i > j (even if j → i) we

get bij > (j + d − i) − 1 > j. It follows that to maximize
k−1∑̀
=1

(−bi`+1i`) in (7) one has to

consider the longest directed path in G from 0 to i. Such a path has f(i) steps, so we get

mi = f(i)− i = ai.

Therefore, M0,M1, . . . ,Md−1 is the minimal integral acceptable shift of S0, S1, . . . , Sd−1.

Note that the representative constructed in Lemma 3.23 above has the following prop-
erty:

⌊
Si
d

⌋
=
⌊
Mi

d

⌋
where, as before, S0, . . . , Sd−1 are the parts of the skeleton of the

representative ∆ of the equivalence class in the corresponding remainders modulo d, and
M0, . . . ,Md−1 is the minimal integral acceptable shift of S0, . . . , Sd−1. We call such repre-
sentatives ∆ the minimal representatives. Note that an equivalence class might contain
more than one minimal representative (see Example 3.24). Recall the sets M0, . . . ,Md−1

might not correspond to an element of MN,M , but the S0, . . . , Sd−1 will.

Example 3.24. Continuing Example 3.21 and using the graph on the left of the Figure
7, one gets

S0 = 4{−2, 0, 1, 2, 4} = {−8, 0, 4, 8, 16},
S1 = 4{4, 6, 7, 8, 10}+ 1 = {17, 25, 29, 33, 41},
S2 = 4{−2,−1, 0, 1, 2}+ 2 = {−6,−2, 0, 6, 10},
S3 = 4{4, 5, 6, 7, 8}+ 3 = {19, 23, 27, 31, 35}.

Therefore, the (12, 8)-invariant subset ∆G we constructed is depicted below.
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−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 . . .

0 � ◦ × � × • × • • • • • • • . . .

1 ◦ ◦ ◦ ◦ ◦ ◦ � ◦ × � × • × • . . .

2 � � × × × • • • • • • • • • . . .

3 ◦ ◦ ◦ ◦ ◦ ◦ � � × × × • • • . . .

Note that if we had used the graph on the right of Figure 7 instead, we would get a
different invariant subset in the same equivalence class. Both these subsets are minimal,
as they are constructed according to the algorithm in Lemma 3.23. Note that they are
both different from the invariant subset we started from in Example 3.15, which was not
minimal.

Also note this set has 14 gaps, which is the area of the rational Dyck path constructed
in Figure 8.

3.3 From equivalence classes to Dyck paths

The last step is to construct a bijection B : T dn,m → YN,M so that we can set D = B ◦ A.
Let G ∈ T dn,m be a labeled graph, and let P0, . . . , Pd−1 be the (m,n)-periodic lattice paths
corresponding to the labels s0, . . . , sd−1 of G.

Lemma 3.25. Let 0 6 i < j < d. Then the paths Pi and Pj intersect if and only if
the skeletons si and sj intersect or, equivalently, if and only if the graph G has an edge
between the corresponding vertices.

Proof. Suppose that x ∈ si ∩ sj, and let � be a box in Z2 with rank(�) = x. Then Pi
contains either the step v� that is to the right (if x is an n-generator) or the step h� at
its bottom (if x is an m-cogenerator). (Here we extend the notation from Lemma 3.3 to
periodic paths.) In both cases, Pi passes through the right-bottom corner of �. The same
is true for Pj. Hence Pi intersects Pj at that corner.

Conversely, if Pi contains a lattice point p let � be the box with p at its bottom right
corner. Then Pi must contain either the step v� going up from p, or the the step h� going
left from p. In both cases, it implies x = rank(�) has to be in the skeleton si. The same
holds for Pj and sj, so x ∈ si ∩ sj. Finally, the graph G has an edge between two vertices
if and only if the corresponding skeletons intersect.

3.3.1 Gluing algorithm

We will glue together paths P0, . . . , Pd−1 (more precisely, a union of possibly disconnected
intervals of total length (n + m) of these paths) to get an (N,M)-Dyck path D in the
following way, which we call our gluing algorithm. We start by taking the interval of P0

that is an (n,m)-Dyck path (there is a unique way to choose such an interval, up to a
periodic shift). At each step we glue in an interval of length (n+m) of one of the periodic
paths P1, . . . , Pd−1 into our path. This is done using the following procedure.

Let D̂ be a (kn, km)-Dyck path and let P̂ be an (n,m)-periodic path, such that the
intersection D̂∩P̂ is not empty. Let p be the first point of intersection of D̂ and P̂ relative
to D̂ (recall that we orient all lattice paths from bottom-right to top-left, i.e., p is the point
of intersection, closest to the bottom-right end of D̂). The new ((k + 1)n, (k + 1)m)-Dyck
path D̂ ∨ P̂ is the union of three lattice paths:
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1. First we follow the path D̂ from its start up to p;

2. Then we follow P̂ for (n+m) steps starting at p;

3. Finally, we follow the remaining part of D̂ translated by n up and m to the left, i.e.,
by +(−m,n).

More precisely, let us now also identify a (kn, km)-Dyck path D̂ with the function
D̂ : [0, k(n + m)] → R2, so that D̂ is its plot and the function is an isometry to the
image. Similarly, a periodic path can be regarded as a function P : R → R2 satisfying
P (z + m + n) = P (z) + (−m,n). Given r ∈ Z and a function I : [r, r + n + m] → R2

satisfying I(r + n + m) = I(r) + (−m,n), we extend I periodically to P (I) : R → R2

by P (I)(z + k(n + m)) = I(z) + k(−m,n), for r 6 z 6 r + n + m. Note if I was an
interval of a (kn, km)-Dyck path then P (I) is normalized so 0 6 z 6 n+m implies P (z)
is between the lines y = 0 and y = n. However, it is convenient to treat periodic paths
so their parameterization might not be normalized in this way (i.e., so that we need not
have a = b below, or so that we can consider an interval of it as a function with domain
[0, n+m]). Using this function notation, we may describe

D̂ ∨ P̂ (z) =


D̂(z) 0 6 z 6 a

P̂ (z + b− a) a 6 z 6 a+ n+m

D̂(z − (m+ n)) + (−m,n) a+ n+m 6 z 6 (k + 1)(n+m)

where a, b ∈ R are the parameters such that D̂(a) = P̂ (b) = p and p ∈ R2 is the first
point of D̂ that is also in P̂ .

We apply the above procedure d − 1 times in the following order. Let kj = #{i |
f(i) 6 j}. We start by setting D0 to be the interval of P0 such that D0 is an (n,m)-Dyck
path. Take all paths Pi, such that f(i) = 1. Note that all such paths intersect D0 and do
not intersect each other. Therefore, we can glue them in using the above procedure, and
the order in which we do it does not matter, i.e. the path created is independent of gluing
order for these i. Let D1 be the resulting rational Dyck path. Note is it a (k1n, k1m)-Dyck
path.

At the (j + 1)th step we start with the (kjn, kjm)-Dyck path Dj obtained from D0

by gluing in intervals of all paths Pi such that f(i) 6 j, one level of G at a time, and
we glue in intervals of all Pi’s, such that f(i) = j + 1. Again, all such paths intersect at
least one of the intervals we glued in on the previous step, and they do not intersect each
other. We proceed in the same manner until we glued in intervals of all periodic paths
P1, . . . , Pd−1. (See Figure 8 for an example.)

We need to show that this process is invertible. Consider an (N,M)-Dyck path D.
First we will define removal of intervals. Let D be a (kn, km)-Dyck path. We call I a

balanced interval of D if it consists of n+m consecutive steps of D of which n are vertical
and m are horizontal. Using our function notation, this means I is the restriction of D to
[r, r+n+m], with r ∈ Z and D(r) = D(r+n+m) + (m,−n). We will say D′ is obtained
from D by removing a balanced interval I if it corresponds to the function given by

D′(z) =

{
D(z) 0 6 z 6 r

D(z + (m+ n)) + (m,−n) r 6 z 6 (k − 1)(n+m)
.

Definition 3.26. An interval I of D is called good if it is of length n+m, balanced, and
its (n,m)-periodic extension does not intersect the part of D before I.
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Figure 8: We apply the gluing algorithm to the periodic paths from Figure 6, using the
graph from Figure 5. On each step we indicate the gluing point: the first intersection of
the Dyck path built so far with the next periodic path.

Our definition of good is motivated by the need to invert the gluing process. Thus
good intervals must have the following properties. Suppose we remove a good interval I
from a (kn, km)-Dyck path D which yields D′. If we now glue the periodic extension of
I into D′ by taking the first (lowest rightmost) point of D′ that intersects the periodic
path, this should yield the original D, i.e., D = D′ ∨ P (I). That good removal inverts
the gluing algorithm is based on the following Lemmas.

Lemma 3.27. There always exists at least one good interval in a (kn, km)-Dyck path D.

Proof. The proof goes in two steps. First, one can show that there always exists at
least one balanced interval of D of length (n + m). This is equivalent to showing that
the intersection of D with D translated by n down and m to the right, i.e. D intersect
D + (m,−n), is non-empty. Since D is a Dyck path, it stays weakly below the diagonal
connecting its start with its end. It follows that D + (m,−n) intersects the vertical
line through the start of D (weakly) below the start of D, and ends (weakly) above D.
Therefore, it has to intersect D.

Second, the balanced interval closest to the bottom-right end of D is always good.

Lemma 3.28. Periodic extensions of the good intervals of D do not intersect each other.

Proof. Indeed, otherwise the one further away from the bottom-right end of D is not
good.

Lemma 3.29. If I and J are good intervals of D, and D′ is obtained from D by removing
I, then the image of J in D′ is still a good interval of D′.

Proof. Indeed, if the periodic extension of J intersects the part of D′ before it, then it
also intersects the part of D before it.

Lemma 3.30. Let G ∈ T dn,m and suppose that the (N,M)-Dyck path D was obtained from
the periodic paths P1, . . . , Pd−1 according to the gluing algorithm given by G. The periodic
extension P (I) of good intervals I of D agree with the Pi for i the sinks of G.

Proof. In this proof we will use “before” and “after” according to the steps of the gluing
algorithm (temporally), and switch to “higher” or “lower” to refer to locations of steps
or lattice points of paths.
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Let I be a good interval of D. Then, according to Lemma 3.29 either it was glued in
on the last step of our algorithm, or it was already a good interval before the last step.
In the latter case, the same holds for the second to the last step and so on. Therefore, I
was glued in at some point.

Suppose that I corresponds to the vertex i of G, and suppose that there is an edge
i→ j inG. Then the interval corresponding to j was glued in after I was. Therefore, either
it was glued in in the middle of I, or lower than I, in which case after that gluing I is not
a good interval any more, because periodic paths Pi and Pj intersect. Contradiction.

Theorem 3.31. The map B : T dn,m → YN,M is a bijection.

Proof. We will induct on d. The case d = 1 corresponds to the relatively prime case.
There is some flexibility in the gluing algorithm: if two periodic paths do not intersect

each other, then as noted previously it does not matter in which order we glue in intervals
of these paths. In particular, we can change the order so that the paths corresponding
to the sink vertices i of the graph G are glued in at the last step of the gluing algorithm.
Suppose that G has k sink vertices {i1, . . . , ik} and let G′ ∈ T d−kn,m be the labeled graph
obtained from G by removing the sink vertices. Let also (si1 , . . . , sik) be the skeletons
corresponding to the sink vertices ofG. Note that the following two properties are satisfied:

1. The skeletons si1 , . . . , sik are pairwise disjoint,

2. Every skeleton corresponding to a sink vertex of the graph G′ intersects at least one
of the skeletons si, i 6∈ {i1, . . . , ik}.

Indeed, if the first property is not satisfied then the corresponding two vertices of G are
connected by an edge and cannot both be sinks. If the second property is not satisfied,
then the corresponding vertex is also a sink of G, which is a contradiction. Conversely,
for any 0 < k < d, any labeled graph G′ ∈ T d−kn,m and a collection of skeletons si1 , . . . , sik
satisfying the above two conditions there is a unique graph G ∈ T dn,m, such that si1 , . . . , sik
are the labels of the sink vertices of G, and G′ is obtained from G by removing the sink
vertices.

Exactly the same situation happens on the Dyck path side. Let D ∈ YN,M be an
(N,M)-Dyck path. Suppose it has k good intervals, and let D′ ∈ Y(N−kn,M−km) be the
Dyck path obtained from D by removing the good intervals. Let P1, . . . , Pk be the periodic
extensions of the good intervals of D. The following two properties are satisfied:

1. The periodic paths P1, . . . , Pk are pairwise disjoint,

2. The periodic extension of any good interval of the Dyck path D′ intersects at least
one of the paths P1, . . . , Pk.

Indeed, if the first property is not satisfied then the corresponding two intervals of D
cannot both be good. If the second property is not satisfied, then the corresponding good
interval of D′ is also a good interval of D, which is a contradiction. Conversely, for any
0 < k < d, any Dyck path D′ ∈ Y(N−kn,M−km) and a collection of (n,m)-periodic paths
P1, . . . , Pk satisfying the above two conditions there is a unique Dyck path D ∈ YN,M ,
such that P1, . . . , Pk are the periodic extensions of the good intervals of D, and D′ is
obtained from D by removing all good intervals.

Using Lemma 3.25 and induction on d we now can build the inverse map B−1 : YN,M →
T dn,m. See Figure 9 for an example.
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Figure 9: On the first step we remove two good intervals and record the corresponding
skeletons: {−2,−1, 0, 1, 2} and {4, 5, 6, 7, 8}. On the second step there is only one good
interval, with the corresponding skeleton {4, 6, 7, 8, 10}. Finally, on the last step we are
left with a (3, 2)-Dyck path, which is its own good interval. The corresponding skeleton
is {−2, 0, 1, 2, 4}. On the right we have the reconstructed labeled graph. Note the sinks
are the first intervals removed. Note, that it is isomorphic to the graph in Figure 5.

We conclude that since the maps A : MN,M/∼ → T dn,m and B : T dn,m → YN,M are
bijections, the map D = B ◦ A : MN,M/∼ → YN,M is a bijection as well.

Theorem 3.32. The sweep map ζ : YN,M → YN,M factorizes according to Figure 2:

ζ = G ◦ D−1

for all positive N,M .

Proof. Let D ∈ YN,M be a Dyck path, and let ∆ ∈MN,M be a minimal representative of
the equivalence class D−1(D) ⊂ MN,M . Similar to the d = 1 case, the steps of the path
D correspond to the elements of the skeleton S of ∆. However, the correspondence is a
bit trickier. Since the ∆ is a minimal representative, the rank of a step of D equals bx

d
c,

where x is the corresponding element of the skeleton of ∆. However, according to the
gluing algorithm, if x, y ∈ S are two elements of the skeleton of ∆, such that x < y and
bx
d
c = by

d
c, then the step corresponding to x is glued in lower than the step corresponding

to y. In turn, that implies that the step in D corresponding to x appears higher than
the step corresponding to y, which matches with the “tie breaking” adjustment in the
construction of the sweep map in the non relatively prime case (see Example 3.2).

The following proposition gives a simple interpretation of the area statistic for rational
Dyck paths in terms of (N,M)–invariant subsets.

Proposition 3.33. Let ∆ ∈MN,M . Then

area(D(∆)) = min
∆′∼∆

gap(∆′),

where, as above, gap(∆′) = |Z>0 \∆′|.

Proof. As before, let ∆0, . . . ,∆d−1 be the d-tuple of (n,m)-invariant subsets defined by

∆r = [(∆ ∩ (dZ + r))− r] /d.
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Let also mr = min ∆r. Then

gap(∆) =
∑
r

gap(∆r) =
∑
r

[mr + gap(∆r −mr)] .

Note that (∆r − mr) ∈ Mn,m and, in particular, gap(∆r − mr) = area [D(∆r −mr)] ,
because in the relatively prime case the area statistic counts the boxes whose ranks are
exactly the gaps, and each gap is counted exactly once. It follows that to obtain the ∆′

with minimal gap over the equivalence class of ∆ one should consider an invariant subset
with the minimal

∑
rmr, which is equivalent to considering one of the minimal repre-

sentatives. Therefore, it is sufficient to prove that if ∆ is a minimal representative, then
area(D(∆)) = gap(∆). Let us compute the area between D(∆) and the diagonal in the
(N,M) rectangle RN,M . It consists of the areas between the Dyck paths (possibly shifted
and disconnected) for the (n,m)-invariant subsets ∆r and their local diagonals, and the
parallelograms between these small diagonals and the big diagonal. Since ∆ is a minimal
representative, the smallest rank of a box that fits under the local diagonal corresponding
to ∆r is mr. Therefore, such a parallelogram contains the boxes with all possible ranks be-
tween 0 and mr, each rank appearing exactly once. Therefore area(D(∆)) = gap(∆).

3.4 Example: k-Catalan arrangement

Let us describe the equivalence relation in the case M = kN , k ∈ Z>0. In this case,
d = N , n = 1 and m = k. A module is (N,M)-invariant if and only if it is N -invariant,
and therefore has the form

∆(k0, . . . , kN−1) = {ki +Nj : i = 0, . . . , N − 1, j > 0},

where ki is an arbitrary integer with remainder i modulo N . To be 0-normalized we
further require k0 = 0 and ki > 0. Now ∆i = {ki + Nj : j > 0}, so the skeleton Si has a
unique N -generator ki and has k M -cogenerators ki−N, . . . , ki− kN . Therefore the i-th
skeleton of ∆ has the form

Si = {ki, ki −N, . . . , ki − kN}.

Recall that the k-Catalan arrangement in RN is defined by the equations xi − xj = s
where i < j and s runs through {−k, . . . , k}, and the k-Shi arrangement is defined by
the same equations with s ∈ {−(k − 1), . . . , k}. We will call the connected components
of their complements k-Catalan and k-Shi regions, respectively. Clearly, in the dominant
cone where x1 < . . . < xN the arrangements agree and it is known that the number of
dominant k-Shi regions is equal to the nth Fuss-Catalan number

cN(k) :=
((k + 1)N)!

(kN + 1)!N !
,

which is also equal to the number of Dyck paths in the N × kN rectangle. Since the
k-Catalan arrangement is SN -invariant, the total number of k-Catalan regions equals
N !cN(k).

If we pass to V = RN/ span(1, 1, . . . , 1), the connected components of the complement
of the hyperplane arrangement {xi − xj = s|s ∈ Z} are called alcoves. Observe that
while these regions are unbounded in RN , in V they are bounded and each alcove has
centroid of the form (a1

N
, · · · , aN

N
) with ai ∈ Z and {ai mod N} distinct. We will always
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take our representative of (a1
N
, · · · , aN

N
) + span(1, 1, . . . , 1) to be such that min{ai} = 0.

This is compatible with taking ∆ to be 0-normalized. (Note that in the literature one
often normalizes to be “balanced,” so that

∑
ai = 0 and

∑
ki =

(
N+1

2

)
.)

Note further that to each ∆(k0, . . . , kN−1) we can associate the alcove that has centroid
p∆ = (k0

N
, · · · , kN−1

N
). Since ∆ is independent of the order of the ki, we could just as

easily associate to it the alcove in the dominant cone x1 < · · · < xN that has centroid

p+
∆ = (

kσ(0)
N
, · · · , kσ(N−1)

N
), where σ ∈ Perm{0, 1, . . . , N−1} is chosen so that kσ(i) < kσ(i+1).

Proposition 3.34. The set of integral acceptable shifts for ∆ for which the shifting is
by distinct integers modN is in bijection with the set of alcoves that are in the same
k-Catalan region as p∆.

Proof. Indeed, the shifting (a0, . . . , aN−1) is acceptable if and only if for all i and j the
order of (colored) points in the sets Si ∪ Sj and Si + ai ∪ Sj + aj is the same. As the
order of x and y (i.e., whether x < y) is determined by whether x− y < 0 and since our
shifting is by integers distinct modN , it suffices to consider the signs of such differences.
More algebraically, for all pairs (x = ki − tN, y = kj − t′N) ∈ Si × Sj the sign of x − y
and the sign of (x + ai) − (y + aj) is the same. The sign the x − y is determined by
the sign of ki/N − kj/N − (t− t′), so we require that the points (k0/N, . . . , kN−1/N) and
((k0 +a0)/N, . . . , (kN−1−aN−1)/N) are on the same side of the hyperplane xi−xj = t−t′.
(This is still true if we look at points whose coordinates are sorted to lie in the dominant
cone, i.e., the alcoves in the same region as p+

∆.) It remains to notice that possible values
of t− t′ run between −k and k.

We conclude that the set of equivalence classes of (N, kN)–invariant subsets is in
bijection with the set of dominant k-Catalan (or, equivalently, dominant k-Shi) regions,
and both sets have cN(k) elements. Therefore our main construction provides yet another
bijection [FV10] between dominant k-Shi regions and Dyck paths in N × kN rectangle.

4 Relation to knot invariants

In this section we prove Theorem 1.3. We will use the following result:

Theorem 4.1. ([10, Theorem 1.9]) The Poincaré series of the (a = 0) part of the
Khovanov-Rozansky homology of the (n, n) torus link equals

Fn(q, t) =
∑

a=(a1,...,an)∈Zn>0

q
∑
aitd(a),

where d(a) = |{i < j : ai = aj or aj = ai + 1}|.
Lemma 4.2. One has

(1− q)Fn(q, t) =
∑

a=(a1,...,an−1,0)∈Zn>0

q
∑
aitd(a).

Proof. Let us define the cyclic shift operator π : (a1, . . . , an) 7→ (an − 1, a1, . . . , an−1),
which is well defined if an > 0. By applying π repeatedly, we can transform a given
tuple a to a tuple with an = 0. Clearly,

∑
π(a) =

∑
ai − 1 and one can check that

d(π(a)) = d(a). Therefore:

Fn(q, t) =
∑
k>0

∑
a=(a1,...,an−1,0)∈Zn>0

qk+
∑
aitd(a) =

1

1− q
∑

a=(a1,...,an−1,0)∈Zn>0

q
∑
aitd(a).
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We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 4.2 and Theorem 4.1 we need to prove the identity

Cn,n(q, t) =
∑

a=(a1,...,an−1,0)∈Zn>0

q
∑
aitd(a).

A subset ∆ ⊂ Z>0 is (n, n)–invariant if and only if it is n–invariant. In remainder i it has
an n-generator xi = i+ nai and an n-cogenerator yi = i+ nai − n, for some ai > 0. It is
0-normalized if an = 0. It is easy to check that gap(∆) =

∑
ai. Now

dinv(∆) =

(
n

2

)
− ]{i, j : yj > xi}

=

(
n

2

)
− ]{i < j : aj > ai + 1} − ]{i > j : aj > ai} = d(a).

Example 4.3. Let us compute C2,2(q, t). All 2-invariant 0-normalized subsets have the
form

∆k = {0, 2, . . . , 2k, 2k + 1, 2k + 2, . . .}.

Clearly, gap(∆k) = k and

dinv(∆k) =

{
1, if k = 0,

0, if k > 0.

Therefore

C2,2(q, t) =
∞∑
k=0

qgap(∆k)tdinv(∆k) = t+
q

1− q
=
q + t− qt

1− q
.

Note that c2,2(q, t) = q + t.
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