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Abstract

We consider bicolored maps, i.e. graphs which are drawn on surfaces, and con-
struct a bijection between (i) oriented maps with arbitary face structure, and (ii)
(weighted) non-oriented maps with exactly one face. Above, each non-oriented map
is counted with a multiplicity which is based on the concept of the orientability gen-
erating series and the measure of orientability of a map. This bijection has the
remarkable property of preserving the underlying bicolored graph. Our bijection
shows equivalence between two explicit formulas for the top-degree of Jack char-
acters, i.e. (suitably normalized) coefficients in the expansion of Jack symmetric
functions in the basis of power-sum symmetric functions.

Keywords: oriented maps, non-oriented maps, topological aspects of graph theory,
Jack polynomials, Jack characters

0 Prologue

In order to motivate the Reader and to give her some flavor of the results to expect, we
shall present now some selected highlights before getting involved in somewhat lengthy
definitions. We also deliberately postpone the bibliographic details.

∗Supported by Narodowe Centrum Nauki, grant number 2014/15/B/ST1/00064.
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0.1 Maps and orientability

Roughly speaking, a map M = (G,S) is a bicolored graph G which is drawn on a surface
S. We require that the connected components of S \G, called faces, are all homeomorphic
to open discs. The set of vertices of G is decomposed into two disjoint sets: the set of
white vertices and the set of black vertices. Each edge connects two vertices of opposite
colors; multiple edges are allowed. We do not allow isolated vertices. We allow the surface
S to be disconnected.
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Figure 1: Example of an oriented map drawn on the torus. The left side of the square
should be glued to the right side, as well as bottom to top, as indicated by the arrows.
The statement that it is an oriented map means that there is a prescribed consistent
choice around each vertex of what clockwise means.

The maps which we consider in the current paper come in the following two flavors:
oriented maps (which are drawn on an orientable surface S which comes with some pre-
scribed choice of the orientation, see Figure 1) and non-oriented maps (which are drawn
on an arbitrary surface S without any additional structures, see Figure 2). These two
flavors are quite distinct, nevertheless some algebraic-combinatorial conjectures which
concern Jack polynomials suggest that there is some hypothetical natural one-parameter
interpolation between them. To be more specific: it has been conjectured that there exists
some measure of non-orientability of a given non-oriented map M which is a hypothetical
polynomial weightM(γ) in the deformation parameter γ with the property that if a sum-
mation over non-oriented maps is performed, and each map is counted with appropriate
multiplicity weightM(γ), the resulting sum becomes a natural interpolation between some
generating series of oriented and non-oriented maps.

In the current paper we consider a concrete formula for such a candidate weight,
a candidate which will be denoted by monM(γ), which is an acronym that stands for
measure of non-orientability.
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Figure 2: Example of a non-oriented map drawn on the projective plane. The left side
of the square should be glued with a twist to the right side, as well as bottom to top, as
indicated by the arrows. The two faces of the map are indicated by the colors.
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Figure 3: Alternative graphical representation of the map from Figure 2 as a ribbon graph.
The edges of the map are represented as thin ribbons attached to the vertices.
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0.2 Top-degree of the measure of non-orientability

In order to state the main results of the paper we will not need the definition of the full
polynomial monM(γ) ∈ Q[γ] and we shall restrict ourselves to the leading coefficient of
this polynomial which will be denoted by montop

M . We shall present now its definition.

Any non-oriented map M can be equivalently viewed as a ribbon graph, see Figure 3.
With this viewpoint each vertex becomes a disc, each edge becomes a thin ribbon connect-
ing the discs, and each face of the map becomes a connected component of the boundary
of the union of the discs and the ribbons.

From a ribbon graph corresponding to M we shall remove all of its edges, one after
another, in a uniformly random order. We use the convention that whenever after an
edge removal some vertex becomes isolated, we remove this vertex as well.

The following can be viewed as a working definition of the quantity montop
M .

Definition 0.1. Assume that M is a non-oriented map. The quantity montop
M is defined

to be the probability of the event that in the above process of uniformly random edge
removal, at each step the number of faces of the ribbon graph is equal to the number of its
connected components.

The link between the above quantity montop
M and the polynomial monM will be provided

later in Proposition 5.4.

Example 0.2. We consider the map M shown in Figure 4; the corresponding ribbon graph
is shown in Figure 5.

Consider the case when the ribbon marked {3, 6} is removed first; then the remaining
two ribbons form an annulus which has two faces and only one connected component,
thus the event considered in Definition 0.1 does not hold.

Consider now the remaining two cases when either the ribbon {1, 5} or the ribbon
{2, 4} is removed first; then the remaining two ribbons form the Möbius strip which
has one face and one connected component. After yet another ribbon removal the unique
remaining ribbon forms a ribbon graph which again consists of one face and one connected
component. It follows that the event considered in Definition 0.1 holds.

In this way we found that the probability considered in Definition 0.1 is equal to 2
3

and thus montop
M = 2

3
.

0.3 Rooted maps

The notion of a rooted map takes a different form when we speak about oriented maps
than in the case of non-oriented maps.

More specifically, by a rooted oriented map we mean an oriented map in which one
edge is decorated. For example, one can take the map from Figure 1 and remove the
labels of all edges, except for the edge labeled by the symbol 1, and declare that this edge
is decorated.

By a rooted non-oriented map we mean a non-oriented map in which one of the edge-
sides is decorated (each edge consists of two edge-sides). For example, one can take the
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Figure 4: Example of a non-oriented map drawn on the Klein bottle: the left-hand side
of the square should be glued to the right-hand side (without a twist) and the top side
should be glued to the bottom side (with a twist), as indicated by the arrows. This map
has one face.
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Figure 5: The map from Figure 4 drawn as a ribbon graph.

map from Figure 2 and remove the labels of all edge-sides, except for the edge-side labeled
by 1, and declare that this edge-side is decorated.

0.4 The first main result

The following is one of the main results of the current paper (for the other one see
Theorem 4.3). It states that a summation over oriented maps with arbitrary face structure
is equivalent to a weighted summation over non-oriented maps with exactly one face.

Theorem 0.3 (The first main result). For all integers n > 1 the following formal linear
combinations of bicolored graphs are equal:∑

M1=(G1,S1)

G1 =
∑

M2=(G2,S2)

montop
M2

G2, (0.1)
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where the sum on the left-hand side runs over oriented, unlabeled, rooted, connected maps
M1 with n edges and the sum on the right-hand side runs over non-oriented, unlabeled,
rooted maps M2 with n edges and one face.

It should be stressed that on the left-hand side we impose no restrictions on
the face-type of the map M1, in particular the number of the faces is arbitrary.

Equation (0.1) is an equality between formal linear combinations of bicolored graphs.
Equivalently, it can be viewed as the following statement: for each bicolored graph G, the
number of ways in which G can be drawn on

(A1) some oriented surface S1 in such a way that (G,S1) becomes an oriented map

is equal to the (weighted) number of ways in which G can be drawn on

(A2) some non-oriented surface S2 in such a way that (G,S2) becomes a non-oriented
map with exactly one face.

Our proof of Theorem 0.3 will be bijective. For a fixed bicolored graph G we will find
a bijection between:

(B1) the set of non-oriented (but orientable) maps (G,S1), together with a choice of an
arbitrary linear order on the set of edges of G, and

(B2) the set of non-oriented maps (G,S2), together with a choice of a linear order on the
set of edges of G with the property that if the edges of a ribbon graph corresponding
to the map (G,S2) are removed according to this linear order, then the condition
from Definition 0.1 holds true, i.e. at each step the number of faces of the ribbon
graph is equal to the number of its connected components.

Roughly speaking, our bijection consists of a number of twists of the ribbons, see
Figure 6. The proof of Theorem 0.3 is postponed to Section 3.

One possible motivation for Theorem 0.3 is purely aesthetical. However, there is
also another important motivation related to the study of Jack polynomials and Jack
characters which will be explored in Section 4 and, in particular, in Sections 4.9 and 4.10.

0.5 Overview

The structure of this paper is twofold. The first part (Sections 1–3) is self-contained and
devoted to the proof of the first main result, Theorem 0.3. The second part (Sections
4–5) presents the the motivations, the wider context, the bibliographic details and the
applications to Jack characters, in particular to the second main result, Theorem 4.3.
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Figure 6: Twist of a ribbon in a ribbon graph. The details of the notation will be
explained in Section 1.8. (a) A part of a map. The pair partition describing the structure
of black vertices is B =

{
{b, k}, {l,m}, {n, a}, . . .

}
, the pair partition describing the white

vertices is W =
{
{b, w}, {x, y}, {z, a}, . . .

}
and the pair-partition describing the edges is

E =
{
{a, b}, {k, l}, {m,n}, {w, x}, {y, z}, . . .

}
. (b) The outcome of a twist of the edge

{a, b}. Only the partition describing the structure of white vertices has changed and is
equal to W ′ =

{
{a, w}, {x, y}, {z, b}, . . .

}
.

1 Non-oriented maps

The notations presented in this chapter are based on the work of Do l ↪ega, Féray and Śniady
[9].

1.1 Non-oriented maps, informal viewpoint

If we draw an edge of a non-oriented map M = (G,S) with a fat pen (or, alternatively,
if we regard an edge of a corresponding ribbon graph) its boundary consists of two edge-
sides. The maps which we consider in the current paper have labeled edge-sides, see
Figure 2; in other words each edge carries two labels, one on each of its sides. We also
assume that each label is unique.

If we cut the surface S along the edges of the graph G, the map becomes a collection
of bicolored polygons, each polygon corresponding to one face of the map, see Figure 7.
The original map M can be recovered from this collection of polygons by gluing together
pairs of the edges of the polygons; for each pair of glued edges the white (respectively,
black) endpoints of the two edges should be glued together.

Thus a non-oriented map can be described alternatively as a collection of bicolored
polygons with labeled edges (such as the ones from Figure 7) together with the pair-
partition E telling which pairs of edges should be glued together.
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Figure 7: The map from Figure 2 is obtained from the above two polygons by gluing the
following pairs of edges: {1, 3}, {2, 10}, {4, 9}, {5, D}, {6, C}, {7, B}, {8, A}. The colors
of the polygons correspond to the colors of the faces of the map from Figure 2.

1.2 Non-oriented maps, more formal viewpoint

1.2.1 Pairings and polygons

A set-partition of a set X is a collection {I1, . . . , Ir} of pairwise disjoint, non-empty
subsets, the union of which is equal to X. A pairing (or, alternatively, pair-partition) of
X is a set-partition into pairs.

Let us consider now two pairings B,W of the same set X consisting of 2n elements.
We consider the following bicolored, edge-labeled graph L(B,W):

• it has n black vertices indexed by the pairs of B and n white vertices indexed by
the pairs of W ;

• its edges are labeled by the elements of X. The extremities of the edge labeled i are
the unique pair of B containing i and the unique pair of W containing i.

Note that each vertex has degree 2 and each edge has one white and one black ex-
tremity. Besides, if we erase the indices of the vertices, it is easy to recover them from
the labels of the edges (the index of a vertex is the set of the two labels of the edges
incident to this vertex). Thus, in the following we forget the indices of the vertices and
view L(B,W) as an edge-labeled graph.

As every vertex has degree 2, the graph L(B,W) can be seen as a collection of polygons.

Example 1.1. For partitions

B =
{
{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {A,B}, {C,D}

}
,

W =
{
{2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 1}, {B,C}, {D,A}

}
,

the corresponding polygons L(B,W) are shown in Figure 7.
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1.2.2 Non-oriented maps

Definition 1.2. A non-oriented map is a triple M = (B,W , E) of pairings of the same base
set X.

The terminology comes from the fact that it is possible to represent such a triple
of pair-partitions as a bicolored graph embedded in a non-oriented (and possibly non-
connected) surface. Let us explain how this works.

First, we consider the union of the polygons L(B,W) defined above in Section 1.2.1.
The edges of these polygons, that is the elements of the set X, are called edge-sides.

We consider the union of the interiors of these polygons as a (possibly disconnected)
surface with a boundary. If we consider two edge-sides, we can glue them: that means
that we identify with each other their white extremities, their black extremities, and the
edge-sides themselves.

For any pair in the pairing E , we glue the two corresponding edge-sides. In this way
we obtain a (possibly disconnected, possibly non-orientable) surface S without boundary.
After the gluing, the edges of the polygons form a bicolored graph G embedded in the
surface. For instance, with the pairings B and W from Example 1.1 and

E =
{
{1, 3}, {2, 10}, {4, 9}, {5, D}, {6, C}, {7, B}, {8, A}

}
, (1.1)

we get the graph from Figure 2 embedded in the projective plane.
In general, the graph G has as many connected components as the surface S. Besides,

the connected components of S\G correspond to the interiors of the collection of polygons
we are starting from, and, thus, they are homeomorphic to open discs. These connected
components are called faces.

This makes the link with the more common definition of maps: usually, a (bicolored)
map is defined as a (bicolored) connected graph G embedded in a (non-oriented) surface
S in such a way that each connected component of S\G is homeomorphic to an open disc.
It should be stressed that with our definition — contrary to the traditional convention —
we do not require the map to be connected.

Note that our maps have labeled edge-sides, and each element of the label set X is
used exactly once as a label.

The pairing B (respectively W) indicates which edge-sides share the same corner
around a black (respectively white) vertex. This explains the names of these pairings.

This encoding of non-oriented maps by triples of pairings is of course not new. It can
for instance be found in [15]; the presentation in that paper is nevertheless a bit different
as the authors consider there connected monochromatic maps.

1.3 Face-type. Summation over non-oriented maps

Let 2π1, 2π2, . . . , 2π` be the numbers of edges of the polygons, or — equivalently — the
numbers of edges of the faces of the map. We say that π = (π1, . . . , π`) is the face-type of
the collection of polygons or the face-type of the map.
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The summation over non-oriented maps M with face-type (n) should be understood as
follows: we fix a bicolored polygon L with 2n labeled edges and consider all pair-partitions
E of its edges; we sum over the resulting collection of maps M = M(E). We will refer to
this kind of summation as conservative summation.

1.4 Edge liberation for non-oriented maps

Sometimes it will be convenient to consider a different way of summing over maps with
the face-type (n) in which the arrangement of the labels on the polygon L is not fixed.
To be more specific: we consider all maps M = (B′,W ′, E ′) where B′, W ′ and E ′ are
pair-partitions of the same base set X = [2n] with the property that L(B′,W ′) consists
of a single polygon. In order to differentiate this kind of summation, we will call it liberal
summation over non-oriented maps with the face-type (n).

Proposition 1.3. For each integer n > 1 the following two formal linear combinations
of unlabeled maps are equal: ∑

M
liberal summation

M = (2n− 1)!
∑
M

conservative summation

M, (1.2)

where on the left-hand side we consider a liberal summation over non-oriented maps with
the face-type (n) and on the right-hand side we consider a conservative summation over
non-oriented maps with the face-type (n). On both sides of the equality we remove the
labels of the edge-sides of the maps.

Proof. We fix the pair partitions B and W of the same set X = [2n] in such a way that
L = L(B,W) is a single polygon. Let us consider the collection{

(π, E) : π ∈ S(2n) and E is a pair-partition of X = [2n]
}
, (1.3)

where S(2n) denotes the symmetric group which we view as the set of permutations of
X. A formal sum of

M := M(E) (1.4)

over this collection clearly corresponds to the conservative summation over non-oriented
maps M with face type (n), with each summand taken with the multiplicity |S(2n)| =
(2n)!; thus this formal sum is equal to 2n times the right-hand side of (1.2).

For a pair partition I of the base set X = [2n] and a permutation π ∈ S(2n) we denote
by π(I) the pair-partition of the same base set X defined as follows: for each a, b ∈ S we
have

{a, b} ∈ I ⇐⇒ {π(a), π(b)} ∈ π(I).

To each pair (π, E) we shall associate the map

M ′ := (B′,W ′, E ′) (1.5)
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with B′ := π(B), W ′ := π(W), E ′ := π(E). The map M ′ can be viewed as the map
M = (B,W , E) with the permuted labels of the edge-sides; in particular after removal of
the labels of the edge-sides the maps M and M ′ are equal. Thus the following two formal
linear combinations of maps with removed labels are equal:∑

M =
∑

M ′,

where both sums run over (1.3) while M , M ′ should be understood as in (1.4), (1.5).

Clearly, the map M ′ has one face and each non-oriented map M ′ with one face on
the base set X can be obtained in this way. Furthermore, two pairs (π, E) and (σ,F)
have the same image M ′ = (B′,W ′, E ′) if and only if F = σ−1π(E) and the permutation
σ−1π leaves each of the partitions B and W invariant; the set of such permutations forms
the dihedral group Dn of the isometries of a regular polygon with n edges. It follows
that there is a bijective correspondence between the preimage of a given map M ′ (we
assume that M ′ has a single face) and the dihedral group Dn. Therefore a formal sum
of M ′ := (B′,W ′, E ′) over the collection (1.3) corresponds to the liberal summation with
each summand taken with the multiplicity |Dn| = 2n; in other words it is equal to the
left-hand side of (1.2) multiplied by 2n.

The comparison of the above two conclusions about the conservative and the liberal
ways of summing finishes the proof.

1.5 Removal of edges

If E is an edge of a map M , we denote by M \E = M \ {E} the map M with the edge E
removed. This definition is a bit subtle; for example since we do not allow maps having
isolated vertices, if some endpoint of E is a leaf, we remove it as well. Removal of an
edge might change the topology of the surface on which the map is drawn; for this reason
instead of figures of the type presented in Figure 2 it is more convenient to consider for
this purpose ribbon graphs, see Figure 3.

For a more rigorous treatment see [9, Section 3.6].

1.6 Three kinds of edges

Let a map M with some selected edge E be given (see example in Figure 8). There are
three possibilities:

• Both sides of the edge E are lying on the boundary of the same face F . This means
that if we travel along the boundary of the face F then we visit the edge E twice.
Assume that the directions in which we travel twice along the edge E are opposite,
see Figure 9a.

In this case the edge E is called straight and we associate to it the weight 1.

• Both sides of the edge E are lying on the boundary of the same face F . This means
that if we travel along the boundary of the face F then we visit the edge E twice.
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Figure 8: The non-oriented map from Figure 2. On the boundary of each face some
arbitrary orientation was chosen, as indicated by arrows. The edge {4, 9} is an example
of a straight edge, the edge {1, 3} is an example of a twisted edge, the edge {6, C} is an
example of an interface edge.

(a) (b) (c)

Figure 9: Three possible kinds of edges in a map (see Figure 8): (a) straight edge: both
edge-sides of the edge belong to the same face and have opposite orientations, (b) twisted
edge: both edge-sides of the edge belong to the same face and have the same orientation,
(c) interface edge: the edge-sides of the edge belong to two different faces; their orienta-
tions are not important. In all three cases the colors of the vertices are not important.

Assume that the directions in which we travel twice along the edge E are the same,
see Figure 9b.

In this case the edge E is called twisted and we associate to it the weight γ.

• The edge E is lying on the boundary of two different faces, see Figure 9c.

In this case the edge E is called interface and we associate to it the weight 1
2
.

The weight given by the above convention will be denoted monM,E; we will need this
notion much later in Section 5.1. The classification of edges into three types (i.e. straight
versus twisted versus interface) will be necessary immediately.
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1.7 Top-degree histories

The definitions presented in this section are directly related to the quantity montop
M from

Definition 0.1.

Definition 1.4. We say that a non-oriented map M is a top-degree map if each connected
component of M is one of the faces of M .

For a given map M we will say that a history is an arbitrary linear order ≺ on the set
of edges of M . Let E1, . . . , En be the sequence of edges of M , listed according to the linear
order ≺. We set Mi = M \ {E1, . . . , Ei}; in other words M0,M1, . . . ,Mn is the sequence
of maps obtained from M by removing the edges, one by one, in the order prescribed by
the history ≺.

Definition 1.5. We say that (M,≺) is a top-degree pair if M is a non-oriented map and
≺ is a history with the property that each of the maps M0, . . . ,Mn defined above is a
top-degree map.

With the above definitions, for a given non-oriented map M of face-type (n), the
corresponding quantity montop

M from Definition 0.1 can be reformulated as the probability
that for a uniformly random choice of the history ≺, the pair (M,≺) is a top-degree pair.

We will not make use of the following lemma (but we will make use of its extension,
Lemma 5.2). Nevertheless, we decided to state it here because it provides a natural and
intuitive interpretation for the notion of top-degree pairs.

Lemma 1.6. Let M be a map with n edges and ≺ be a history. We use the notations
introduced above.

Then the following conditions are equivalent:

(A) the pair (M,≺) is top-degree;

(B) for each 0 6 i 6 n− 1 the edge Ei+1 of the map Mi is either:

• a twisted edge, or,

• a bridge or a leaf.

Note that an alternative proof of this result (in a wider generality) will be given in
Section 5.2.

Proof. Suppose that the condition (B) holds true. It is easy to prove by backward in-
duction that for each 0 6 i 6 n − 1 the map Mi is a top-degree map which implies the
condition (A).

Assume now that the condition (B) does not hold true. Let i be the maximal number
with the property that the edge Ei+1 of the map Mi is neither a twisted edge, nor a bridge,
nor a leaf. Clearly i < n. The reasoning from the previous paragraph shows that the
map Mi+1 is top-degree. The edge Ei+1 is not a bridge, so its endpoints must be located
in the same connected component of Mi+1 therefore they belong to the same face. Since
the edge Ei+1 is not a twisted edge of Mi, it follows that Ei+1 is an interface edge of Mi.
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It follows that the connected component of the map Mi which contains the edge Ei+1

consists of two faces. In this way we proved that Mi is not top-degree and the condition
(A) does not hold true.

1.8 Top degree histories and orientable maps

Let M = (B,W , E) be a non-oriented map and let E be one of its edges. We denote
by twistE(M) the non-oriented map which is obtained from M by twisting the edge E,
see Figure 6. Formally, twistE(M) = (B,W ′, E) is the map obtained by changing the
structure of the pairings of the white vertices, as explained in Figure 6.

Lemma 1.7. Let M be a map, let E be one of its edges and let M1 := M \ E. Assume
that M1 is a top-degree map (respectively, an orientable map).

If E is a bridge or a leaf in the map M , then M is a top-degree map (respectively, an
orientable map).

If E is neither a bridge nor a leaf in the map M , then exactly one of the following two
maps: M and twistE(M) is a top-degree map (respectively, an orientable map).

The proof is immediate.

Theorem 1.8. Let an integer n > 1 be fixed and X be an arbitrary label set with |X| = 2n.
There exists a bijection Ψ between:

(a) the set of top-degree pairs (M,≺) where M is a non-oriented map with n edges and
labels from X;

(b) the set of pairs (M,≺), where M is an orientable, non-oriented map with n edges
and labels from X, and ≺ is a history on M .

This bijection has the property that if Ψ : (M,≺) 7→ (M ′,≺′) then the maps M and M ′

regarded as bicolored graphs are isomorphic.

Proof. The bijection which we will construct will have the following additional property:
for each (M,≺) there exists some subset {e1, . . . , el} of the set of the edges of M such
that

Φ(M,≺) =
(

twiste1 · · · twistelM,≺
)
.

We will use induction with respect to the variable n. For n = 1 both sets (a) and (b)
consist of a single element and there is an obvious bijection between them.

Consider the case n > 2. Let (M,≺) be a top-degree pair. Let E be the first of the
edges of M , according to the linear order ≺; let M1 := M \E and let ≺1 be the restriction
of the linear order ≺ to the edges of M1; and let X1 be the set X with the labels of the
edge-sides of E removed.
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The pair (M1,≺1) is also a top-degree pair and thus Φ(M1,≺1) has been already
constructed by the inductive assertion; there exists some set of the edges {e1, . . . , el} of
M1 with the property that

Φ(M1,≺1) =
(
M ′

1,≺1

)
with

M ′
1 = twiste1 · · · twistelM1.

By twisting the same set of edges in the bigger map M we define

M̃ := twiste1 · · · twistelM.

There are the following two possibilities.

• The case when the edge E is a bridge or a leaf in the map M .

We define
Φ(M,≺) :=

(
M̃,≺

)
.

Note that M ′
1 = M̃ \ E is, by definition, an orientable map and E is a bridge or

a leaf in the map M̃ ; thus Lemma 1.7 implies that the map M̃ is orientable, as
required.

• The case when the edge E is neither a bridge nor a leaf in the map M .

Since M ′
1 = M̃ \ E is an orientable map and E is neither a bridge nor a leaf in

the map M̃ , Lemma 1.7 implies that exactly one of the maps M̃ and twistE M̃ is
orientable; we denote this orientable map by M ′.

Finally, we define
Φ(M,≺) :=

(
M ′,≺

)
.

This concludes the inductive construction. It remains to show that the map Φ con-
structed above has an inverse. The construction of the inverse Φ−1 is quite analogous to
that of Φ and we skip it.

2 Oriented maps

2.1 Oriented maps

We define an oriented map as a bicolored graph G embedded in an oriented surface S in
such a way that each connected component of S \ G is homeomorphic to an open disc.
If the number of edges is equal to n, we shall assume that the edges are labeled by the
elements of [n] in such a way that each label is used exactly once.

There is a bijective correspondence between such oriented maps with n edges and the
set of pairs (σ1, σ2), where σ1, σ2 ∈ S(n) are permutations. This correspondence follows
from the observation that the structure of such an oriented map is uniquely determined
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by the counterclockwise cyclic order of the edges around the white vertices (which we
declare to be encoded by the disjoint cycle decomposition of the permutation σ1) and
by the counterclockwise cyclic order of the edges around the black vertices (which we
declare to be encoded by the disjoint cycle decomposition of the permutation σ2). The
corresponding oriented map will be denoted by M(σ1, σ2).

Example 2.1. The oriented map shown in Figure 1 corresponds to the pair

σ1 = (1, 4, 9, 5, 7)(2, 6)(3, 8), σ2 = (1, 9)(2, 3, 5)(4, 7)(6, 8).

2.2 Edge liberation for oriented maps

For σ1, σ2 ∈ S(n) we say that “〈σ1, σ2〉 is transitive” if the group generated by σ1 and
σ2 acts transitively on the underlying set [n]. It is easy to see that the oriented map
M(σ1, σ2) is connected if and only if 〈σ1, σ2〉 is transitive.

The following result shows that a summation over oriented, connected maps can be
alternatively viewed as a summation over orientable (but not oriented), connected maps.

Proposition 2.2. Let n > 1. Then the following two formal linear combinations of
non-oriented unlabeled maps are equal:

(2n)!
∑

σ1,σ2∈S(n)
〈σ1,σ2〉 is transitive

M(σ1, σ2) = 2 · n!
∑
M

M, (2.1)

where the sum on the right-hand side runs over non-oriented maps M = (B,W , E) where
B, W, E are arbitrary pair-partitions of the set X = [2n] such that M is orientable and
connected.

Proof. Consider the set{
(σ1, σ2, f) : σ1, σ2 ∈ S(n) and 〈σ1, σ2〉 is transitive,

f : [n]× {1, 2} → [2n] is a bijection
}
. (2.2)

A formal sum of M(σ1, σ2) over this set is clearly equal to the left-hand side of (2.1).

Let us consider some triple which belongs to (2.2). The permutations σ1 and σ2 define
an oriented map M(σ1, σ2) with the edges labeled by the elements of [n]; in the following
we will show how to view this map as a non-oriented map. This will be done by defining
the labels associated to all edge-sides of the original map M ; these new labels belong to
[2n]. In other words, to each edge e of M (i.e., to each label e ∈ [n]) we need to associate
an ordered pair of two labels from [2n]; we declare this pair to be

(
f(e, 1), f(e, 2)

)
. More

specifically, if we go counterclockwise around the white endpoint of e and read the labels
of the edge-sides, then immediately after the label f(e, 1) we should read the label f(e, 2),
see Figure 10.
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σ2(α)

f(σ2(α), 1)

f(σ2(α), 2)

σ−12 (α)

f(σ−12 (α), 1)

f(σ−12 (α), 2)

σ−11 (α)

f(σ−11 (α), 2)

f(σ−11 (α), 1)

σ1(α)

f(σ1(α), 2)

f(σ1(α), 1)

f(α, 1)

f(α, 2)

α

Figure 10: The convention for defining the labels of the edge-sides. The symbol written
directly on the edge is its label; as usual the counterclockwise cycle structure of the edges
around the white vertices is given by the permutation σ1 while the counterclockwise cycle
structure of the edges around the black vertices is given by the permutation σ2. The two
symbols written next to the edge are the labels of the edge-sides.

More formally speaking, the above construction corresponds to the non-oriented map
M = (B,W , E), where

B =
{{
f(k, 1), f

(
σ2(k), 2

)}
: k ∈ [n]

}
,

W =
{{
f(k, 2), f

(
σ1(k), 1

)}
: k ∈ [n]

}
,

E =
{
{f(k, 1), f(k, 2)} : k ∈ [n]

}
.

The resulting non-oriented map M is orientable and connected. Furthermore, each such
an orientable, connected, non-oriented map can be obtained in this way in 2 ·n! ways (the
factor 2 comes from the two possible ways of choosing the orientation of the map, the
factor n! counts the possible choices of the labeling of the edges of the oriented map from
which we start).

The comparison of the multiplicities arising from the two ways of interpreting the
summation over (2.2) concludes the proof.
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3 Proof of the first main result, Theorem 0.3

Proof of Theorem 0.3. Recall that the left-hand side of (0.1) runs over oriented, unla-
beled, rooted, connected maps M1 with n edges. Each such a map can become a labeled
map in (n − 1)! distinct ways as follows: we attach to the root edge the label 1 and we
attach the remaining labels from [n] \ {1} to the other edges. Thus the left-hand side of
(0.1) is equal to

1

(n− 1)!

∑
σ1,σ2∈S(n),

〈σ1, σ2〉 is transitive

M(σ1, σ2) (3.1)

which is viewed as linear combination of unlabeled maps.

Edge liberation for oriented maps (Proposition 2.2) implies that (3.1) is equal to

1

(2n− 1)!

∑
M

M, (3.2)

where the sum runs over non-oriented maps M over the base set X = [2n] such that M
is orientable and connected. Our analysis of the left-hand side of (0.1) is now completed
and we shall turn to its right-hand side.

Recall that the sum on the right-hand side of (0.1) runs over non-oriented, unlabeled,
rooted maps M2 with n edges and one face. Note that there is a canonical way of defining
the labels on the edge-sides of this map, as follows. We perform a walk along the boundary
of the unique face of map, with the first step along the decorated edge-side in the direction
from its black to its white extremity. We attach the label 1 to this decorated edge-side,
and we continue to label the edge-sides in the order in which we visit them with the
remaining elements of the label set [2n]\{1}. This means that the sum on the right-hand
side of (0.1) is in fact a conservative summation over non-oriented maps with face-type
(n).

From Definition 0.1 it follows now that the right-hand side of (0.1) is equal to

1

n!

∑
M=(G,S)

∑
≺:

(M,≺) is top-degree

G, (3.3)

where the first sum is a conservative sum over non-oriented maps with face-type (n) and
the second sum runs over the histories such that (M,≺) is a top-degree pair. We apply
edge liberation for non-oriented maps (Proposition 1.3); in this way (3.3) takes the form

1

n! (2n− 1)!

∑
M=(G,S)

∑
≺:

(M,≺) is top-degree

G, (3.4)

where the first sum is this time a liberal sum over non-oriented maps with face-type (n).
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We apply the bijection provided by Theorem 1.8; in this way we see that (3.4) is equal
to

1

(2n− 1)!

∑
M=(G,S)

G, (3.5)

where the sum runs over all connected, orientable non-oriented maps over the base set
[2n].

Since (3.2) and (3.5) are equal as formal linear combinations of unlabeled graphs, this
concludes the proof.

4 Background and history of the result: Jack characters

In this section we present the background and the motivations for Theorem 0.3, in par-
ticular the problems related to Jack characters.

4.1 Jack characters

4.1.1 Jack polynomials

Henry Jack [18] introduced a family
(
J
(α)
π

)
(indexed by an integer partition π) of sym-

metric functions which depend on an additional parameter α. During the last forty
years, many connections of these Jack polynomials with various fields of mathematics
and physics were established: it turned out that they play a crucial role in understand-
ing Ewens random permutations model [4], generalized β-ensembles and some statistical
mechanics models [25], Selberg-type integrals [19], certain random partition models [2],
and some problems of algebraic geometry [24], among many others. Better understanding
of Jack polynomials is also very desirable in the context of generalized β-ensembles and
their discrete counterpart model [7]. Jack polynomials are a special case of the celebrated
Macdonald polynomials which “have found applications in special function theory, rep-
resentation theory, algebraic geometry, group theory, statistics and quantum mechanics”
[14].

4.1.2 Dual combinatorics of Jack polynomials

Lassalle [21, 22] initiated investigation of a kind of dual combinatorics of Jack polynomials.
More specifically, one expands Jack polynomial in the basis of power-sum symmetric
functions:

J
(α)
λ =

∑
π

θ(α)π (λ) pπ. (4.1)

The above sum runs over partitions π such that |π| = |λ|. The coefficient θ
(α)
π (λ) is

called unnormalized Jack character ; with the right choice of the normalization it becomes
the normalized Jack character Chπ(λ) (the details of this relationship will be given in
Definition 4.1). An interesting feature of Jack characters is that for the special choice of
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the deformation parameter α = 1 they coincide with the usual characters of the symmetric
groups.

The above approach is referred to as dual because one fixes π and views the character
λ 7→ Chπ(λ) as a function of the Young diagram λ, opposite to the usual approach in the
representation theory where one usually fixes the irreducible representation (the diagram
λ) and views the character as a function of the conjugacy class (the partition π). In the
context of the representation theory of the symmetric groups (which corresponds to the
special case α = 1) this dual approach was initiated by Kerov and Olshanski [20] and
it soon turned out to be highly successful; its applications include, for example, random
Young diagrams [17, 1, 26]. Lassalle [21, 22] adapted this idea to the framework of Jack
characters.

Jack characters Chπ(λ) are in the focus of the current paper. Our motivations for
investigating them are threefold. Firstly, since Jack characters are related to Jack polyno-
mials, a better understanding of the former might shed some light on the latter. Secondly,
they can be used in order to investigate some natural deformations of classical random
Young diagrams [28, 10]. Thirdly, numerical data [23] as well as some partial theoretical
results [21, 22, 9, 27, 28] indicate that they might have a rich algebraic-combinatorial or
representation-theoretic structure.

Our ultimate goal would be to find some convenient closed formula for Jack characters.
This goal is beyond our reach; a more modest goal would be to find a closed formula for
the dominant part of Jack characters in the suitable asymptotic scaling. We shall address
this issue later on.

4.1.3 Definition of Jack characters

In order for this dual approach to be successful (both with respect to the usual characters
of the symmetric groups and for the Jack characters) one has to choose the most convenient
normalization constants. In the current paper we will use the normalization introduced
by Do l ↪ega and Féray [7] which offers some advantages over the original normalization of
Lassalle. Thus, with the right choice of the multiplicative constant, the unnormalized Jack
character θ

(α)
λ (π) from (4.1) becomes the normalized Jack character Ch(α)

π (λ). Regretfully,
their definition is quite technical and not very enlightening. On the bright side, this
definition is not relevant for the purposes of the current paper and the Readers faint at
heart are cordially invited to fast forward to Section 4.1.4.

Definition 4.1. Let α > 0 be given and let π be a partition. The normalized Jack character
Chπ(λ) is given by:

Chπ(λ) :=

{
α−

|π|−`(π)
2

(|λ|−|π|+m1(π)
m1(π)

)
zπ θ

(α)

π,1|λ|−|π|
(λ) if |λ| > |π|;

0 if |λ| < |π|,
(4.2)

where
zπ =

∏
i

imi(π) mi(π)!
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Figure 11: (a) Example of a bicolored graph (drawn on the torus: the left side of the
square should be glued to the right side, as well as bottom to top, as indicated by arrows)
and (b) an example of its embedding F (Σ) = α, F (Π) = β, F (V ) = a, F (W ) = c.
F (1) = F (4) = (aβ), F (2) = F (5) = (aα), F (3) = (cα). The columns of the Young
diagram were indexed by small Latin letters, the rows by small Greek letters.

is the standard numerical factor.
Jack character Chπ(λ) depends on the deformation parameter α, but to keep the

notation light we shall usually make this dependence implicit.

4.1.4 The deformation parameter

In order to avoid dealing with the square root of the variable α, we introduce an indeter-
minate A such that

A2 = α.

In this way Jack character Chπ(λ) ∈ Q [A,A−1] becomes a Laurent polynomial in the
indeterminate A. This is the viewpoint which we will usually take in this paper, with the
exception of Sections 4.3.1 and 4.3.2 where A will be some fixed real number.

4.2 Bicolored graphs and their embeddings

An embedding F of a bicolored graph G to a Young diagram λ is a function which maps
the set V◦(G) of white vertices of G to the set of columns of λ, which maps the set V•(G)
of black vertices of G to the set of rows of λ, and maps the edges of G to boxes of λ,
see Figure 11. We also require that an embedding preserves the relation of incidence,
i.e., a vertex V and an incident edge E should be mapped to a row or column F (V ) which
contains the box F (E). We denote by NG(λ) the number of such embeddings of G to λ.
Quantities NG(λ) were introduced by Féray and the second-named author [12] and they
proved to be very useful for studying various asymptotic and enumerative problems of the
representation theory of symmetric groups [12, 13, 8].
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Definition 4.2. For a bicolored graph G and a Young diagram λ we define the normalized
number of embeddings [27] which is a Laurent polynomial in A:

NG(λ) :=
A|V◦(G)|

(−A)|V•(G)| NG(λ) ∈ Q
[
A,A−1

]
. (4.3)

A very similar quantity denoted by N
(α)
G (λ) — which differs from NG(λ) only by the

choice of the sign — was considered already in [9].

In the case when M = (G,S) is a map, we denote NM(λ) := NG(λ).

4.3 Stanley formulas

For some special values of the deformation parameter A ∈
{
± 1√

2
,±1,±

√
2
}

which corre-

spond to α ∈
{

1
2
, 1, 2

}
, Jack characters admit closed formulas in terms of embeddings of

certain bicolored maps. Formulas of this type are called Stanley formulas after Richard
Stanley, who found such a formula for α = 1 as a conjecture [29]. We shall review them
in the following.

4.3.1 Stanley formula for α = 1 and oriented maps

In the special case of A = ±1 which corresponds to α = 1, Jack polynomials coincide (up
to simple multiplicative constants) with Schur polynomials. Using this fact one can show
that in this special case the Jack character ChA:=1

π coincides with the (suitably normalized)
character of the symmetric group; for the details see the work of Lassalle [22] (who used a
different normalization) as well as the work of Do l ↪ega and Féray [7]. For this reason, for
A = 1 Jack characters have a much richer algebraic and representation-theoretic structure
than for a generic value of A.

In particular, it has been observed in [12] that a certain formula conjectured by Stanley
[29] and proved by Féray [11] for the normalized characters of the symmetric groups can
be expressed as the sum

ChA:=1
π (λ) = (−1)`(π)

∑
M

NA:=1
M (λ) (4.4)

over all oriented bicolored maps M with face-type π, where `(π) denotes the number of
parts of the partition π.

4.3.2 Stanley formula for α ∈ {2, 1
2
} and non-oriented maps

In the special case when A = ±
√

2 and α = 2 (respectively, A = ± 1√
2

and α = 1
2
) Jack

polynomials coincide with zonal polynomials (respectively, symplectic zonal polynomials).
Thanks to this additional structure it has been proved in a joint work of the second-named

the electronic journal of combinatorics 24(3) (2017), #P3.7 22



author with Féray [13] that

ChA:=
√
2

π (λ) = (−1)`(π)
∑
M

(
− 1√

2

)|π|+`(π)−|V (M)|

NA:=
√
2

M (λ), (4.5)

Ch
A:= 1√

2
π (λ) = (−1)`(π)

∑
M

(
1√
2

)|π|+`(π)−|V (M)|

N
A:=1/

√
2

M (λ), (4.6)

where the sums run over all non-oriented maps M with face-type π, as in Section 1.3.
The reader should be advised that the notations and the normalizations in [13] are a bit
different; the link between the statements above and the results of [13] is given in [9,
Section 5].

4.4 How to prove a closed formula for Jack characters? Orientability gener-
ating series

Jack characters admit an abstract characterization [27, Theorem 1.7] which was found in
a recent paper of the second-named author (see also Theorem A.2 of Féray in an appendix
to the same paper [27]). This abstract characterization opens the following path toward
proving a closed formula for Jack characters: in the first step one should guess the right
formula, and in the second step one should verify that it indeed fulfills the aforementioned
defining properties of Jack characters.

How to make the first step and to guess a closed formula for Jack characters? The
three Stanley formulas (4.4), (4.5), (4.6) might suggest that the hypothetical formula for
Jack characters in the generic case should be of the form

Chπ(λ) = (−1)`(π)
∑
M

weightM NM(λ), (4.7)

where the sum should run over non-oriented maps with face-type π. In the above formula
weightM ∈ Q [A,A−1] is some hypothetical quantity which measures the non-orientability
of the map M [9, Conjecture 1.1].

A joint work of the second-named author with Do l ↪ega and Féray [9] presents an at-
tempt to guess the exact form of this hypothetical quantity weightM , an attempt which
was based on a reverse-engineering of the results of Lassalle [21]. Our candidate quantity,
denoted monM (which is an acronym for measure of non-orientability) was defined as
follows: we remove the edges from the ribbon graph of M in a uniformly random order;
to each edge which is about to be removed we associate a factor which is related to the
topological way in which this edge is attached to the remaining edges (i.e., the edges
which have not been removed yet) as we discussed in Section 1.6. The quantity monM is
defined as the expected value of the product of the aforementioned factors. The details
of this construction will be recalled in Section 5.3. This weight monM gives rise to the
orientability generating series [9, Section 1.10] which is defined in analogy to (4.7) as

Ĉhπ(λ) := (−1)`(π)
∑
M

monM NM(λ), (4.8)
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q′2

p′3q′3

Figure 12: Multirectangular Young diagram P ×Q.

where the sum runs over non-oriented maps with face-type π.

4.5 Stanley polynomials

In order to be able to speak about the degree of some functions on the set of Young
diagrams we will need the notion of Stanley polynomials. The content of this section is
an abridged and less formal version of [27, Section 1.10].

4.5.1 Multirectangular coordinates

We start with anisotropic multirectangular coordinates

P = (p1, . . . , p`),

Q = (q1, . . . , q`).

They give rise to isotropic multirectangular coordinates given by

P ′ = (p′1, . . . , p
′
`) : = (Ap1, . . . , Ap`) ,

Q′ = (q′1, . . . , q
′
`) : =

(
1

A
q1, . . . ,

1

A
q`

)
.

Note that P ′ and Q′ depend implicitly on P and Q.
Suppose that P ′ = (p′1, . . . , p

′
`) and Q = (q′1, . . . , q

′
`) are sequences of non-negative

integers such that q′1 > · · · > q′`; we consider the multirectangular Young diagram

P ′ ×Q′ = (q′1, . . . , q
′
1︸ ︷︷ ︸

p′1 times

, . . . , q′`, . . . , q
′
`︸ ︷︷ ︸

p′` times

).

This concept is illustrated in Figure 12.
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4.5.2 The deformation parameter γ

We usually view Jack polynomials as functions of the parameter α and Jack characters
as functions of another parameter A =

√
α. However, it is convenient to consider yet

another deformation parameter

γ :=
1

A
− A ∈ Q

[
A,A−1

]
. (4.9)

As we shall see, several quantities can be expressed as polynomials in γ.

4.5.3 Stanley polynomials and degree of functions on Y

Let F : Y→ Q [A,A−1] be a function on the set of Young diagrams and let

St` = St`(γ; p1, . . . , p`; q1, . . . , q`) = St`(γ;P ;Q)

be a polynomial in 2`+ 1 variables.
Suppose that the equality

F (P ′ ×Q′) = St` (γ;P ;Q)

— with the substitution (4.9) for the variable γ — holds true for all choices of P , Q
and A 6= 0 for which the multirectangular diagram P ′ × Q′ is well-defined. Then we say
that St` is the Stanley polynomial for F . The above definition is not very precise; on the
formal level one should consider Stanley polynomial as an element of some inverse limit
for `→∞; for the details we refer to [27, Section 1.10].

Stanley polynomials are a perfect tool for studying asymptotic questions in the setup
when the Young diagram P ′ × Q′ tends to infinity. In particular, we say that F : Y →
Q [A,A−1] is a function of degree (at most) d if the corresponding Stanley polynomial is
of degree (at most) d.

4.5.4 Stanley polynomials for Chπ and Ĉhπ

It is a highly non-trivial result of Do l ↪ega and Féray [7, Corollary 3.5] (see also [27, Theo-
rem 2.15, Corollary 2.11] for details how to adapt their result to our setup) that a Stanley
polynomial exists for each Jack character Chπ and that is of degree at most |π| + `(π).
For example,

Ch1(P
′ ×Q′) =

∑
i

piqi,

Ch2(P
′ ×Q′) =

∑
i

piqi [qi − pi + γ]− 2
∑
i<j

pipjqj,

Ch3(P
′ ×Q′) =

∑
i

piqi
[
q2i − 3piqi + p2i + 3γ(qi − pi) + 2γ2 + 1

]
+

− 3
∑
i<j

pipjqj [(qi − pi + γ) + (qj − pj + γ)] +

+
∑
i<j<k

6pipjpkqk.
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One can show that the Stanley polynomial for the orientability generating series Ĉhπ
exists and it is also of degree |π|+ `(π); the proof is postponed to Lemma 5.5.

4.6 Orientability generating series versus Jack character

The initial prediction of the authors of [9] was that the quantity monM is the right guess

for the hypothetical weightM and thus Ĉhπ = Chπ. Regretfully, this turns out to be not

the case [9, Section 7] and Ĉhπ 6= Chπ in general.
This might seem as the end of the story and an example of a failed research, neverthe-

less the orientability series Ĉhπ appeared to predict the properties of the Jack character
Chπ suspiciously well. The latter statement was supported heuristically in the following
two ways.

• Firstly, computer-assisted comparison of the coefficients of Stanley polynomials for
the character Chπ with their counterpart for the orientability generating series Ĉhπ
indicates that a lot of them coincide for several concrete examples.

• Secondly, in the case when π = (n) is a partition with only one part, a comparison
of

(i) the contribution to the orientability generating series Ĉhn which comes from
the maps M with small genus g 6 3

2
with

(ii) its counterpart for Jack character Chn

indicate a full match [3, Section 5]. For (i) a closed formula found by the first
named author [3] is available. The comparison can be either performed numerically
for small values of n using the data provided by Lassalle [23], or by comparing the
aforementioned closed formula for (i) with Lassalle’s conjectural closed formula [22,
Section 11]; they turn out to be identical.

4.7 The second main result: the top-degree of Jack character

One of the main results of the current paper is the following positive result.

Theorem 4.3 (The second main result). For each integer n > 1

Chtop
n = Ĉh

top

n . (4.10)

Above, Chtop
n denotes the top-degree of Jack character Chn. More explicitly, Stanley

polynomial for Chn is known to be of degree n+ 1; the homogeneous part of this Stanley
polynomial of degree n+ 1 defines a function on the set of Young diagrams which will be

denoted Chtop
n . Analogously, the top-degree Ĉh

top

n of the orientability generating series is

defined as the homogeneous part of Ĉhn of degree n+ 1.

In the remaining part of this section we will explain the relationship between the two
main results of the current paper: Theorem 0.3 and Theorem 4.3.
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4.8 Two formulas for the top-degree part of Jack characters

The following result was proved by the second-named author using a modified version of
the strategy which we outlined in Section 4.4: guess the right closed formula and then
verify that it satisfies some abstract characterization (this abstract characterization of
Chtop

n turns out to be much more complex than the analogous characterization of Chn).

Theorem 4.4 ([27, Theorem 1.21]). For each integer n > 1

Chtop
n (λ) = (−1)

∑
M

γn+1−|V (M)| NM(λ), (4.11)

where the sum runs over oriented, unlabeled, rooted, connected maps with n edges and
with arbitrary face-type.

Our proof of Theorem 4.3 will be based on the following simple observation: our main
bijective result (Theorem 0.3) shows equality between the right-hand sides of (4.8) and
(4.11). The missing details of the proof will be provided in Section 5.6.

4.9 Top-degree of Jack characters: the real story. Motivations for Theo-
rem 0.3

The (yet unpublished at the time) bijective result of the current paper (Theorem 0.3)
preceded the proof of the above-mentioned closed formula for the top-degree of Jack
characters from Theorem 4.4. Indeed, the key difficulty in Theorem 4.4 was to guess
the right formula and this difficulty was overcome by converting a conjectural formula
based on the ideas from [9] to a more convenient form thanks to Theorem 0.3. For more
discussion on this topic see below.

4.10 Outlook into the future

The Reader interested in Jack characters may wonder: why bother now proving the second
main result of the current paper, Theorem 4.3. After all, a simpler closed formula for Chtop

n

(Theorem 4.4) was already available; the formula (4.10) has served its duty as a source
of heuristics and can be retired now.

However, our ultimate goal, finding a closed formula for Jack characters Chn (and,
more generally, Chπ), has not been completed. The latter is currently far beyond our
reach; a more modest partial accomplishment would be to find a closed formula for the next
term in the asymptotic expansion of Jack character Chn after its top-degree part Chtop

n .
Once the right candidate formula is found by some heuristic means, the machinery from
[27] could be probably relatively easily adapted in order to prove that such a candidate
formula indeed holds true.

Regretfully, there is a missing key element to this approach: we have no good candidate
formula for such a sub-dominant part of Chn of degree n − 1 (see [27, Section 1.17]).
Probably the simplest approach would be to deduce or extrapolate such a formula based
on existing formulas for the asymptotically dominant part Chtop

n . Unfortunately, the final
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formula (4.11) for Chtop
n does not seem to offer any hints how to extrapolate it into the

sub-dominant regime.
On the other hand, our original starting point, the orientability generating series Ĉhn

given by (4.8), offers immediately a candidate formula for such a sub-dominant part.
We have to admit: it is a candidate formula which gives slightly wrong predictions [9,
Section 7], but it is nevertheless a good starting point for some better formula.

Suppose that this happens to be indeed the case and someone, someday finds such
a better formula based on the concept of the orientability generating series. In such a
scenario some modified version of the bijection behind our main bijective result (Theo-
rem 0.3) might become handy in order to convert this hypothetical formula into a more
convenient form, just like we used this bijection in the current paper in order to transform
the right-hand side of (4.8) into more convenient the right-hand side of (4.11).

For more discussion on this topic see [27, Section 1.17].

4.11 b-conjecture

In this section all maps are connected, and rooted, that is they posses a marked, oriented
corner incident to some black vertex (that is, an angular region around black vertex v
delimited by two consecutive edges attached to v).

Goulden and Jackson [16] introduced, using Jack symmetric functions, some multi-
variate generating series ψ(x,y, z; 1, 1 + β) with an additional parameter β that might
be interpreted as a continuous deformation of the rooted bicolored maps generating se-
ries. Indeed, it has the property that for β ∈ {0, 1} it specializes to rooted, orientable
(for β = 0) or general, i.e. orientable or not (for β = 1) bicolored maps generating se-
ries. Goulden and Jackson made the following conjecture: coefficients of ψ (indexed by
three partitions of the same size) are polynomials in β with positive integer coefficients
that can be written as a multivariate generating series of rooted, general bicolored maps,
where the exponent of β is an integer-valued statistics that in some sense “measures the
non-orientability” of the corresponding bicolored map.

This b-conjecture has not yet been proved, but some progress towards determining
both algebraic and combinatorial properties of the coefficients in question has been made,
and the work is ongoing. Do l ↪ega and Féray [6] proved recently that all coefficients of ψ
are polynomials in β with rational coefficients. Based on this result, Do l ↪ega [5] found a
combinatorial interpretation of the top-degree of coefficients of ψ indexed by two arbitrary
partitions µ, ν ` n, and one partition consisting of only one part (n), which conjecturally
should be given by certain maps with only one face. An interesting phenomenon is that,
similarly as in our Theorem 0.3, the top-degree part found by Do l ↪ega is given by orientable
maps with the black, and white, respectively, vertex degrees given by partitions µ, and
ν, respectively, and arbitrary face structure, and at the same time it is given by certain
maps (called unhandled) with a unique face, and black and white vertex degrees given by
partitions µ, and ν, respectively.

We cannot resist to state that there must be a deep connection between these problems,
and understanding it would be of great interest.

the electronic journal of combinatorics 24(3) (2017), #P3.7 28



5 Top-degree of the orientability generating series

In this section we will present the details of the definition of the polynomial monM(γ), its
relationship to the quantity montop

M introduced in Definition 0.1, and the missing details
of the proof of Theorem 4.3.

5.1 Weight associated to a map with a history

We continue the discussion from Section 1.7.
Let E1, . . . , En be the sequence of edges of a non-oriented M , listed according to the

linear order ≺. We set Mi = M \ {E1, . . . , Ei} and define

monM,≺ :=
∏

06i6n−1

monMi,Ei+1
. (5.1)

This quantity (5.1) can be interpreted as follows: from the map M we remove (one by
one) all the edges, in the order specified by the history. For each edge which is about to
be removed we consider its weight monMi,Ei+1

relative to the current map (recall that the
factor monMi,Ei+1

was defined in Section 1.6 and it depends on the type of the edge Ei+1

in the map M , i.e. straight versus twisted versus interface).

5.2 The top-degree of monM,≺

The following result provides some crude information about the polynomial monM,≺(γ).

Lemma 5.1 ([9, Lemma 3.7]). For any map M the weight monM,≺ is a polynomial in the
variable γ of degree (at most) 2 genus(M).

Here we use the term genus with a small abuse of notation; usually it is used only for
orientable surfaces while we use it also for a non-orientable connected map by setting

genus(M) :=
2 · (the number of connected components of M)− χ(M)

2
,

where
χ(M) = |F(M)| − |E(M)|+ |V (M)|

is the Euler characteristic of M .

It follows that the degree of the polynomial monM,≺ is bounded from above by

degree monM,≺ 6 2 |F(M)| − χ(M) = |F(M)|+ |E(M)| − |V (M)|. (5.2)

The remaining part of this section is devoted to the investigation of the corresponding
leading coefficient [

γ|F(M)|+|E(M)|−|V (M)|]monM,≺(γ).

The following result is an extension of Lemma 1.6; its only new component is condition
(C).
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Lemma 5.2. Let M be a non-oriented map and ≺ be a history. We use the notations
from Section 1.7, i.e. E1, . . . , En are the sequence of edges of M , listed according to the
linear order ≺ and Mi = M \ {E1, . . . , Ei}.

Then the following conditions are equivalent:

(A) the pair (M,≺) is top-degree (Definition 1.5);

(B) for each 0 6 i 6 n− 1 the edge Ei+1 of the map Mi is either:

• a twisted edge, or,

• a bridge or a leaf;

(C) the degree of the polynomial monM,≺ is equal to |F(M)|+ |E(M)| − |V (M)|.

If the above conditions hold true then the leading coefficient of the polynomial monM,≺
is given by [

γ|F(M)|+|E(M)|−|V (M)|]monM,≺ = 1. (5.3)

Proof. Condition (C) holds true if and only if the inequalities involved in the proof of the
bound (5.2) become equalities and this happens when both of the following two conditions
hold true:

(C1) the map M is top-degree (Definition 1.4), and,

(C2) the weight monM,≺ is a polynomial in the variable γ of degree exactly 2 genus(M).

In the following we shall find some equivalent reformulations of the condition (C2).

By revisiting the proof of Lemma 5.1 presented in [9, Lemma 3.7] one can show that
the condition (C2) holds true if and only if for each 0 6 i 6 n− 1 the weight monMi,Ei+1

is a polynomial in the variable γ of degree exactly

2 genus(Mi)− 2 genus(Mi \ Ei+1) = 2 genus(Mi)− 2 genus(Mi+1).

The case-by-case analysis from the proof of [9, Lemma 3.7] shows that this is equivalent
to the condition (B), as well as to the following condition:

|F(Mi)| − (number of connected components of Mi) =

|F(Mi+1)| − (number of connected components of Mi+1);

in other words, the numbers

|F(Mi)| − (number of connected components of Mi) (5.4)

over ∈ {0, 1, . . . , n} are all equal. Since for i = n the quantity (5.4) is equal to zero
(Mn = ∅ is the empty map), this is equivalent to

|F(Mi)| = (number of connected components of Mi) for each 1 6 i 6 n
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which is clearly the condition (A). Remember that together with the removal of some
leaf we always remove its endpoint, since we do not allow maps having isolated vertices,
i.e. connected components consisting of one vertex.

By now we have proved that the conditions (C2), (B), and (A) are all equivalent. On
the other hand, condition (A) implies that the map M = M0 is top-degree which is the
condition (C1). This concludes the proof of the equivalence.

Condition (B) implies that each of the weights monMi,Ei+1
is a monic monomial in γ.

Condition (C) implies that the product of these monic monomials has the degree equal
to |F(M)|+ |E(M)| − |V (M)|. This concludes the proof of (5.3).

5.3 Measure of non-orientability of a map

Let M be a map with n edges. We define

monM = monM(γ) :=
1

n!

∑
≺

monM,≺ . (5.5)

This quantity can be interpreted as the mean value of the weight associated to the map M
equipped with a randomly selected history (with all histories having equal probability).
We call monM the measure of non-orientability of the map M .

Example 5.3. We revisit Example 0.2. For the histories {3, 6} ≺ {2, 4} ≺ {1, 5} and
{3, 6} ≺ {1, 5} ≺ {2, 4} when the edge {3, 6} is removed first the corresponding weight
is equal to monM,≺ = 1 · 1

2
· 1. For the remaining 4 histories the corresponding weight is

equal to monM,≺ = γ · γ · 1. Finally,

monM =
2× 1 · 1

2
· 1 + 4× γ · γ · 1

6
.

Proposition 5.4. Let M be a non-oriented map with n edges. The corresponding poly-
nomial monM is of degree at most n + |F(M)| − |V (M)|. The corresponding leading
coefficient [

γn+|F(M)|−|V (M)|]monM = montop
M

is given by the quantity defined in Definition 0.1.

Proof. This is an immediate application of Lemma 5.2.

5.4 Orientability generating series

We recall that the orientability generating series was defined in (4.8) as a weighted sum of
the normalized numbers of embeddings, with the weight given by the polynomial monM
described above:

Ĉhπ(λ) := (−1)`(π)
∑
M

monM NM(λ), (5.6)

where the sum is a conservative summation over non-oriented maps with the face-type π.
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Lemma 5.5. For each partition π there exists a Stanley polynomial for Ĉhπ; this Stanley
polynomial is of degree |π|+ `(π).

Proof. It is relatively easy to show that for any bicolored graph G the corresponding
normalized number of embeddings λ 7→ NG(λ) has a Stanley polynomial which is homo-
geneous of degree |V (G)|.

Proposition 5.4 provides an upper bound on the degree of the polynomial monM .
By combining the above two observations it follows that the Stanley polynomial for

the product monM NM exists and its degree is bounded from above by |E(M)|+ |F(M)| =
|π|+ `(π), as required.

5.5 The top-degree of the orientability generating series

Corollary 5.6. For any integer n > 1 the top-degree homogeneous part of the orientability
generating series is given by

Ĉh
top

n =
∑
M

montop
M γn+1−|V (M)| NM ,

where the sum on the right-hand side runs over non-oriented maps with face-type (n).

Proof. By Lemma 5.5 Stanley polynomial for Ĉhn is of degree (at most) n + 1; out goal
now is to extract its homogeneous part of degree n + 1. This can be done by revisiting
the proof of Lemma 5.5 and using Proposition 5.4.

5.6 Proof of Theorem 4.3

Proof of Theorem 4.3. The left-hand side of (4.10) is given by Theorem 4.4. The right-
hand side of (4.10) is given by Corollary 5.6. Now it is enough to apply Theorem 0.3 to
show that they are equal.
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