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Abstract

Let G be a connected graph with an even number of edges. We show that if the
subgraph of G induced by the vertices of odd degree has a perfect matching, then
the line graph of G has a 2-factor whose connected components are cycles of even
length (an even 2-factor). For a cubic graph G, we also give a necessary and sufficient
condition so that the corresponding line graph L(G) has an even cycle decomposition
of index 3, i.e., the edge-set of L(G) can be partitioned into three 2-regular subgraphs
whose connected components are cycles of even length. The more general problem
of the existence of even cycle decompositions of index m in 2d-regular graphs is also
addressed.

Keywords: cycle decomposition; 2-factor; oriented graphs; line graph

1 Introduction

The graphs considered in this paper are simple and finite. We refer to [3] for graph theory
notation and terminology which are not introduced explicitly here. In particular, we shall
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use the following terminology: a cycle is a connected 2-regular graph; the number of
edges in a cycle is called its length; a cycle is even if it has even length. The vertex-
disjoint union of cycles, that are contained in a graph G, is a 2-regular subgraph of G. A
spanning 2-regular subgraph of G is a 2-factor of G. A 2-regular subgraph (in particular,
a 2-factor) is even if its connected components are even cycles. A cycle decomposition
of a graph G is a partition of the edge-set of G into cycles. It is known that a graph G
possesses a cycle decomposition if and only if every vertex of G has even degree (see [20]).
Cycle decompositions satisfying additional conditions are widely studied (see for instance
the survey paper [12]). In this paper we consider even cycle decompostions, i.e., cycle
decompositions whose elements are even cycles. A necessary condition for the existence
of an even cycle decomposition of a graph G is that every vertex has even degree and
every block of G has an even number of edges. The existence of even cycle decompositions
in planar graphs is completely settled. It is known that for planar graphs the necessary
condition is also sufficient (see [17]). For a non-planar graph G a result by Zhang [24]
holds, namely, if G satisfies the necessary condition and has no K5-minor, then G possesses
an even cycle decomposition.

Given a graph G with a cycle decomposition, we can color the cycles of the decompo-
sition in such a way that cycles sharing a vertex receive distinct colors. Each colored class
is then a 2-regular subgraph of G. If m is the minimum number of colors that are required
in such a coloring, then we say that the decomposition is a cycle decomposition of index
m. Since each colored class is a 2-regular subgraph of G, a cycle decomposition of index
m provides a partition of the edge-set of G into m 2-regular subgraphs, i.e., a 2-regular
subgraph decomposition of G of cardinality m. If each colored class is a 2-factor of G, then
a 2-regular subgraph decomposition of G is known as a 2-factorization of G. There might
be more than one way to color the cycles of a decomposition by m colors, i.e., a cycle
decomposition of index m might provide more than one 2-regular subgraph decomposi-
tion of cardinality m. Obviously, a cycle decomposition of index m consisting of c cycles
provides a 2-regular subgraph decomposition of cardinality m′, for every m 6 m′ 6 c.
By Petersen’s Theorem [16], a 2d-regular graph possesses a 2-factorization. Therefore,
every 2d-regular graph has at least one cycle decomposition of index d. An arbitrary
cycle decomposition of a 2d-regular graph has index m > d. If a cycle decomposition of
index m satisfies additional properties, then these properties may well be inherited by the
corresponding 2-regular subgraph decomposition of cardinality m. In particular, an even
cycle decomposition of index m provides an even 2-regular subgraph decomposition of car-
dinality m. We are interested in determining the minimum number m of even 2-regular
subgraphs which partition the edge-set of a graph or, equivalently, the minimum value of
m taken over all even cycle decompositions of index m. Our motivation for formulating
this problem is explained in Section 1.1. By the previous remarks, the index of an even
cycle decomposition of a 2d-regular graph satisfies the inequality m > d. A class 1 regular
graph of degree 2d possesses an even cycle decomposition of index d (since the edge-set
of a class 1 regular graph of degree 2d can be partitioned into 2d perfect matchings, we
can pair the matchings and find d even 2-factors). It is easy to show that the converse
is also true. Hence, a 2d-regular graph has an even cycle decomposition of index d if
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and only if it is class 1. If the graph is class 2, then every even cycle decomposition has
index m > d+ 1 (see [7] for the definition of graphs of class 1 and 2 according to Vizing’s
Theorem).

We restrict our attention to 4-regular graphs and in particular to 4-regular line graphs.
We study the existence/non-existence of even 2-factors and even cycle decompositions in
these graphs. We recall that the vertices of the line graph L(G) of a graph G correspond
to the edges of G. Two vertices of L(G) are adjacent if and only if the corresponding
edges of G share a vertex. Hence, if G is 3-regular, then L(G) is 4-regular. The reason
of our interest in 4-regular graphs arises from the study of a chromatic parameter (the
palette index) and will be explained in Section 1.1. We consider line graphs because these
graphs are completely characterized by a list of nine forbidden subgraphs (see [1]) which
reduces to seven forbidden subgraphs if the graphs are regular of degree 4. We shall see
that some properties holding for line graphs can be used to determine the structure of the
original graphs and conversely (see for instance Proposition 5, 6, 8). Our results involve
other decompositions, namely, even star decompositions and P2-decompositions. An even
star decomposition D of a simple graph G is a partition of the edge-set of G into stars
K1,2h whose centre has even degree 2h > 2 (even stars). We do not require that the stars
in D are pairwise isomorphic. If each star in D is a path P2 (a path with two edges), then
we say that D is a P2-decomposition of G.

We briefly summerize the contents of this paper. Section 2.2 is devoted to the existence
of an even 2-factor in the line graph of an arbitrary graph G. We note that the line graph
of a connected graph G with an even number of edges has an even 2-factor if and only
if the graph G has a pair of disjoint P2-decompositions (“disjoint” here is understood in
a set-theoretical sense, i.e., the disjoint decompositions have no common member). We
prove the following sufficient condition: if the subgraph K induced by the vertices of
odd degree has a perfect matching, then G has a pair of disjoint P2-decompositions. In
Section 2.1 we always assume that G is cubic and prove that the existence of an even cycle
decomposition in L(G) is equivalent to the existence of three subgraphs of G satisfying
certain conditions (see Proposition 8). Every class 1 cubic graph possesses such subgraphs.
An almost straighforward argument shows that the line graph of a class 1 cubic graph
has an even cycle decomposition of index 3 (see Corollary 9). By the results in [13], the
line graph of a class 1 cubic graph with an even number of edges is a 4-regular graph of
class 1. Hence, in this case, we can find an even cycle decomposition of smallest index,
namely, of index 2 (see the previous remarks on graphs of class 1).

The existence of the three subgraphs for a class 2 cubic graph does not seem to be
an immediate consequence of the definition: we namely give a sufficient condition for
the existence of such subgraphs (see Proposition 11 and 13). We use these conditions to
show that the line graphs of some class 2 cubic graphs (flower snarks, Blanuša snarks,
Goldberg snarks and others) admit even cycle decompositions of index 3. The numerous
examples of 4-regular line graphs with an even cycle decomposition of index 3 seem to
confirm a conjecture by Markström [15] stating that a 4-regular graph on 2n+ 1 vertices
asymptotically almost surely decomposes into one cycle of length 2n and two further even
cycles, i.e., it has an even cycle decomposition of index 3. We note that our results hold
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for graphs on an even number of vertices, as well.
Our constructions are described in terms of “even orientations” (more details in Section

2). In particular, in Proposition 3, we obtain a refinement of a classical result of Kotzig
[14] stating that a connected graph has an even orientation if and only if it has an even
number of edges.

1.1 A related question.

A (proper) edge-coloring of a graph G defines at each vertex v the set of colors of its
incident edges, the so called palette of the vertex v. The minimum number of distinct
palettes taken over all proper edge-colorings of G is the palette index of G and is denoted
by š(G) (see [9]). As remarked in [9], the palette index of a regular graph is different
from 2 and satisfies the inequalities 1 6 š(G) 6 χ′(G) where χ′(G) denotes the chromatic
index. Moreover, š(G) = 1 if and only if the graph G is class 1. Consequently, the possible
values for the palette index of a class 2 cubic graph are 3 and 4. By the results in [9], a
class 2 cubic graph has palette index 3 if and only if it has a perfect matching, otherwise
the palette index is 4. Hence, for every admissible value it is possible to find an example
of a class 2 cubic graph with the required palette index.

What is the behavior of d-regular graphs with d > 3 in this respect? In other words,
given an integer r, 3 6 r 6 d+1, is it possible to find a d-regular graph with palette index
r? The case d = 4 is studied in [4] and it is shown that for every integer r, 3 6 r 6 5, it
is possible to find a 4-regular graph with palette index r.

While studying the palette index of 4-regular graphs we observed the following phe-
nomenon: a 4-regular graph of class 2 has palette index 3 if and only if it has an even
2-factor or an even cycle decomposition of index 3. We can exhibit instances of 4-regular
graphs with an even 2-factor and/or an even cycle decomposition of index 3 (see [4]). We
can also give examples of 4-regular graphs with palette index 4 and 5, but none of them
admits an even cycle decomposition. We do not know examples of graphs, with palette
index larger than 3, possessing an even cycle decomposition. If such a graph exists, then
it has no even 2-factor and every even cycle decomposition has index m > 3 (otherwise
the palette index should not exceed 3). The problem of finding a 4-regular graph all of
whose even cycle decompositions have index larger than 3 was another motivation for this
paper, as we found no result concerning the index of an even cycle decomposition in the
literature.

2 Even orientations.

An orientation of a simple graphG = (V (G), E(G)) is a directed graph
−→
G =(V (G), D(G))

obtained from G by specifying, for each edge [u, v] of G, an order on its end-vertices. If

a = (u, v) is an arc of
−→
G , then the vertex u is the tail of a and v is the head of a. The

indegree of a vertex v in V (
−→
G) is the number of arcs with head v (incoming arcs in v);

the outdegree of a vertex v in V (
−→
G) is the number of arcs with tail v (outgoing arcs in
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v). We say that
−→
G is an even orientation of G if for every vertex v ∈ V (

−→
G) the number

of incoming arcs (u, v) ∈ −→G in v is even. In [14] Kotzig proved the following theorems.

Theorem 1. [14, Theorem 1] Let
−→
G be an arbitrary orientation of a graph G and let n

denote the number of vertices of
−→
G with odd indegree. Then n ≡ |E(G)| (mod 2).

Theorem 2. [14, Theorem 3] If G is a connected graph with an even number of edges,
then G has an even orientation.

Combining Theorem 1 and Theorem 2, one can see that a connected graph has an even
orientation if and only if it has an even number of edges. This result is also known as
follows: “a connected graph has a P2-decomposition if and only if it has an even number
of edges”. In the next section we analyse the relationship between even orientations and
P2-decompositions in greater detail. We give some remarks that will be used to prove our
results.

2.1 Even orientations and even decompositions.

Let
−→
G be an even orientation of a graph G. If v is a vertex of

−→
G with indegree 2h > 0,

then the underlying edges of the incoming arcs in v form a subgraph of G isomorphic to

the star K1,2h (a path P2 for h = 1). If we consider all the vertices of
−→
G with positive even

indegree, then we obtain an even star decomposition of G. Obviously, also the converse

is true: an even star decomposition of G gives rise to an even orientation of
−→
G (for every

star K1,2h with centre v and vertices ui, 1 6 i 6 2h, we declare the arcs (ui, v) to be in
−→
G).

Therefore there exists a one-to-one correspondence between even orientations and even
star decompositions. If G is a graph with an even number of edges and maximum degree 3,
then the one-to-one correspondence is between even orientations and P2-decompositions
of G (for graphs with maximum degree 3 a star K1,2h is a path P2). For an arbitrary
graph G, with an even number of edges, if the star decomposition D corresponding to the

even orientation of
−→
G contains at least one star D ∼= K1,2h with 2h > 2, then we can pair

in an arbitrary way the edges of D and find more than one P2-decomposition of G arising
from the same even orientation.

Let D1, D2 be a pair of disjoint even star decompositions of a graph G. Let
−→
G 1,
−→
G 2

be the corresponding even orientations. Since D1 and D2 are disjoint, i.e., E(D) 6= E(D′)

for every D ∈ D1, D
′ ∈ D2, the corresponding even orientations

−→
G 1 and

−→
G 2 satisfy the

following property: for every vertex v ∈ V (G) the set of arcs (u, v) ∈ D(
−→
G 1) incoming

in v is distinct from the set of arcs (u, v) ∈ D(
−→
G 2) incoming in v. We say that a pair

of even orientations of the same graph G are disjoint if they satisfy the aforementioned
property. A pair of disjoint even star decompositions gives rise to a pair of disjoint even
orientations and conversely. We can now prove the following result.

Proposition 3. Let G be a connected graph with an even number of edges. Let K be the
subgraph of G induced by the vertices of odd degree. If K has a perfect matching M , then
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there exists a pair of disjoint even orientations of G, say
−→
G 1,
−→
G 2, whose arc-sets D(

−→
G 1),

D(
−→
G 2) share only the arcs whose underlying edge belongs to M .

Proof. By Theorem 2, the graph G has an even orientation
−→
G 1. We change the orientation

of all arcs whose underlying edges are not in M . Parity is preserved.

Corollary 4. Let G be a connected graph with an even number of edges. Let K be the
subgraph of G induced by the vertices of odd degree. If K has a perfect matching, then
there exists a pair of disjoint even star decompositions of G and also a pair of disjoint
P2-decompositions of G.

Proof. The existence of a pair of disjoint even star decompositions, say D1, D2, follows
from Proposition 3, since a pair of disjoint even orientations of G corresponds to a pair
of disjoint even star decompositions of G. If G is a graph with maximum degree 6 3,
then an even-star decomposition is nothing but a P2-decomposition, hence the assertion
follows in this case.

We consider G with maximum degree larger than 3 and prove that G has a pair of

disjoint P2-decompositions. Let
−→
G 1,
−→
G 2 be the disjoint even orientations of G arising

from Proposition 3 and corresponding to the disjoint even star decompositions D1, D2,

respectively. By Proposition 3, the arc-sets D(
−→
G 1), D(

−→
G 2) share only the arcs whose

underlying edges belong to M . Hence, for every D ∈ D1 and D′ ∈ D2, the cardinality
of E(D) ∩ E(D′) is at most 1 (E(D) ∩ E(D′) is either empty or consists of a single edge
in M). Consequently, if D ∈ D1 and D′ ∈ D2 are stars with the same centre v, then
by pairing the edges in D and in D′ we obtain a set A and a set A′ containing exactly
|E(D)|/2 and |E(D′)|/2 paths P2, respectively. The sets A and A′ share no path P2, since
the cardinality of E(D)∩E(D′) is at most 1. Hence, D1 and D2 provide a pair of disjoint
P2-decompositions of G.

2.2 Even 2-factors.

A P2-decomposition of a graphG corresponds to a perfect matching in the line graph L(G).
More generally, a set of k paths P2 in G, which are pairwise edge-disjoint, corresponds to
a matching of cardinality k in L(G). Conversely: since an edge of L(G) corresponds to a
pair of adjacent edges in G, a matching of cardinality k in L(G) (respectively, a perfect
matching in L(G)) corresponds to a set of k paths P2 in G which are pairwise edge-disjoint
(respectively, to a P2-decomposition in G). We can prove the following results.

Proposition 5. The line graph L(G) of a graph G has an even 2-factor if and only if the
graph G has a pair of disjoint P2-decompositions.

Proof. Assume that L(G) has an even 2-factor F , then we can alternately color the edges
of F and obtain two edge-disjoint perfect matchings, say M1 and M2, of L(G). Each
perfect matching Mi, i = 1, 2, corresponds to a P2-decomposition of G, say Di. Since M1

and M2 are edge-disjoint, the corresponding P2-decompositions share no path P2, i.e., D1

and D2 are disjoint. It is easy to see that the converse is true as well.
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Proposition 6. Let G be a connected graph with an even number of edges. Let K be the
subgraph of G induced by the vertices of odd degree. If K has a perfect matching, then the
line graph L(G) has an even 2-factor.

Proof. It follows from Corollary 4 and Proposition 5.

The following property is a straightforward consequence of Proposition 6.

Proposition 7. Let G be a connected cubic graph with an even number of edges. If G
has a perfect matching, then the line graph L(G) has an even 2-factor.

The existence of a perfect matching, in a connected graph with an even number of
edges and no vertex of even degree, is a sufficient condition for the existence of an even
2-factor in the corresponding line graph. The condition is not necessary: for instance, the
graph G in Figure 1(a) is a cubic graph with 24 edges and no perfect matching whose line
graph has an even 2-factor. More specifically, the graph G in Figure 1(a) has 3 subgraphs,
say N1, N2 and N3, that contain the vertex u and are isomorphic to the graph N in Figure
1(b); the graph N has 8 edges and a perfect matching M = {[u, v1], [v2, v3], [v4, v5]}; by
Proposition 3, the graph N has a pair of disjoint P2-decompositions; therefore, each
subgraph Ni has a pair of disjoint P2-decompositions, say Di,1 and Di,2 with i = 1, 2,
3; the sets D1 = ∪3i=1Di,1 and D2 = ∪3i=1Di,2 are disjoint P2-decompositions of G; by
Proposition 5, the line graph L(G) has an even 2-factor.

We can also give some examples of graphs with no perfect matching whose line graph
has no even 2-factor. For instance, the graph G in Figure 2 is a cubic graph with 42 edges
and no perfect matching whose line graph has no even 2-factor. More specifically, every
even orientation of G contains the arcs (u, v), (w, v), i.e., every P2-decomposition of G
contains the P2-path (u, v, w); hence G cannot have a pair of disjoint P2-decompositions;
by Proposition 5, the line graph L(G) cannot have an even 2-factor.

u u

v1

v2

v3 v4

(a) (b)

v5

Figure 1: (a) A cubic graph with no perfect matching whose line graph has an even
2-factor; (b) the graph N .
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u

v

w

Figure 2: A cubic graph with no perfect matching whose line graph has no even 2-factor.

3 Even cycle decompositions for the line graph of a cubic graph.

The definition of disjoint even orientations of a cubic graph G can be read as follows:

two even orientations of G, say
−→
G 1,
−→
G 2, are disjoint if for every v ∈ V (G) with positive

indegree in
−→
G 1 or in

−→
G 2, the pair of arcs in D(

−→
G 1) incoming in v is distinct from the pair

of arcs in D(
−→
G 2) incoming in v. For our purposes, we extend the definition of disjoint

even orientations to the subgraphs of a cubic graph G. More specifically, if H and K are

subgraphs of a cubic graph G possessing an even orientation
−→
H and

−→
K , respectively, we

will say that
−→
H and

−→
K are disjoint on the vertex v ∈ V (H) ∩ V (K) if v has indegree 0

in at least one of the orientations
−→
H ,
−→
K , or the pair of arcs in D(

−→
H ) incoming in v is

distinct from the pair of arcs in D(
−→
K ) incoming in v.

By the one-to-one correspondence between even orientations and P2-decompositions
we can write the following statement in terms of even orientations or P2-decompositions.

Proposition 8. Let G be a cubic graph. The corresponding line graph L(G) has an even
cycle decomposition of index 3 if and only if the graph G has three subgraphs, say H1, H2,
H3, such that:

(a) each edge of G is contained in exactly two of the subgraphs Hi, i = 1,2, 3;

(b) each subgraph Hi has a pair of disjoint even orientations, say
−→
H i,1,

−→
H i,2(or, equiva-

lently, a pair of disjoint P2-decompositions);

(c) for every vertex v ∈ V (Hi)∩V (Hj) the even orientations
−→
H i,r and

−→
H j,s, with i, j = 1,

2, 3, i 6= j, r, s = 1, 2, are disjoint on v.
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Proof. Assume that G has three subgraphs Hi, i = 1, 2, 3, verifying (a), (b) and (c).

The pair of disjoint even orientations
−→
H i,1,

−→
H i,2 of Hi gives rise to a pair of edge-disjoint

matchings Mi,1, Mi,2 of L(G) whose cardinality is |E(Hi)|/2 and whose union is an even
2-regular subgraph Di of L(G) (Di is an even 2-factor of L(Hi)). Since an edge in Mi,r,

i = 1, 2, 3, r = 1, 2, corresponds to a pair of arcs of
−→
H i,r incoming in a vertex v of G,

assumption (c) ensures that the matchings Mi,r are pairwise edge-disjoint. Therefore, the
graph D1 ∪D2 ∪D3 contains exactly |E(D1)|+ |E(D2)|+ |E(D3)| =|E(H1)|+ |E(H2)|+
|E(H3)| edges of L(G). Assumption (a) implies |E(H1)|+ |E(H2)|+ |E(H3)| = 2|E(G)|,
i.e., D1 ∪D2 ∪D3 contains the edge-set of L(G). Hence D1 ∪D2 ∪D3 = L(G), i.e., L(G)
has an even cycle decomposition of index 3.

Conversely: assume that L(G) has an even cycle decomposition D = {D1, D2, D3} of
index 3. In each even 2-regular subgraph Di, i = 1, 2, 3, we alternately color the edges
of each even cycle and obtain a pair of edge-disjoint matchings, say Mi,1, Mi,2, whose
cardinality is |V (Di)|/2. The edges in Mi,j, with j = 1, 2, yield a set Di,j containing
exactly |V (Di)|/2 paths P2 of G that are pairwise edge-disjoint. The paths in Di,j form
a subgraph Hi,j of G admitting Di,j as a P2-decomposition. Since the matchings Mi,1,
Mi,2 have the same vertex-set, the subgraphs Hi,1 and Hi,2 of G coincide and we set
Hi = Hi,1 = Hi,2. Since Mi,1, Mi,2 are edge-disjoint, the sets Di,1 and Di,2 are disjoint

P2-decompositions of Hi, i.e., Hi has a pair of disjoint even orientations
−→
H i,1,

−→
H i,2. Hence

condition (b) is verified. Since D is an even cycle decomposition of L(G) and L(G) is
regular of degree 4, each vertex of L(G) belongs to exactly two of the even 2-regular
subgraphs D1, D2, D3, hence condition (a) is verified. Moreover, the even orientations−→
H i,r, with i = 1, 2, 3, r = 1, 2, verify condition (c).

Corollary 9. Let G be a class 1 cubic graph. The corresponding line graph L(G) has an
even cycle decomposition of index 3.

Proof. Since G is class 1, the edge-set of G can be partitioned into three perfect matchings
M1, M2, M3. We set H1 = M1 ∪M2, H2 = M1 ∪M3 and H3 = M2 ∪M3. The subgraphs
Hi, i = 1, 2, 3, are even 2-regular subgraphs of G. They satisfy Proposition 8, hence the
assertion follows.

Lemma 10. Let G be a connected cubic graph possessing a subgraph consisting of a cycle
C =(u0,u1,. . ., un, u0) of length n + 1 ≡ |E(G)| (mod 2) with a pendant edge [u0, v0].
Let H be the subgraph of G obtained by deleting the edges [ui, ui+1], with 1 6 i 6 n − 1,
and let K be the subgraph of H induced by the vertices of degree 3 and 2 in H. If every
connected component of H has an even number of edges and the connected component of

K containing the vertex un is 2-connected, then H admits an even orientation
−→
H 0 such

that the vertices u1 and un have the same indegree in
−→
H 0.

Proof. By Theorem 2, the graph H has an even orientation
−→
H . If the vertices u1 and

un have the same indegree in
−→
H , then the assertion follows. Consider u1 and un with

different indegree in
−→
H , i.e., u1 has indegree 2 whereas un has indegree 0 (or vice versa).

Let S be the connected component of K containing the vertex un (it may well happen
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that S = K). The vertices u0 and u1 belong to S. Since S is 2-connected, the edge
[u1, un] does not belong to E(G). Moreover, there exist two internally disjoint paths of S
connecting the vertices un and v0, i.e., the vertices un and v0 belong to a cycle C1 of S.
We can always assume that C1 does not contain the vertex u1, i.e., C1 does not contain
the edge [u0, u1] (if C1 contains the edge [u0, u1] we can take the chord [u0, v0] and find a
cycle of S containing the vertices un, v0, but not the vertex u1). We use C1 to construct

a new even orientation
−→
H 0 of H: starting from

−→
H , we leave unchanged the direction on

the arcs in
−→
H whose underlying edges do not belong to C1; we reverse the direction on

the arcs in
−→
H with underlying edge belonging to C1. The new orientation

−→
H 0 is even: the

vertices not in C1 do not change their set of incoming arcs; the vertices in C1 change the
direction on exactly two of their arcs, hence the number of incoming arcs is always even.

Moreover, un and u1 have the same indegree in
−→
H 0 and the assertion follows.

Proposition 11. Let G be a cubic graph with an odd number of edges possessing a sub-
graph consisting of a cycle C = (u0, u1,. . . , un, u0) of odd length with a pendant edge
[u0, v0]. Denote by H the subgraph of G obtained by deleting the edges [ui, ui+1], with
1 6 i 6 n − 1. Denote by Ki the subgraph of H induced by the vertices of degree 3 and
i, with i = 1, 2. If the connected components of H have an even number of edges, the
connected component of K2 containing un is 2-connected and the subgraphs K1, K2 have
edge-disjoint perfect matchings M1, M2, respectively, then the line graph L(G) has an even
cycle decomposition of index 3.

Proof. We prove that Proposition 8 is verified. We set H1 = H and denote by H2 the
graph obtained from G by deleting the vertex u0. We denote by H3 the graph given by the
cycle C = (u0,u1, . . . ,un, u0) with the pendant edge [u0, v0]. The graphs H1, H2, H3 verify
condition (i) of Proposition 8. We show that they also verify condition (ii). The graph

H3 has a pair of disjoint even orientations
−→
H 3,1 and

−→
H 3,2 that can be defined as in Figure

3. By the assumptions, every connected component of H1 has an even number of edges.

Therefore, by Theorem 2, the graph H1 has an even orientation
−→
H 1,1. By Proposition 3,

there exists an even orientation
−→
H 1,2 which is disjoint from

−→
H 1,1. Moreover, the arc-sets

D(
−→
H 1,1), D(

−→
H 1,2) share only the arcs whose underlying edges belong to M1. By Lemma

10, the vertices u1, un have the same indegree in
−→
H 1,1. The vertices u1, u2 have indegree

2 in
−→
H 1,1 and indegree 0 in

−→
H 1,2 (or vice versa), as D(

−→
H 1,1), D(

−→
H 1,2) share only the arcs

whose underlying edges belong to M1 and u1, un are unmatched in M1. Without loss of

generality, we can assume that u1, un have indegree 2 in
−→
H 1,1 and indegree 0 in

−→
H 1,2.

Figure 4 shows the arcs in D(
−→
H 1,1) and D(

−→
H 1,2) with at least one vertex belonging to

V (C). Note that (u0, v0) is in D(
−→
H 1,1) and D(

−→
H 1,2). These properties will be used to

define a pair of disjoint even orientations in H2. The edge-disjoint matchings M1 and M2

in K1 and K2, respectively give rise to two edge-disjoint matchings M ′
1 = M1− [u0, v0] and

M ′
2 = M2 − [u0, u1], respectively, in H2. The vertices v0, u1, un ∈ V (H2) are unmatched

in M ′
1, whereas all other vertices of H2 have a mate in M ′

1 (see the bold and dashed edges
in Figure 4 and 5). Hence M ′

1 is a perfect matching in the subgraph of H2 induced by
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the vertices of degree 3 and 1. The vertices of H2 in V (C)− {un} are unmatched in M ′
2,

whereas all other vertices of H2 have a mate in M ′
2. We use M ′

2 and the even orientation−→
H 1,1 of H1 to construct an even orientation

−→
H 2,1 of H2 as follows: we leave unchanged

the direction on the arcs in D(
−→
H 1,1) whose underlying edges belong to M ′

2; we reverse

the direction on the arcs in D(
−→
H 1,1) whose underlying edges belong to (H1 ∩H2) −M ′

2.

Since we are assuming that u1 and un have indegree 2 in
−→
H 1,1, we add the arcs (ui, ui+1),

with 1 6 i 6 n− 1 (see Figure 5). One can easily verify that
−→
H 2,1 is an even orientation

of H2. Since M ′
1 is a perfect matching on the subgraph of H2 induced by the vertices

of degree 3 and 1, we can apply Proposition 3 and find an even orientation
−→
H 2,2 of H2

which is disjoint from
−→
H 2,1 (see Figure 5). By the same proposition, the arc-sets D(

−→
H 2,1),

D(
−→
H 2,2) share only the arcs whose underlying edges belong to M ′

1.

We show that condition (iii) of Proposition 8 is verified. The orientations
−→
H 1,r and−→

H 3,s, with r, s = 1, 2 are disjoint on every v ∈ V (H1)∩ V (H3), since E(H1), E(H3) share
only the edges that are incident to u0 (see Figure 3 and 4). From Figure 3 and 5, one

can see that also the orientations
−→
H 2,r and

−→
H 3,s, with r, s = 1, 2 are disjoint on every

v ∈ V (H2) ∩ V (H3). Consider a vertex v ∈ V (H1) ∩ V (H2) of degree 3 in H1 and H2.
The matching M1 contains exactly one edge, say [u, v], incident to v. The edge [u, v] also

belongs to M ′
1, since M ′

1 = M1− [u0, v0] and v 6= u0, v0. By the construction of
−→
H 2,1 from−→

H 1,1, the arcs incident to v in
−→
H 1,r and

−→
H 2,s, with r, s = 1, 2, are oriented as in Figure

6. Hence the orientations
−→
H 1,r and

−→
H 2,s are disjoint on v. Analogously, if v is a vertex of

degree different from 3 in H1 or H2, i.e., if v = v0 or v ∈ V (C)− {u0}. It is thus proved
that Proposition 8 holds, hence the assertion follows.

v0 u0

u1 u2 u2i−1 u2i

un un−1

un/2

u1+n/2un−2iun−2i+1

v0 u0

u1 u2 u2i−1 u2i

un un−1

un/2

u1+n/2un−2iun−2i+1

Figure 3: A pair of disjoint even orientations of the graph H3.

As an application of Proposition 11, consider the following example.

Example 12. The Petersen graph, denoted by GP (5, 2), is a class 2 cubic graph
with 15 edges. We denote by V = {ui, vi : 0 6 i 6 4} the vertex-set and by E =
{[ui, ui+1], [ui, vi], [vi, vi+2] : 0 6 i 6 4} the edge-set of GP (5, 2) (the subscripts are
taken modulo 5). We denote by H the subgraph of GP (5, 2) obtained by deleting the
edges [ui, ui+1], with 1 6 i 6 3, of the cycle C = (u0, u1, . . . , u4, u0). The subgraph
K1 of H has a perfect matching M1 = {[ui, vi] : i = 0, 2, 3} ∪ {[v1, v4]} (see the bold
edges in Figure 7); the subgraph K2 of H is 2-connected and has a perfect matching
M2 = {[u0, u1], [u4, v4], [v0, v2], [v1, v3]} (see the dashed edges in Figure 7). Following the
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M1

M2

v0 u0

u1 u2 u2i−1 u2i un/2

u1+n/2un un−1 un−2iun−2i+1

v0 u0

u1 u2 u2i−1 u2i un/2

u1+n/2un un−1 un−2iun−2i+1

−→
H 1,1

−→
H 1,2

Figure 4: The arcs in the even orientations of H1 possessing at least one vertex in V (C).
Note that the edge [u1, un] does not belong to the graph G, since the connected component
of H1 containing un is 2-connected. The vertex v0 is adjacent to at most one of the vertices
u1, un, since each connected component of H1 has an even number of edges. For the same
reason, the cycle C contains no chord. The arcs whose underlying edges belong to M1

(respectively, to M2) are depicted with a bold line (respectively, with a dashed line).

v0 u0

u1 u2 u2i−1 u2i un/2

u1+n/2un un−1 un−2iun−2i+1

M ′
1

M ′
2

v0 u0

u1 u2 u2i−1 u2i un/2

u1+n/2un un−1 un−2iun−2i+1

−→
H 2,1

−→
H 2,2

Figure 5: The pair of disjoint even orientations of H2 defined in the proof of Proposition
11.
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v

v

v

v

M1 and M ′
1

−→
H i,1

−→
H i,2

−→
H j,1

−→
H j,2

{i, j} = {1, 2}

u

u

u

u

Figure 6: The incoming arcs in a vertex v of degree 3 in the subgraphs H1 and H2 of
Proposition 11.

proof of Proposition 11, we can construct the even orientations
−→
H i,r with i = 1, 2, 3 and

r = 1, 2 in Figure 7. Hence the line graph of GP (5, 2) has an even cycle decomposition
of index 3.

Proposition 13. Let G be a cubic graph with an even number of edges possessing a
subgraph consisting of a cycle C = (u0, u1, . . . , un, u0) of odd length with a pendant edge
[u0, v0]. Let H be the subgraph of G obtained by deleting the edges [u0, v0] and [ui, ui+1]
with 1 6 i 6 n − 1. Denote by Ki the subgraph of H induced by the vertices of degree
3 and i, with i = 1, 2. If every connected component of H has an even number of edges
and K1, K2 have edge-disjoint perfect matchings M1, M2, respectively, then the line graph
L(G) has an even cycle decomposition of index 3.

Proof. We set H1 = H and denote by H2 the subgraph of G obtained by deleting the
edges [u0, u1], [u0, un], by H3 the subgraph of G consisting of the cycle C with the pendant
edge [u0, v0]. The proof is similar to the proof of Proposition 11 (see also Example 14).

As an application of Proposition 13, consider the flower snark J5.

Example 14. The flower snark J5 is a class 2 cubic graph with 30 edges. We denote by
V = {xi, yi, vi, ui : 0 6 i 6 4} the vertex-set of J5. The edge-set of J5 can be defined as
follows: the vertices xi, yi, vi, ui induce a star K1,3 with centre vi; the vertices u0, u2, . . . , u4
induce a cycle (u0, u1, . . . , u4, u0) of length 5; the vertices xi, yi, with 0 6 i 6 4, induce a
cycle (x0,x1,. . . , x4, y0, y1,. . . , y4, x0) of length 10.

We consider the subgraph of J5 consisting of the cycle C = (u0, u1, . . ., u4, u0) with
the pendant edge [u0, v0]. Following the proof of Proposition 13, we denote by H1 the
subgraph of J5 obtained by deleting the edges [u0, v0], [ui, ui+1] with 1 6 i 6 3. By

Theorem 2, the graph H1 has an even orientation
−→
H 1,1. Since the subgraph K1 of H1 has

a perfect matching M1 (see the bold edges in Figure 8), we can apply Proposition 3 and

find an even orientation
−→
H 1,2 which is disjoint from

−→
H 1,1. Moreover, the arc-sets D(

−→
H 1,1)
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u0

u1

u2u3

u4 v0

v1

v2v3

v4

u0

u1

u2u3

u4 v0

v1

v2v3

v4

u1

u2u3

u4 v0

v1

v2v3

v4

u1

u2u3

u4 v0

v1

v2v3

v4

u0

u1

u2u3

u4 v0

u0

u1

u2u3

u4 v0

−→
H 1,1

−→
H 1,2

−→
H 2,1

−→
H 2,2

−→
H 3,1

−→
H 3,2

M1 and M ′
1 M2 and M ′

2

Figure 7: An application of Proposition 11 to the Petersen graph GP (5, 2).

and D(
−→
H 1,2) share only the arcs whose underlying edges belong to M1 (see for instance

Figure 8). The subgraph K2 of H1 has a perfect matching M2 which is edge-disjoint
from M1 (see the dashed edges in Figure 8). The matchings M1 and M2 give rise to the
matchings M ′

1 = M1∪{[u0, v0]} and M ′
2 = M2− [u0, u1] of the subgraph H2 obtained from

J5 by deleting the edges [u0, u1], [u0, u4]. The even orientation
−→
H 1,1 and M ′

2 can be used

to construct an even orientation
−→
H 2,1 of H2 as follows: we leave unchanged the direction

on the arcs of
−→
H 1,1 whose underlying edges belong to M ′

2; we reverse the direction on the

arcs of
−→
H 1,1 whose underlying edges belong to H2−M ′

2; we add the arcs (u0, v0), (u4, u3),
(u3, u2), (u2, u1). Since M ′

1 is a perfect matching of the subgraph of H2 induced by the
vertices of degree 3 and 1 in H2, we can apply Proposition 3 and find an even orientation−→
H 2,2 of H2 which is disjoint form

−→
H 2,1; moreover, the arc-sets D(

−→
H 2,1) and D(

−→
H 2,2) share

only the arcs whose underlying edges belong to M ′
1 (see Figure 9). Finally, we denote by

H3 the subgraph of J5 consisting of the cycle C = (u0, u1, . . .,u4, u0) with the pendant
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edge [u0, v0]; H3 has a pair of disjoint even orientations (see for instance Figure 7). The
subgraphs H1, H2, H3 verify Proposition 8. Hence the line graph of J5 has an even cycle
decomposition of index 3.

v0

u0

x0y0

u1

u2u3

u4

v1

v2v3

v4

x4

y4

x3

y3 x2

y2

x1

y1

v0

u0

x0y0

u1

u2u3

u4

v1

v2v3

v4

x4

y4

x3

y3 x2

y2

x1

y1

−→
H 1,1

−→
H 1,2

M1 M2

Figure 8: A pair of disjoint even orientations of the subgraph H1 in J5.

There exist graphs with an even number of edges that do not satisfy the condition in
Proposition 13.

Example 15. The Zamfirescu snark [23] is a class 2 cubic graph with 36 vertices and
54 edges. The reader can verify that this snark has no cycle C satisfying Proposition 13.
Nevertheless, it has an even cycle decomposition of index 3, since it satisfies Proposition
8. More specifically, from Figure 10 one can see that each edge of the Zamfirescu snark
is contained in exactly two of the three subgraphs H1, H2, H3. Each subgraph Hi, i = 1,

2, 3, has a pair of disjoint even orientations
−→
H i,1,

−→
H i,2, since it satisfies Proposition 3. A

direct inspection of Figure 10 shows that for every v ∈ V (Hi)∩ V (Hj), with i, j = 1, 2, 3,

i 6= j, the even orientations
−→
H i,r,

−→
H i,s, with r, s = 1, 2, are disjoint on v.

4 The line graph of a snark.

Does a class 2 cubic graph always satisfy Proposition 8? A direct answer to this question
seems far from obvious, so it is rather natural to test the situation in some known classes
of such graphs. In the previous section we have already seen three examples for which
the answer is affirmative.

To our knowledge, the earliest class 2 cubic graphs that have been discovered are: the
Petersen graph [16], the first and second Blanuša snark [2], the Descartes snark [6] and
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v0

u0

x0y0

u1

u2u3

u4

v1

v2v3

v4

x4

y4

x3

y3 x2

y2

x1

y1

v0

u0

x0y0

u1

u2u3

u4

v1

v2v3

v4

x4

y4

x3

y3 x2

y2

x1

y1

−→
H 2,1

−→
H 2,2

M ′
1 M ′

2

Figure 9: A pair of disjoint even orientations of the subgraph H2 in J5.

the Szekeres snark [18]. In [10] Isaacs found new class 2 cubic graphs: the BDS class, the
flower snarks and the double star. The snarks of Blanuša, Descartes and Szekeres inspired
the construction of the BDS class and are contained in it. The BDS class also contains
other snarks that were constructed by other authors. See for instance the Celmins-Swart
snarks [5] and the Watkins snark [21]. Watkins also generlized the construction of the two
Blanuša snarks [22]. Further known families of class 2 cubic graphs are the two families
of snarks found by Loupekine and described by Isaacs in [11] and the Goldberg snarks [8].

The sufficient conditions in Proposition 11 and 13 are satisfied for the following graphs:
the double star, the generalized Blanuša snarks, the flower snarks, the Goldberg snarks
and for the snarks of Szekeres, Descartes, Celmins-Swart, Watkins, Loupekine LP0 [19].
Hence, the line graphs of these snarks have an even cycle decomposition of index 3. We
checked the same sufficient conditions on some class 2 cubic graphs on 12, 14, 28 and
30, respectively (they are usually considered to be “trivial” snarks since their girth is
< 5). Some of them do not verify these sufficient conditions, but verify the necessary and
sufficient condition in Proposition 8. Therefore, also in this case we can find an even cycle
decomposition of index 3 in the corresponding line graph. We give a detailed proof of the
existence of an even cycle decomposition of index 3 for the generalized Blanuša snarks
and for the Goldberg snarks. For the flower snarks, one can generalize the construction
in Example 14. For the remaining cases we prefer to omit the proof.

The generalized Blanuša snarks are divided into two families: the generalized Blanuša
snarks of type 1 and those of type 2. A generalized Blanuša snark of type 1, denoted
by B1

n, is constructed as follows: consider n − 1 copies B1, B2, . . . , Bn−1 of the block B
in Figure 11 and exactly one copy of the graph A1; label the vertices a, a′, b, b′ of each
copy Bi by ai, a

′
i, bi, b

′
i, respectively; construct the edges [a′1, a], [b′1, b], [a′, an−1], [b′, bn−1],
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M1

H1 H2

M1

H3

Figure 10: The subgraphs H1, H2, H3 of the Zamfirescu snark; in each Hi, i = 1, 2, 3,
the subgraph K induced by the vertices of odd degree has a perfect matching M1 (bold
edges), hence each Hi satisfies Proposition 3.

[ai, a
′
i+1], [bi, b

′
i+1] with 1 6 i 6 n − 2. In the construction of a Blanuša snark of type

2, denoted by B2
n, the block A1 is replaced by the block A2. The generalized Blanuša

snarks B1
2 and B2

2 are known as the first Blanuša snark and the second Blanuša snark,
respectively. A generalized Blanuša snark has 3(4n+ 1) edges.

Proposition 16. The line graph of a generalized Blanuša snark has an even cycle de-
composition of index 3.

Proof. The proof is based on Proposition 11. The block B in Figure 11 has a cycle
C = (a, y, x, b, z, a) of length 5 with a pendant edge. We delete the edges [a, y], [x, y],
[x, b] in the block B1 of each generalized Blanuša snark and obtain a subgraph H of
Bj

n, j = 1, 2. The subgraphs K1 and K2 of H have a perfect matching M1 and M2,
respectively, that can be defined as in Figure 12 (bold edges belong to M1, dashed edges
belong to M2) and are edge-disjoint. The graph H is connected, the subgraph K2 is
2-connected. We can apply Proposition 11 and find an even cycle decomposition of index

the electronic journal of combinatorics 24(4) (2017), #P4.15 17



3 in the corresponding line graph.

a′

b′

b

a

a

b

b′

a′

a

b

b′

a′

B A1 A2

x

y

z

Figure 11: The basic blocks in the construction of the Blanuša snarks.

a

b

b′

a′

a

b

b′

a′

A1 A2 B1

a′1

b′1 a1

b1

b′i

a′i

ai

bi

Bi

M1 M2

2 ≤ i ≤ n− 1

Figure 12: The matchings M1 and M2 in the subgraph H of a generalized Blanuša snark.

A Goldberg snark Gn is a cubic graph with 12n edges and can be defined as follows:
consider and odd integer n > 5 and n copies B1, B2, . . . , Bn, of the block B in Figure
13(a); label the vertices a, b, c, d, x, y, z, t of each copy Bi by ai, bi, ci, di, xi, yi, zi, ti,
respectively; add the edges [ai, ai+1], [ci, bi+1], [yi, xi+1] with 1 6 i 6 n (the subscripts are
taken modulo n). We have the following property.

Proposition 17. The line graph of the Goldberg snark Gn has an even cycle decomposition
of index 3.

Proof. We show that Proposition 13 holds. The block B in Figure 13(a) has a subgraph
given by a cycle C = (x, y, z, d, t, x) of length 5 and the pendant edge [a, d]. We denote by
H the subgraph of Gn obtained by deleting the edges [a, d], [z, y], [y, x], [x, t] of the block
B1. The subgraphs K1 and K2 of H have a perfect matching M1 and M2, respectively,
that are defined as follows: for n > 5, color the edges of the blocks B1, B2, Bn−2, Bn−1,
Bn as in Figure 13(c); for n > 5 and for every odd index i, 3 6 i 6 n− 4, color the edges
of the blocks Bi, Bi+1 as in Figure 13(b). The matchings M1 and M2 are edge-disjoint,
hence the result follows from Proposition 13.
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a
b c

d

x y

z t

B Bi Bi+1

ai ai+1

B2B1 Bn−2 Bn−1 Bn

(a) (b)

(c)

Figure 13: The definition of the matchings M1 and M2 in the subgraph H of a Goldberg
snark.

5 Final remarks.

The existence of a 2-connected 4-regular graph possessing only even cycle decompositions
of index larger than 3 remains an open problem. Futhermore, in view of the results ob-
tained for 4-regular line graphs, we can add another related problem, namely, the existence
of a 2-connected cubic graph that does not verify the necessary and sufficient condition
in Proposition 8. The line graph of such a graph would admit only even cycle decomposi-
tions of index larger than 3 or no even cycle decomposition at all. As remarked in Section
1, our results seem to confirm a conjecture in [15] stating that a 4-regular graph on an
odd number of vertices asymptotically almost surely has an even cycle decomposition of
index 3. Moreover, our results hold for graphs on an even number of vertices as well. In
[15], it is also conjectured that the edge-set of the line graph of a 2-connected cubic graph
decomposes into cycles of even length. Finding a 2-connected cubic graph not fulfilling
Proposition 8 appears thus to be a hard problem.

As remarked in Section 1, the existence of an even cycle decomposition of index 3
in a 4-regular graph of class 2 is a particular case of the more general problem about
the existence of an even cycle decomposition of minimum index m in a 2d-regular graph
of class 2 for which the inequality m > d + 1 holds. We note that the necessary and
sufficient condition in Proposition 8 can be generalized to (2d + 1)-regular graphs by
taking 3d > 3 subgraphs Hi, 1 6 i 6 3d, verifying the three conditions in Proposition 8.
This generalization provides an even cycle decomposition of index 3d for the corresponding
4d-regular line graph. Therefore, the minimum value m for the index of an even cycle
decomposition of a 4d-regular line graph satisfies the inequalities 2d + 1 6 m 6 3d.
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For 4-regular graphs of class 2, the minimum value m for the index of an even cycle
decomposition is 3 and Proposition 8 describes how to find 4-regular graphs possessing
an even cycle decomposition whose index is as small as possible. For 2d-regular graphs of
class 2, d > 2, a generalization of Proposition 8 (which would be quite straightforward)
would not yield a description of how to find 2d-regular graphs possessing an even cycle
decomposition whose index is as small as possible. It would only give an upper bound for
the minimum value m in the case of 4d-regular line graphs.

References

[1] L. W. Beineke. Characterization of derived graphs. J. Combin. Theory Ser. B,
9:129–135, 1970.
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