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National University of Ireland, Galway

Galway, Ireland

{m.badiane1,i.burke1,emil.skoldberg}@nuigalway.ie

Submitted: Feb 3, 2016; Accepted: Sep 28, 2017; Published: Oct 6, 2017

Mathematics Subject Classifications: 13P10, 05E40

Abstract

We show that the universal Gröbner basis and the Graver basis of a binomial
edge ideal coincide. We provide a description for this basis set in terms of certain
paths in the underlying graph. We conjecture a similar result for a parity binomial
edge ideal and prove this conjecture for the case when the underlying graph is the
complete graph.
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1 Introduction

For n ∈ N>0, [n] := {1, . . . , n}. Let G be a simple graph on the vertex set [n], that is, G
has no loops and no multiple edges. Let E(G) denote the edge set of G. Let F be a field
and let S = F [x1, . . . , xn, y1, . . . , yn] be the polynomial ring in 2n variables. The binomial
edge ideal of G was introduced and studied independently by Herzog, Hibi, Hreinsdóttir,
Kahle and Rauh [2] and Ohtani [6].

Definition 1.1. The binomial edge ideal of G is

JG := 〈xiyj − xjyi : {i, j} ∈ E(G)〉 ⊆ S. (1.1)

The parity binomial edge ideal of G was introduced and studied by Kahle, Sarmiento
and Windisch [5] but had previously been examined by Herzog, Macchia, Madani and
Welker [3].
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Definition 1.2. The parity binomial edge ideal of G is

IG := 〈xixj − yiyj : {i, j} ∈ E(G)〉 ⊆ S. (1.2)

These ideals appear in various settings and applications in mathematics and statistics
and belong to an important class of binomial ideals which may be defined as follows. If
we let R = F [x1, . . . , xn] then an ideal I of R is a pure difference ideal (also known in the
literature as a pure binomial ideal) if I is generated by differences of monic monomials i.e.
binomials of the form xu−xv with u,v ∈ Nn. There are several well-known distinguished
subsets of binomials in such an ideal I, two of which we now mention. A binomial
xu − xv ∈ I is called primitive if there exists no other binomial xu′ − xv′ ∈ I such that
xu′ divides xu and xv′ divides xv. The set of primitive binomials in I is called the Graver
basis of I and denoted Gr(I). The union of all of the reduced Gröbner bases of I is
called the universal Gröbner basis of I and denoted U(I). Graver bases were originally
defined for toric ideals by Sturmfels [8]. Charalambous, Thoma and Vladoiu [1] recently
generalised the concept to an arbitrary pure difference ideal I. They show that Gr(I) is
finite and extend an argument of Sturmfels to prove that U(I) ⊆ Gr(I).

One open problem that arises in the literature is providing a combinatorial charac-
terisation of toric ideals for which the universal Gröbner basis and the Graver basis are
equal (many examples have been discovered, see Petrović, Thoma and Vladoiu [7] and
references therein). We consider this problem for certain classes of pure difference ideals
that are not lattice ideals. In particular, we show that U(JG) = Gr(JG) and provide a
description for this basis set in terms of certain paths in G. We conjecture a similar result
for IG and prove this conjecture for the case when G is the complete graph.

1.1 Preliminaries

Throughout the paper we assume that G is finite, undirected and connected. For any
W ⊆ [n], let G[W ] denote the induced subgraph on W , and for a sequence of vertices
π = (i0, . . . , ir) ∈ [n]r+1, G[π] := G[{i0, . . . , ir}]. A (v, w)-path of length r is a sequence of
vertices v = i0, i1, . . . , ir = w such that {ik, ik+1} ∈ E(G) for all k = 0, . . . , r−1. The path
is odd (even) if its length is odd (even). The interior of a (v, w)-path π = (i0, . . . , ir) is the
set int(π) = {i0, . . . , ir} \ {v, w}. The inverse π−1 of a (v, w)-path π = (i0, . . . , ir) is the
(w, v)-path (ir, ir−1, . . . , i0). For the vertex set of a graph H we sometimes use the notation
V (H). For a monomial xu = xd11 y

e1
1 · · ·xdnn yenn in S the set {i : di 6= 0 or ei 6= 0} ⊆ [n] is

denoted by V (xu).

2 Binomial Edge Ideals

In this section we will use two different gradings on S, the first is the N2-grading by
considering the letter of a variable, so we let ldeg(xi) = (1, 0) and ldeg(yi) = (0, 1) for all
i ∈ [n]. The second is the Nn-grading which considers the vertex of a variable and we set
gdeg(xi) = gdeg(yi) = ei for all i ∈ [n], where ei is the ith standard basis vector in Nn. The
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ideal JG is homogeneous with respect to both of these gradings and we combine them into
what we call the multidegree of a monomial mdeg(xu) := (ldeg(xu), gdeg(xu)) ∈ N2×Nn.

We now recall the definition of admissible paths and the description of the Gröbner
basis of JG with respect to the lexicographic order which was independently obtained by
Herzog et al. [2] and Ohtani [6].

Definition 2.1. Fix a permutation σ ∈ Sn of [n] and let i, j ∈ [n] satisfy σ−1(i) < σ−1(j).
An (i, j)-path π = (i0, . . . , ir) in G is called σ-admissible, if

(i) ik 6= il if k 6= l;

(ii) j0, . . . , js is not a path from i to j for any proper subset {j0, . . . , js} of {i0, . . . , ir};

(iii) for each k = 1, . . . , r − 1, either σ−1(ik) < σ−1(i) or σ−1(ik) > σ−1(j).

Given a σ-admissible (i, j)-path π = (i0, . . . , ir) in G, where σ−1(i) < σ−1(j),

uπ :=
∏

σ−1(ik)<σ−1(i)

yik
∏

σ−1(ik)>σ−1(j)

xik .

Theorem 2.2 ([2], [6]). The set of binomials

GG,σ :=
⋃

σ−1(i)<σ−1(j)

{uπ(xiyj − xjyi) : π is a σ-admissible (i, j)-path in G}

is the reduced Gröbner basis of JG w.r.t. the lexicographic monomial order on S induced
by xσ(1) � · · · � xσ(n) � yσ(1) � · · · � yσ(n).

Our first result is a characterisation of the binomials in JG. For this we need to
introduce the following notations. We denote by dG(v, w) the length of a shortest (v, w)-
path in G. For a monomial xu = xd11 y

e1
1 · · ·xdnn yenn ∈ S, we sometimes use the notation

degxi(x
u) for di and degyi(x

u) for ei. For an induced subgraph H of G, we define the

restriction of xu to H to be resH(xu) = Πi∈V (H)x
di
i y

ei
i .

Lemma 2.3. Let xu − xv be a multi-homogeneous binomial such that G[V (xu)] is a
connected graph. Then xu − xv ∈ JG.

Proof. Suppose that m = xu is a monomial such that there is a pair of indices i < j
with degxi(m) > 1 and degyj(m) > 1. Let G′ = G[V (m)]. We can assume that i and j
are chosen such that dG′(i, j) is minimal. Now we consider an (i, j)-path π = (i0, . . . , ir)
of minimal length in G′. Since π is of minimal length we can conclude that ik 6= il
for k 6= l and that no proper subset {j0, . . . , js} of {i0, . . . , ir} is a path from i to j.
Suppose that there is a k such that i < ik < j, then either degxik

(m) > 1, in which case

dG′(ik, j) < dG′(i, j) which contradicts the minimality of dG′(i, j), or degyik
(m) > 1, in

which case dG′(i, ik) < dG′(i, j) which again contradicts the minimality of dG′(i, j). We
may thus conclude that π is a σ-admissible (i, j)-path in G′, where σ = id, the identity
permutation in Sn.

the electronic journal of combinatorics 24(4) (2017), #P4.11 3



Now we consider the vertex ik on π. By the minimality of dG′(i, j), if ik < i then
degxik

(m) = 0 and if ik > j then degyik
(m) = 0. We may thus conclude that uπxiyj divides

m, and therefore m is reducible with respect to GG,id. This shows that an irreducible
monomial of the same multidegree as xu has the form xw = ye1i1 · · · y

ek
ik
xdkik · · ·x

dl
il

where
i1 < i2 < · · · < il. Since there is only one such monomial in a given multidegree, we can
conclude that xu − xv reduces to zero with respect to GG,id and thus xu − xv ∈ JG.

Lemma 2.4. A multi-homogeneous binomial xu − xv lies in JG if and only if

mdeg(resC(xu)) = mdeg(resC(xv))

for all connected components C of G[V (xu)].

Proof. Let xu − xv ∈ JG, then we can write

xu − xv =
∑
k

xwk(xikyjk − xjkyik)

where {ik, jk} ∈ E(G) for all k. Let C be a component in G[V (xu)], then by restricting
to C we get

resC(xu)− resC(xv) =
∑

k,ik∈V (C)

resC(xwk)(xikyjk − xjkyik)

since jk ∈ V (C) if and only if ik ∈ V (C). Thus we see that resC(xu) − resC(xv) ∈ JG,
and therefore mdeg(resC(xu)) = mdeg(resC(xv)).

For the converse, suppose xu − xv satisfies that mdeg(resC(xu)) = mdeg(resC(xv))
for all connected components C1, . . . Cr of G[V (xu)], then, by Lemma 2.3, resCi

(xu) −
resCi

(xv) ∈ JG for all r, and we can write

xu − xv =
r∑
i=1

xu
∏i−1

j=1 resCi
(xv)∏i

j=1 resCi
(xu)

(resCi
(xu)− resCi

(xv)),

which shows that xu − xv ∈ JG.

Definition 2.5. An (i, j)-path π = (i0, . . . , ir) inG is called weakly admissible if it satisfies
conditions (i) and (ii) of the definition of a σ-admissible path.

Given a weakly admissible (i, j)-path π = (i0, . . . , ir) in G,

Sπ := {ti1ti2 · · · tir−1(xiyj − xjyi) : tk ∈ {xk, yk}}

and S(JG) :=
⋃
π Sπ \ {0} where π runs over all weakly admissible paths in G. Notice

that if π is an (i, i)-path in G, then π is weakly admissible if and only if π is the path (i)
of length 0, in which case Sπ = {0}.
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Figure 1: See Examples 1 and 2.

Example 1. Let G be the graph in Figure 1. The weakly admissible paths in G are the
paths (1), (2), (3), (4), (1, 2), (1, 3), (2, 3), (2, 4), (1, 2, 4) and (3, 2, 4), together with
their inverses. Hence |S(JG)| = 16.

Theorem 2.6. The sets S(JG), U(JG) and Gr(JG) coincide.

Proof. We prove the theorem in three steps; the containments S(JG) ⊆ U(JG), U(JG) ⊆
Gr(JG) and Gr(JG) ⊆ S(JG).

Step 1. S(JG) ⊆ U(JG): Let π = (i0, . . . , ir) be a weakly admissible (i, j)-path in G and
let f = ti1ti2 · · · tir−1(xiyj − xjyi) be a corresponding binomial in S(JG). Now let σ ∈ Sn
be a permutation such that σ−1(i) < σ−1(j), σ−1(ik) < σ−1(i) for all k such that tik = yik
and σ−1(ik) > σ−1(j) for all k such that tik = xik . Then f ∈ GG,σ and thus f ∈ U(JG).

Step 2. U(JG) ⊆ Gr(JG): [1, Proposition 4.2].

Step 3. Gr(JG) ⊆ S(JG): Let xu − xv be a primitive binomial in JG and let C be a
component of G[V (xu)]. By Lemma 2.4 we have that resC(xu) − resC(xv) ∈ JG, so by
primitivity we can conclude that C := G[V (xu)] is connected.

Since u 6= v we can choose i, j ∈ V (xu) such that dC(i, j) is minimal among all pairs
i, j with degxi(x

u) > degxi(x
v) and degyj(x

u) > degyj(x
v). Now let π = (i0, . . . , ir) be an

(i, j)-path in C of minimal length. Suppose that there is a k ∈ {1, . . . , r − 1} such that
degxik

(xu) 6= degxik
(xv). Then either degxik

(xu) > degxik
(xv), in which case dC(ik, j)

would contradict the minimality of dC(i, j), or degxik
(xu) < degxik

(xv), in which case by

homogeneity we would have degyik
(xu) > degyik

(xv) and thus dC(i, ik) would contradict

the minimality of dC(i, j). So for k ∈ {1, . . . , r − 1} we have degxik
(xu) = degxik

(xv)

and hence by homogeneity degyik
(xu) = degyik

(xv). We can then, for k = 1, . . . , r − 1,

let zik ∈ {xik , yik} such that zik divides xu and thus also xv. Then zi1 · · · zir−1(xiyj −
xjyi) ∈ JG with zi1 · · · zir−1xiyj|xu and zi1 · · · zir−1xjyi|xv, which implies that xu − xv =
zi1 · · · zir−1(xiyj − xjyi) ∈ S(JG).

3 Parity Binomial Edge Ideals

In this section we will use two different gradings on S, but not exactly as in the previous
section. The first grading is the Z2

2-grading by considering the letter of a variable, so we
let ldeg(xi) = (1, 0) ∈ Z2

2 and ldeg(yi) = (0, 1) ∈ Z2
2 for all i ∈ [n]. The second is the

Nn-grading as in the previous section. The ideal IG is homogeneous with respect to both
of these gradings and we combine them into what we call the multidegree of a monomial
mdeg(xu) := (ldeg(xu), gdeg(xu)) ∈ Z2

2 × Nn.
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Lemma 3.1 ([5]). Let π = (i0, . . . , ir) be an (i, j)-path in G and for k ∈ int(π), let
tk ∈ {xk, yk} be arbitrary. If π is odd, then

(xixj − yiyj)
∏

k∈int(π)

tk ∈ IG.

If π is even, then

(xiyj − yixj)
∏

k∈int(π)

tk ∈ IG.

Definition 3.2. An (i, j)-path π in G is called minimal, if

(i) for no k ∈ int(π) there is an (i, j)-path with the same parity as π in G[π \ {k}];

(ii) there is no shorter (i, j)-path π′ in G satisfying parity(π′) = parity(π) and int(π′) =
int(π).

For a minimal (i, j)-path π in G, we define a set of binomials Sπ as follows. If π is
odd, then Sπ := S+

π,o

⋃
S−π,o where

S+
π,o := {(xixj − yiyj)

∏
k∈int(π)

tk : tk ∈ {xk, yk}},

S−π,o := {(yiyj − xixj)
∏

k∈int(π)

tk : tk ∈ {xk, yk}}.

If π is even, then Sπ := Sπ,e where

Sπ,e := {(xiyj − yixj)
∏

k∈int(π)

tk : tk ∈ {xk, yk}}.

S(IG) :=
⋃
π Sπ \ {0} where π runs over all minimal paths in G. Notice that if π is an

even (i, i)-path in G, then π is minimal if and only if π is the path (i) of length 0, in
which case Sπ = {0}.

Example 2. Let G be the graph in Figure 1. The minimal paths in G are the paths

(1), (2), (3), (4),

(1, 2), (1, 3), (2, 3), (2, 4),

(1, 2, 3), (1, 2, 4), (1, 3, 2), (2, 1, 3), (3, 2, 4),

(1, 2, 3, 1), (1, 3, 2, 4), (2, 1, 3, 2), (3, 1, 2, 3), (3, 1, 2, 4),

(2, 1, 3, 2, 4), (2, 3, 1, 2, 4)

and (4, 2, 1, 3, 2, 4),

together with their inverses. Hence |S(IG)| = 92.
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Given a graph G, it is clear that the set of its weakly admissible paths is a subset
of the set of its minimal paths. If π is a minimal (i, j)-path in G which is not a weakly
admissible path, π contains repeated vertices or G[π] contains an (i, j)-path π′ of parity
opposite to that of π such that int(π′) ( int(π).

Conjecture 3.3. The sets S(IG), U(IG) and Gr(IG) coincide.

We have partially tested Conjecture 3.3 for small graphs using the software gfan [4]
and have found no counterexamples so far. It must be said, however, that we are not
currently aware of any algorithm for computing the Graver basis of an arbitrary pure
difference ideal. The main result of this section is a proof that Conjecture 3.3 holds when
G is the complete graph Kn on the vertex set [n]. The rest of the section is arranged
as follows. In Lemmas 3.4 through 3.7 we describe a reduced Gröbner basis of IKn . In
Lemmas 3.8 through 3.12 we characterise the binomials in IKn . In Theorem 3.13 the main
result is proved.

Lemma 3.4. The minimal paths in Kn are all

(i), (i, j), (i, k, j) and (i, k, l, i)

where i, j, k and l are distinct elements of [n].

Proof. Let π = (i0, . . . , ir) be an (i, j)-path in Kn. Suppose that π is odd. If int(π) = ∅
then π is necessarily of the form (i, j, i, j, . . . , i, j) and thus minimal if and only if π = (i, j).
If int(π) 6= ∅ then there are two cases: i = j and i 6= j. If i = j then |int(π)| > 2 so
let is1 6= is2 ∈ int(π) and notice that Kn contains the odd path π′ = (i0, is1 , is2 , i0). Now
Kn[π′ \ {is1}] ∼= Kn[π′ \ {is2}] ∼= K2 which does not contain an odd cycle, hence π′ is
minimal. It follows that π is minimal if and only if π = (i, k, l, i), where {k, l} = int(π).
If i 6= j then for all k ∈ int(π) 6= ∅ the graph Kn[π \ {k}] contains the odd (i, j)-path
π′ = (i, j), hence π is not minimal in this case. The proof for an even path is similar and
omitted.

Given a permutation σ ∈ Sn of [n] and a set L ⊆ [n] let � denote the lexicographic
monomial order on S induced by

tσ(1) � · · · � tσ(n) � t′σ(1) � · · · � t′σ(n)

where tσ(i) = xσ(i), t
′
σ(i) = yσ(i) for all i ∈ [n] \L and tσ(i) = yσ(i), t

′
σ(i) = xσ(i) for all i ∈ L.

For i, j ∈ [n] write i � j if σ−1(i) < σ−1(j). Let G�(G) denote the reduced Gröbner basis
of IG with respect to �. For a nonzero f ∈ S let NG�(G)(f) denote the normal form of
f with respect to G�(G) and let in�(f) denote the initial monomial of f with respect to
�. For the next three lemmas (3.5 to 3.7) fix a permutation σ ∈ Sn and a set L ⊆ [n].
For v ∈ [n]

cv :=

{
+1 if σ−1(v) /∈ L
−1 if σ−1(v) ∈ L;

rv :=

{
yv if σ−1(v) /∈ L
xv if σ−1(v) ∈ L.
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For i, j, k, l ∈ [n] let B(i,j) = {ci(xixj − yiyj) : i � j}, B(i,k,j) = {ci(xiyj − yixj)rk :
i, k � j} and B(i,k,l,i) = {ci(x2i − y2i )rkrl : k, l � i}. Notice that for an element
f ∈

(
B(i,j) ∪B(i,k,j) ∪B(i,k,l,i)

)
, the value of ci ensures that the coefficient of the ini-

tial monomial in�(f) is 1. Finally let the set Γ ⊆ B(i,k,j) consist of all binomials
f = ci(xiyj − yixj)rk ∈ B(i,k,j) satisfying i � k � j and |{σ−1(i), σ−1(k)} ∩ L| = 1.

Lemma 3.5. Let f ∈ S be a nonzero binomial corresponding to a minimal path π in
Kn (in the sense of Lemma 3.1). Then f is reduced with respect to � if and only if
f ∈ Λ :=

(
B(i,j) ∪B(i,k,j) ∪B(i,k,l,i)

)
\ Γ.

Proof. By Lemma 3.4 it suffices to consider only binomials corresponding to the paths
(i, j), (i, k, j) and (i, k, l, i) in Kn, where i, j, k and l are distinct elements of [n]. Without
loss of generality we may assume that i � j. If f is the binomial corresponding to the
path (i, j) then clearly f is reduced if and only if f ∈ B(i,j) ⊆ Λ.

If f is a binomial corresponding to the path (i, k, j) then there are three conceivable
cases: i � j � k, i � k � j and k � i � j. For ease of notation f t(i,j,k) := ci(xiyk − yixk)tj
where the superscript t ∈ {x, y} indicates whether tj = xj or tj = yj.

Case 1 (i � j � k). If σ−1(i) 6∈ L then fx(i,k,j) is reduced by xixk − yiyk; also f y(i,k,j) is

reduced by f y(i,j,k) if σ−1(j) 6∈ L, or yjyk − xjxk if σ−1(j) ∈ L. If σ−1(i) ∈ L then fx(i,k,j)
is reduced by xjxk − yjyk if σ−1(j) 6∈ L, or fx(i,j,k) if σ−1(j) ∈ L; also f y(i,k,j) is reduced by
yiyk − xixk.
Case 2 (i � k � j). If σ−1(i) 6∈ L then fx(i,k,j) is reduced by xixk − yiyk; also f y(i,k,j) is

reduced by ykyj − xkxj if σ−1(k) ∈ L but is irreducible if σ−1(k) 6∈ L. If σ−1(i) ∈ L then
fx(i,k,j) is reduced by xkxj − ykyj if σ−1(k) 6∈ L but is irreducible if σ−1(k) ∈ L; also f y(i,k,j)
is reduced by yiyk − xixk.
Case 3 (k � i � j). If σ−1(i) 6∈ L then fx(i,k,j) is reduced by xkxi − ykyi if σ−1(k) 6∈ L

but is irreducible if σ−1(k) ∈ L; also f y(i,k,j) is reduced by ykyj − xkxj if σ−1(k) ∈ L but is

irreducible if σ−1(k) 6∈ L. If σ−1(i) ∈ L then fx(i,k,j) is reduced by xkxj−ykyj if σ−1(k) 6∈ L
but is irreducible if σ−1(k) ∈ L; also f y(i,k,j) is reduced by ykyi − xkxi if σ−1(k) ∈ L but is

irreducible if σ−1(k) 6∈ L.

Finally let f = ci(x
2
i − y2i )tktl be a binomial corresponding to the path (i, k, l, i). If

i � k then f is reduced by one of fx(i,l,k), f
y
(i,l,k) or ci(xixk− yiyk). The case i � l is similar.

If k, l � i then by arguing as before one finds that f is irreducible if and only if ts = ys
whenever σ−1(s) 6∈ L and ts = xs whenever σ−1(s) ∈ L.

Lemma 3.6. Let π be an (i, j)-path in Kn and for k ∈ int(π), let tk ∈ {xk, yk} be
arbitrary. Then (xixj−yiyj)Πk∈int(π)tk if π is odd and (xiyj−yixj)Πk∈int(π)tk if π is even,
reduce to zero modulo Λ.

Proof. It suffices to restrict to a minimal path π (if π is not minimal, then its binomial is
a multiple of the binomial for a shorter path). If π is minimal, then Lemma 3.5 gives the
result.

Lemma 3.7. G�(Kn) = Λ.
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Proof. The proof is by Buchberger’s criterion and is similar to the proof of Theorem 3.6
in Kahle et al. [5]. Let g, g′ ∈ Λ be reduced binomials corresponding, respectively, to the
odd path π = (i, k, l, i) in Kn and the even path π′ = (u, v, w) in Kn. Consider the case
that |{i, k, l} ∪ {u, v, w}| = 3. Since k, l � i and u, v � w we may assume without loss of
generality that i = w, k = u and l = v. Thus

g = ci(x
2
i − y2i )rkrl,

g′ = ck(xkyi − ykxi)rl.

There are four possibilities for the constants ci, ck. By duality we need only consider
(ci, ck) = (1, 1) and (ci, ck) = (−1, 1). If (ci, ck) = (1, 1) then rk = yk and

spol(g, g′) = −(xky
3
i − ykx3i )ykrl

= −(yky
2
i ) · g′ + (ykxi) · g + 0

and in�(spol(g, g′)) � in�(−yky2i ·g′), in�(ykxi · g). If (ci, ck) = (−1, 1) then spol(g, g′) =
−(xkxi − ykyi)xiykrl which is a monomial multiple of the binomial corresponding to the
path (k, i) in Kn and thus reduces to zero by Lemma 3.6. In a similar fashion to the above
all spol(g, g′) (where g, g′ ∈ Λ) reduce to zero with respect to Λ. Thus the set Λ fulfills
Buchberger’s criterion and hence is a Gröbner basis of IKn . By Lemma 3.5 it follows that
the elements of Λ are reduced with respect to �.

Lemma 3.8. Let f = xu − xv ∈ S be multi-homogeneous with V (xu) = {i, j}. If
gcd(xu,xv) = 1 then f ∈ {±(xpix

q
j − ypi y

q
j ),±(xpi y

q
j − ypi x

q
j) : p, q > 1, parity(p) =

parity(q)}.

Proof. By homogeneity f is necessarily of the form

xu − xv = xdii y
ei
i x

dj
j y

ej
j − x

d′i
i y

e′i
i x

d′j
j y

e′j
j

satisfying di + ei = d′i + e′i and dj + ej = d′j + e′j. By gcd(xu,xv) = 1 it follows that if
di > 0 then d′i = 0 and similarly for all exponents. But if di > 0 then d′i > 0 or e′i > 0 i.e.
e′i > 0 (since d′i = 0) which in turn implies ei = 0. If dj > 0 we get a similar result. If
dj = 0 then by V (xu) = {i, j} we have ej > 0. By inverting the argument we obtain

xu − xv ∈ {±(xdii x
dj
j − y

e′i
i y

e′j
j ),±(xdii y

ej
j − y

e′i
i x

d′j
j )}.

The result follows from the implications of homogeneity.

Lemma 3.9. Let � be the lexicographic monomial order on S corresponding to σ = id and
L = ∅. Let xu = xd11 y

e1
1 · · · xdnn yenn ∈ S where |V (xu)| > 2. Let k = max{i : i ∈ V (xu)}

and let γ =
∑k

i=1 di.

NG�(Kn)(x
u) =

{
yd1+e11 · · · ydk+ekk , if γ is even

xky
d1+e1
1 · · · ydk−1+ek−1

k−1 ydk+ek−1k , if γ is odd.
(3.1)
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Proof. The forms in (3.1) are clearly irreducible. By Lemma 3.7 we have xixj − yiyj ∈
G�(Kn) for all i � j ∈ [n], so that xu can be reduced to

xu′ = xds−ls yd1+e11 · · · yds−1+es−1

s−1 yes+ls y
ds+1+es+1

s+1 · · · ydk+ekk

for some 1 6 s 6 k where l ∈ Z>0, l 6 ds. By the homogeneity of xixj − yiyj
parity(

∑k
i=1 di) = parity(ds − l). If ds = l then we are done. Otherwise we con-

sider the following two cases. If 1 6 s 6 k − 1 then by |V (xu)| > 2 there exists
v ∈ V (xu) \ {s}, v 6= k. Since v, s � k, by Lemma 3.7 f = yv(xsyk − ysxk) ∈ G�(Kn).
Using f and xsxk − ysyk ∈ G�(Kn) in that order xu′ can be reduced to

xu′′ = xds−l−2s yd1+e11 · · · yds−1+es−1

s−1 yes+l+2
s y

ds+1+es+1

s+1 · · · ydk+ekk .

Repeated iteration of this step gives one of the forms in (3.1), depending on the parity
of ds − l. If s = k then by |V (xu)| > 2 there exist v1, v2 ∈ V (xu) \ {k}, v1 6= v2. Since
v1, v2 � k, by Lemma 3.7 f = yv1yv2(x

2
k − y2k) ∈ G�(Kn). Using f we can reduce xu′ to

one of the forms in (3.1), depending on the parity of ds − l.

Lemma 3.10. Let � be the lexicographic monomial order on S corresponding to σ = id
and L = ∅. Let xu = xdii y

ei
i x

dj
j y

ej
j ∈ S i.e. |V (xu)| 6 2. Let q = min{di, dj}.

NG�(Kn)(x
u) = xdi−qi yei+qi x

dj−q
j y

ej+q
j . (3.2)

Proof. The monomial xu can be reduced to (3.2) by the binomial xixj − yiyj ∈ G�(Kn)
(Lemma 3.7). No element of the set {in�(g) : g ∈ G�(Kn)} divides (3.2) hence (3.2) is
irreducible.

Lemma 3.11. Let f = xu − xv ∈ S be such that |V (xu)| > 2. Then f ∈ IKn if and only
if f is multi-homogeneous.

Proof. “⇒”: This is clear. “⇐”: Suppose f is multi-homogeneous in degree ((α1, α2), β) ∈
Z2

2 × Nn. Let � be the lexicographic monomial order on S corresponding to σ = id and
L = ∅. Let k = max{i : i ∈ V (xu)}. If α1 = 0 then NG�(Kn)(x

u) = NG�(Kn)(x
v) is the

first form in (3.1) and if α1 = 1 then NG�(Kn)(x
u) = NG�(Kn)(x

v) is the second form in
(3.1).

Lemma 3.12. Let f = xu − xv ∈ S be such that |V (xu)| 6 2. Then f ∈ IKn if and only

if f is of the form xdii y
ei
i x

dj
j y

ej
j − x

di−q
i yei+qi x

dj−q
j y

ej+q
j where q ∈ Z.

Proof. “⇒”: f = xu−xv ∈ I ⇒ NG�(Kn)(x
u) = NG�(Kn)(x

v) where � is the lexicographic
monomial order on S corresponding to σ = id and L = ∅. Apply Lemma 3.10. “⇐”:
Apply Lemma 3.10.

Theorem 3.13. Conjecture 3.3 holds for G = Kn.

Proof. Let G = Kn throughout. We prove the theorem in three steps; the containments
S(IG) ⊆ U(IG), U(IG) ⊆ Gr(IG) and Gr(IG) ⊆ S(IG).
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Step 1. S(IG) ⊆ U(IG): Here we invoke Lemmas 3.4 and 3.7. If π is a path of the form
(i, k, l, i) in G then let σ ∈ Sn be a permutation such that k, l � i. A suitable choice of
L ⊆ {σ−1(i), σ−1(k), σ−1(l)} then provides that (x2i − y2i )rkrl ∈ G�(G) or (y2i − x2i )rkrl ∈
G�(G). The cases π = (i, k, j) and π = (i, j) are similar and omitted.

Step 2. U(IG) ⊆ Gr(IG): [1, Proposition 4.2].

Step 3. Gr(IG) ⊆ S(IG): Let f = xu−xv ∈ Gr(IG). If |V (xu)| 6 2 then by Lemma 3.12

we have f = xdii y
ei
i x

dj
j y

ej
j − x

di−q
i yei+qi x

dj−q
j y

ej+q
j where q ∈ Z. If q > 0 then necessarily

f = xixj − yiyj ∈ S(IG). If q < 0 then necessarily f = yiyj − xixj ∈ S(IG).
Now consider the case that |V (xu)| > 2. First suppose that f = tk(x

u′ − xv′) where
k ∈ V (xu) and tk ∈ {xk, yk}. Now xu′ − xv′ is multi-homogeneous and it must be that
|V (xu′)| = 2 since otherwise by Lemma 3.11 xu′ −xv′ ∈ IG, contradicting the primitivity
of f . Write

f = tk(x
u′ − xv′) = tk(x

di
i y

ei
i x

dj
j y

ej
j − x

d′i
i y

e′i
i x

d′j
j y

e′j
j ). (3.3)

If gcd(xu′ ,xv′) 6= 1 then it follows from the previous argument that f = tktl(x
ds
s y

es
s −

x
d′s
s y

e′s
s ) where {s, l} ⊆ {i, j} and tl ∈ {xl, yl}. Now xdss y

es
s − x

d′s
s y

e′s
s is multi-homogeneous

and nonzero. These criteria are minimally satisfied by (ds, es) ∈ {(2, 0), (0, 2)} i.e. f =
tktl(x

2
s − y2s) ∈ S(IG) or f = tktl(y

2
s − x2s) ∈ S(IG). For ds + es > 2 the primitivity of f is

contradicted either by one of these binomials or by an element of the form ±(xixj−yiyj) ∈
S(IG). If instead in (3.3) gcd(xu′ ,xv′) = 1 then by Lemma 3.8 and the primitivity of f
we have f = ±tk(xiyj − yixj) ∈ S(IG).

Suppose now that f = xu − xv cannot be written as tk(x
u′ − xv′) where k ∈ V (xu)

and tk ∈ {xk, yk}. Since f is multi-homogeneous and |V (xu)| > 2 we can assume that for
some i, j ∈ V (xu) either xixj|xu and yiyj|xv or yiyj|xu and xixj|xv i.e. in this case the
primitivity of f is contradicted by an element of the form ±(xixj − yiyj) ∈ S(IG).
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