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Abstract

We explore classical (relative) difference sets intersected with the cosets of a sub-
group of small index. The intersection sizes are governed by quadratic Diophantine
equations. Developing the intersections in the subgroup yields an interesting class of
group divisible designs. From this and the Bose-Shrikhande-Parker construction, we
obtain some new sets of mutually orthogonal latin squares. We also briefly consider
optical orthogonal codes and difference triangle systems.

Keywords: relative difference set; mutually orthogonal latin square; optical or-
thogonal code; difference triangle system

1 Introduction

A k-subset D of a group G of order v (which we often assume is abelian and written
additively) is a (v, k, λ)-difference set if every non-zero element of G is realized exactly λ
times as a difference of two elements in D. If, for the moment, we write G multiplicatively
with identity eG, its subsets correspond to elements of the group ring Z[G] with coefficients
in {0, 1}; conveniently, D is a (v, k, λ)-difference set if and only if

(∑
d∈D d

) (∑
d∈D d

−1) =

k · eG + λ ·
(∑

g∈G g − eG
)

. This is naturally abbreviated as

D ·D(−1) = k · eG + λ · (G− eG). (1)

Let N be a normal subgroup of G, where |N | = n and |G| = mn. A k-subset R of
G is an (m,n, k, λ)-relative difference set if every element of G \ N is realized exactly λ
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times as a difference of elements in R, while no nonzero element of N is ever realized as
such a difference. Back in the group ring language, this means that

R ·R(−1) = k · eG + λ · (G−N). (2)

Relative difference sets were introduced over fifty years ago by Elliott and Butson in [7].
We review two important examples. Let q be a prime power and Fq the finite field

of order q. If we take G = F×q3/F
×
q and D = {α ∈ G : Tr3/1(α) = 0}, then D is a

(q2 + q+ 1, q+ 1, 1)-difference set. Extracting exponents of a generator yields an additive
presentation, call it Sq, in the cyclic group Z/(q2 + q + 1)Z. These are (a special case of)
the ‘Singer’ difference sets. Next, a (q + 1, q − 1, q, 1)-relative difference set on F×q 6 F×q2
is furnished by R = {α : Tr2/1(α) = 1}. We again have an additive presentation, call it
Rq ⊆ Z/(q2 − 1)Z relative to the subgroup Z/(q − 1)Z. These are often referred to as
‘Bose’ or ‘affine’ relative difference sets. These and other important examples of relative
difference sets can be found in Alexander Pott’s survey, [11].

It is well known that (v, k, λ)-difference sets, when acted on by their underlying group,
develop into symmetric (v, k, λ)-designs. Indeed, the projective plane of order q arises from
developing the Singer difference sets above. Similarly, relative difference sets develop into
a generalized type of block design, defined next.

A group divisible design (GDD) is a triple (V,Π,B), where V is a set of points, Π is a
partition of V , and B ⊆ 2V is a family of subsets of V called blocks, such that two elements
from different parts of Π appear together in exactly one block, while two elements from
the same part of Π never appear together in a blocks.

If the block sizes are in K, it is common to abbreviate this as a K-GDD. As with
BIBDs, it is possible to replace ‘exactly one’ by ‘exactly λ’ above for a nonnegative
integer λ; for our purposes, though, we assume λ = 1. The type of the GDD is the list of
part sizes in Π. It is common to abbreviate this with exponential notation, so that, for
instance, nm represents m groups of size n.

A (v, k, 1)-BIBD is equivalent to a {k}-GDD of type 1v. More generally, a pairwise
balanced design PBD(v,K) is a K-GDD of type 1v. In these cases, Π consists of v
singleton parts. At the opposite extreme, a transversal design TD(k, n) is a {k}-GDD of
type nk. In this case the blocks are transversals of the partition Π. Recall that a TD(k, n)
is equivalent to k − 2 mutually orthogonal latin squares of order n, and also to k-factor
orthogonal arrays of strength two. Therefore, GDDs provide a common generalization of
the fundamental objects of interest in design theory. Richard Wilson was perhaps the
first to consider GDDs in generality, starting in [13, §6]; this formed a key part of his
existence theory for pairwise balanced designs.

Returning to relative difference sets, the group action develops such a set with param-
eters (m,n, k, 1) into a {k}-GDD of type nm. For instance, the Bose relative difference
set in F×q2 yields a {q}-GDD of type (q − 1)q+1, which is equivalent to an affine plane of
order q with one point deleted.

Our primary observation is a straightforward extension of this. Since blocks are de-
veloped as cyclic shifts, subgroups of G induce smaller GDDs, potentially with a mixture
of block sizes. This is similar in spirit to constructions in [2, 10, 12].
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Theorem 1. Let R be an (m,n, k, 1)-relative difference set on groups N 6 G. Let V be
a subgroup of index d in G such that G = NV . Then R induces a GDD with points V ,
partition Π = V/(N ∩ V ), and blocks gR∩ V , g ∈ G. The type of the GDD is [n/d]m and
the block sizes are |R ∩ hV |, where h ranges over a transversal of V in G.

Proof. Let x, y ∈ V . Suppose they are in different cosets of Π. Then xy−1 ∈ G \ N .
By the property of R being a relative difference set, it follows that x, y ∈ gR for some
(exactly one) g ∈ G. This is the condition for x, y to be covered by some (exactly one)
block of the given form. Similarly, if xy−1 ∈ N \ {eG}, then x, y are covered by no such
block developed from R.

By assumption, we have |V | = |G|/d = nm/d and, by the second isomorphism theo-
rem, we have |Π| = |G/N | = m. This gives the GDD type. Finally, the size of a generic
block is |gR ∩ V | = |R ∩ g−1V |, which can be computed over coset representatives g for
V in G.

We comment on some additional structure. In a GDD with points V and blocks B,
a symmetric class of blocks is a subset S ⊆ B such that each block in S has the same
size, call it k, and every point of V is covered by exactly k elements of S. For instance,
developing a (relative) difference set of size k leads to one symmetric class S = B. We
remark that the GDD of Theorem 1 induces d disjoint symmetric classes. In more detail,
the blocks gR∩ V , g ∈ G, partition into classes according to the coset of g in V . That is,
let g1, g2, . . . , gd be a transversal of V in G and put Bi = giR∩ V . Then developing Bi in
V gives symmetric block classes Si = {hBi : h ∈ V }, i = 1, . . . , d.

In this paper, we explore such GDDs for the affine relative difference sets.

Corollary 2. Let Rq ⊂ Z/(q2 − 1)Z be the affine relative difference set and suppose d |
q−1. Put ai = |Rq∩(i+dZ)| for i = 0, 1, . . . , d−1. Then there exists an {a0, a1, . . . , ad−1}-
GDD of type [(q − 1)/d]q+1. Moreover, the blocks of this GDD partition into symmetric
classes of block size ai for i = 0, 1, . . . , d− 1.

We investigate some special cases of these GDDs in the next section. As consequences,
we obtain constructions of some new best-known sets of mutually orthogonal latin squares.
The method appears to be useful for other difference problems, such as optical orthogonal
codes and difference triangle systems.

2 Constraints on block sizes

Here we investigate the structure of the block sizes a0, a1, . . . , ad−1 of the GDD arising
from Corollary 2. Since those block sizes are formed by intersecting Rq with cosets of dZ,
it follows that

d−1∑
i=0

ai = q. (3)
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Next, every difference which is 0 (mod d) must arise (exactly once) from a difference of
elements of Rq in the same coset. Therefore,

d−1∑
i=0

ai(ai − 1) =
q(q − 1)

d
. (4)

There exist other constraints (not all independent) by examining other types of differences.
For the moment, we focus on the cases d = 3, 4.

Proposition 3. Let q = p ≡ 4n+ 1, a prime. Consider the GDD obtained by developing
Rq in Z/(q2 − 1)Z using a subgroup of index d = 4. Its block sizes are

{a0, a1, a2, a3} =

{
n+

a

2
, n− a

2
, n+

1

2
+
b

2
, n+

1

2
− b

2

}
,

where p = a2 + b2 is the unique decomposition of p as a sum of squares with a even.

Proof outline. From an easy counting argument, we can strengthen (3) in the case d = 4
to a0 + a2 = 2n, a1 + a3 = 2n + 1. With this, (4) becomes a0a1 + a1a2 + a2a3 + a3a0 =
2n(2n + 1), after simplification. Letting a, b be defined as above, this is equivalent to
Fermat’s Diophantine equation a2 + b2 = p.

Remark 4. Various explicit or algorithmic methods for computing a, b are known. For
instance, it was known to Gauss that a ≡ 1

2

(
2n
n

)
and b ≡ a(2k)! (mod p), where |a|, |b| <

p/2. See [9] for a proof.

A similar explicit calculation of block sizes can be undertaken for d = 3.

Proposition 5. Let q = p ≡ 3n+ 1, a prime. Consider the GDD obtained by developing
Rq in Z/(q2 − 1)Z using a subgroup of index d = 3. Its block sizes are

{a0, a1, a2} =
1

3

(
2n

n

)
{1, ω, ω2} mod p,

where ω is a primitive cube root of unity in (Z/pZ)×.

Proof outline. Since by (3) we have a0 + a1 + a2 = p ≡ 1 (mod 3), we may assume (after
re-indexing) that a0 ≡ a1 (mod 3). Put A := 3a0 + 3a1 − 2p and B := (a0 − a1)/3. After
a calculation, we find that

A2 + 27B2 = 4p. (5)

Since the Eisenstein integers Z[1+
√
−3

2
] form a UFD, it follows that (5) has at most one

solution in positive integers A,B. The formula given comes from a result of Jacobi (see,
for instance, [9]), which explicitly solves (5). A few calculations are needed to switch back
to variables a0, a1, a2.

In what follows, we let d be general and not assume q is prime. Let p be the charac-
teristic of Fq and θ : x 7→ xp the Frobenius automorphism. Our next result controls the
block sizes.
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Proposition 6. Consider the GDD obtained by developing by Rq in Z/(q2 − 1)Z using
a subgroup of index d. Let ai := (i + dZ) ∩ Rq be the coset intersections with Rq, i =
0, . . . , d− 1. Then ai = aip, where subscripts are read modulo d.

Proof. The affine relative difference set in Fq2 is invariant under θ, and hence in the
additive presentation we have p ·Rq = Rq in Z/(q2 − 1)Z. It follows that

aip = |(−ip+Rq) ∩ dZ| = |(−i+ pRq) ∩ dZ| = |(−i+Rq) ∩ dZ| = ai,

where pp = 1 in Z/(q2 − 1)Z and where subscripts on the block sizes are interpreted
modulo d.

Remark 7. A similar invariance exists for the Singer difference sets Sq intersected with
cosets of a subgroup of index d.

Corollary 8. The number of different block sizes of the GDD arising from Rq and d is
at most the number of orbits of multiplication by p on Z/dZ.

The truth is sometimes better, since intersections from different orbits of θ might
vanish or coincide.

Example 9. Let q = 16, d = 5 so that Corollary 2 gives an {a0, a1, . . . , a4}-GDD of type
317. Since p = 2 is a generator for Z/5Z, we have only two different block sizes: a0 and
a1 = a2 = a3 = a4. Substituting into (3) and (4), these necessary equations have only the
solution a0 = 0, a1 = 4 in nonnegative integers. So, in fact, we obtain a {4}-GDD of type
317.

Extending this example, we have a class of two-block-size GDDs that occur in certain
cases.

Corollary 10. Suppose q = p2t ≡ 1 (mod d) is such that p generates (Z/dZ)×. Then

there exists a cyclic { q∓
√
q

d
,
q±(d−1)√q

d
}-GDD of type [(q−1)/d]q+1, where the sign is chosen

according to whether
√
q ≡ ±1 (mod d).

Proof. We have only two block sizes a0 and a1 = · · · = ad−1. Equations (3) and (4) reduce
to

a0 + (d− 1)a1 = q, and

a20 + (d− 1)a21 =
q(q + d− 1)

d
.

Solving the quadratic equation gives a0 =
q∓√q
d

and a1 =
q±(d−1)√q

d
.

We give a list of GDD types and block sizes for various small cases in Tables 1 and 2
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q = 3n+ 1 type a0, a1, a2
4 15 0, 2, 2
7 28 2, 4, 1
13 414 6, 5, 2
16 517 8, 4, 4
19 620 4, 9, 6
25 826 5, 10, 10
31 1032 9, 8, 14
37 1238 16, 9, 12
43 1444 17, 10, 16
49 1650 12, 17, 20
61 2062 20, 25, 16
64 2165 16, 24, 24
67 2268 24, 17, 26
73 2474 22, 30, 21
79 2680 32, 25, 22
97 3298 26, 37, 34
103 34104 30, 32, 41
109 36110 37, 42, 30
121 40122 33, 44, 44
127 42128 49, 36, 42
139 46140 54, 41, 44
151 50152 44, 49, 58
157 52158 57, 56, 44
163 54164 46, 57, 60
169 56170 56, 64, 49
181 60182 58, 69, 54
193 64194 72, 65, 56
199 66200 70, 57, 72

q = 4n+ 1 type a0, a1, a2, a3
5 16 2, 2, 1, 0
9 210 1, 2, 4, 2
13 314 2, 4, 5, 2
17 418 5, 2, 4, 6
25 626 5, 8, 8, 4
29 730 10, 8, 5, 6
37 938 10, 6, 9, 12
41 1042 13, 8, 8, 12
49 1250 9, 12, 16, 12
53 1354 10, 14, 17, 12
61 1562 18, 12, 13, 18
73 1874 17, 14, 20, 22
81 2082 25, 20, 16, 20
89 2290 25, 18, 20, 26
97 2498 29, 26, 20, 22
101 25102 26, 30, 25, 20
109 27110 26, 32, 29, 22
113 28114 25, 24, 32, 32
121 30122 25, 30, 36, 30
125 31126 26, 30, 37, 32
137 34138 29, 32, 40, 36
149 37150 34, 42, 41, 32
157 39158 34, 36, 45, 42
169 42170 45, 36, 40, 48
173 43174 50, 44, 37, 42
181 45182 50, 50, 41, 40
193 48194 45, 42, 52, 54
197 49198 50, 42, 49, 56

Table 1: Block sizes and types for q = 3n+ 1 and 4n+ 1

3 Some new MOLS, IMOLS and HMOLS

Following [2, 8], we can use the GDDs of Corollary 2 to construct mutually orthogo-
nal latin squares via the Bose-Shrikhande-Parker construction, [1]. We cite the relevant
construction below, simplified somewhat for our use. The usual statement involves ‘in-
complete transversal designs’ TD(k, n) −

∑t
i=1 TD(k,mi), which are equivalent to k − 2

mutually orthogonal ‘holey’ latin squares of size n missing t disjoint subsquares of size
mi. In the case where all mi = 1 and t = n, this can be regarded as a family of mutually
orthogonal idempotent latin squares of size n. See [5] for a formal definition.

Theorem 11 (see [1, 5]). Let (V,Π,B) be a K-GDD with |V | = v and Π = {V1, . . . , Vt}.
Suppose B partitions into symmetric classes S1, . . . ,Ss, where Sj has block size αj. Let
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q = 5n+ 1 type a0, a1, a2, a3, a4
11 212 2, 0, 4, 3, 2
16 317 0, 4, 4, 4, 4
31 632 4, 10, 7, 4, 6
41 842 10, 6, 8, 5, 12
61 1262 12, 12, 18, 9, 10
71 1472 18, 8, 14, 15, 16
81 1682 9, 18, 18, 18, 18
101 20102 26, 22, 14, 21, 18
121 24122 28, 25, 28, 16, 24
131 26132 24, 30, 32, 19, 26
151 30152 31, 34, 28, 22, 36
181 36182 34, 46, 34, 37, 30
191 38192 30, 38, 47, 36, 40
211 42212 42, 36, 46, 51, 36
241 48242 45, 48, 42, 46, 60

q = 6n+ 1 type a0, a1, a2, a3, a4, a5
7 18 0, 2, 1, 2, 2, 0
13 214 2, 2, 2, 4, 3, 0
19 320 2, 6, 4, 2, 3, 2
25 426 1, 4, 6, 4, 6, 4
31 532 5, 6, 8, 4, 2, 6
37 638 8, 6, 8, 8, 3, 4
43 744 7, 6, 10, 10, 4, 6
49 850 8, 8, 8, 4, 9, 12
61 1062 8, 10, 8, 12, 15, 8
67 1168 10, 6, 12, 14, 11, 14
73 1274 14, 16, 9, 8, 14, 12
79 1380 18, 12, 8, 14, 13, 14
97 1698 14, 16, 14, 12, 21, 20
103 17104 16, 14, 17, 14, 18, 24
109 18110 19, 24, 18, 18, 18, 12

Table 2: Block sizes and types for q = 5n+ 1 and 6n+ 1

εj ∈ {0, 1}, and suppose there exist

TD(k, αj + εj)−
αj+εj∑
i=1

TD(k, 1),

i.e. k−2 mutually orthogonal idempotent latin squares of size αj + εj, for all j = 1, . . . , s.
Let σ =

∑s
j=1 εjαj. Then there exists a

TD(k, v + σ)− TD(k, σ)−
t∑
i=1

TD(k, |Vi|),

i.e. k − 2 mutually orthogonal holey latin squares with hole sizes as indicated.

Remark 12. A more general form with similar notation is [5, Theorem 3.23]; an even more
general version of the construction appears as [3, Theorem 3.7].

If, in Theorem 11, we also have the existence of TD(k, σ) and TD(k, |Vi|), then we can
‘fill holes’ to get a TD(k, v + σ). Likewise, assuming the existence of TD(k, σ + 1) and
TD(k, |Vi|+ 1), we obtain a TD(k, v + σ + 1).

A good set of MOLS is possible under the (strange) hypothesis that our intersection
sizes a0, . . . , ad−1 of Section 2 be prime powers, or one less than prime powers. We give
two examples improving known lower bounds on N(n), the maximum number MOLS, in
[6, Table III.3.87], which in recent years has become fairly static.
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Example 13. Let q = 79, d = 3. We compute from Corollary 2 a {22, 25, 32}-GDD
of type 2680 having symmetric classes of each block size. By Theorem 11, we obtain a
TD(23, 2102)−TD(23, 22) − 80×TD(23, 26), where we have incremented 22 to 23 using
ε1, say. For this, we have used the existence of q − 2 mutually orthogonal idempotent
latin squares for prime powers q. Add 1 to the hole sizes and fill them, producing a
TD(23, 2103). It follows that N(2103) > 21; compare with N(2103) > 15 in [6].

Example 14. For q = 127, d = 3 we similarly have a {36, 42, 49}-GDD of type 42128

with symmetric classes. Taking ε1 = ε2 = 1 in Theorem 11 (corresponding to classes of
block size 36 and 42) leads to N(42× 128 + 36 + 42 + 1) = N(5455) > 35; compare with
N(5455) > 15 in [6].

Next, we have an improved set of incomplete MOLS. Following the standard notation,
let the maximum number of incomplete MOLS of size n missing a common subsquare of
size m be denoted N(n;m).

Example 15. With q = 41 and d = 4, we get a {8, 8, 12, 13}-GDD of type 1042. So
N(449; 29) > 7; compare with N(449; 29) > 6 in [6].

Finally, we have some noteworthy holey MOLS with a uniform partition into holes.
Let N(hm) denote the maximum number of holey MOLS of size hm missing m disjoint
holes of size h.

Example 16. With q = 37 and d = 3, we get a {9, 12, 16}-GDD of type 1238. So
N(1239) > 7; compare with N(1239) > 4 in [6]

Example 17. With q = 61 and d = 3, we get a {16, 20, 25}-GDD of type 2062. So
N(2063) > 15, and this is the second largest number of HMOLS known (of any type) for
the challenging case of group size 20.

Example 18. With q = 49 and d = 4, we get a {9, 12, 12, 16}-GDD of type 1250, with
two symmetric classes of block size 12. So N(1252) > 7, and this is again a reasonable
lower bound for a difficult group size.

This general technique can produce many interesting non-uniform HMOLS, although
there is no table for comparison.

4 Optical orthogonal codes and difference triangle sets

An (n,w, λ) optical orthogonal code (OOC) is a family of cyclic binary sequences of length
n, constant weight w, and such that any two sequences from different cycles has at most
λ ones in common positions. In other words, all ‘Hamming correlations’ between different
sequences are at most λ. As a cyclic binary code, the minimum distance of such an OOC
is at least 2(w − λ).

If we extract the supports of binary sequences in an (n,w, 1) OOC, the result is a
family of sets of size w in Z/nZ which form a ‘difference packing’, that is, such that any
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nonzero element in the group occurs as a difference in one of the sets at most once. The
converse relationship is also clear.

We propose the cyclic GDD of Corollary 10, with blocks of size a0 discarded, as an
infinite class of (sometimes very good) difference packings.

Proposition 19. Suppose q = p2t with
√
q ≡ 1 (mod d). Let d > 3 be an integer such

that p generates (Z/dZ)×. Then there exists a (q2 − 1,
q+(d−1)√q

d
, 1) OOC of size d− 1.

An (n, k)-difference triangle set (abbreviated D∆S) is a set {X1, X2, . . . , Xn} of (k+1)-
subsets of integers such that the nk(k+ 1)/2 (unsigned) differences between two elements
in some Xi are distinct and nonzero. The case n = 1 reduces to a ‘Golomb ruler’ with
k + 1 marks or, equivalently, a ‘Sidon set’ of size k + 1.

For example, a (2, 2)-D∆S is given by {{0, 1, 4}, {0, 2, 7}}. As illustrated in this ex-
ample, we can assume by translation that each set Xi has minimum element 0; in this
case, the difference triangle set is called normalized. Similar to Golomb rulers, it is of
interest to find normalized (n, k)-D∆S such that the maximum integer in any of its sets,
called the scope, is as small as possible. The (2, 2)-D∆S above has scope 7, which is best
possible. A table of known upper and lower bounds on minimum scopes of (n, k)-D∆S
for small n, k can be found in [6, §VI.19].

If we interpret a cyclic difference set over the integers (i.e. ignoring the modulus),
the result is a Golomb ruler. In a similar way, the second author in [10] used relative
difference sets to obtain record-breaking scopes for various (n, k)-D∆S.

To illustrate another application of our coset technique, we offer one example improve-
ment on the table mentioned above.

Example 20. Let q = 81 and consider the Singer difference set Sq of size q + 1 in
Z/(q2 + q + 1)Z. Project Sq onto d = 7 cosets, and compute that |S ∩ 7Z| = 4, while
|S ∩ (i + 7Z)| = 13 for all nonzero i ∈ Z/7Z. Retain the six ‘full’ cosets and translate
each to include zero. All internal differences are distinct multiples of 7, so we divide and
normalize again, this time searching for an optimal scaling and translation to minimize
the scope. We obtain a (6, 12)-D∆S of scope 786, which improves on 797 found in [6,
Table VI.19.37]:

{{0, 36, 57, 89, 102, 229, 293, 374, 499, 619, 702, 716, 774},
{0, 160, 161, 350, 356, 461, 532, 576, 587, 638, 663, 755, 786},
{0, 29, 70, 178, 241, 243, 278, 320, 337, 376, 494, 618, 757},
{0, 43, 48, 152, 273, 303, 353, 357, 431, 439, 491, 500, 538},
{0, 24, 112, 180, 207, 321, 475, 565, 605, 715, 727, 734, 749},
{0, 132, 165, 302, 318, 393, 403, 421, 669, 736, 762, 782, 785}}.

We have not undertaken an exhaustive analysis of other cases. Qualitatively, it seems
that this technique for constructing difference triangle systems has too much waste unless
the (relative) difference set admits a very favorable partition by cosets.
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