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Abstract

We study certain quotients of generalized Artin groups which have a natural
map onto D-type Artin groups, where the generalized Artin group A(T ) is defined
by a signed graph T . Then we find a certain quotient G(T ) according to the graph
T , which also have a natural map onto A(Dn). We prove that G(T ) is isomorphic to
a semidirect product of a group K(m,n), with the Artin group A(Dn), where K

(m,n)

depends only on the number m of cycles and on the number n of vertices of the
graph T .

Keywords: Artin groups, signed graphs

1 Introduction

Coxeter and Artin groups are used in many areas in mathematics, such as those dealing
with reflections, symmetries, classification of Lie Algebras, associated to Dynkin diagrams
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Varieties” of the Israel Science Foundation, and EAGER (EU network, HPRN-CT-2009-00099)
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which also appear in families of finite simple groups, computations in algebraic geometry
and many others.

The structure of Coxeter and Artin groups is very interesting and these groups are
defined in a very easy way, in terms of generators and relations. These groups can be
described easily by diagrams which are called Dynkin diagrams, and the groups have
interesting properties in terms of group theory, such as the cancelation property (see [11],
[14]).

Our research involving Coxeter and Artin groups began helping to face algebraic diffi-
culties in classification of algebraic surfaces, and the motivation of this paper comes from
algebraic geometry. The difficulties appeared initially when it has been tried to classify
the surface T × T (for T a complex torus). The fundamental group π1(CP

2 − S) of the
branch curve S of this surface in CP

2 had 54 generators and admitted roughly 2000 rela-
tions. The goal was to compute the fundamental group of the Galois cover of the surface
T × T (a certain quotient of the group π1(CP

2 − S)). For this, the presentation of the
group π1(CP

2 − S) has been simplified, and considered its quotient over the squares of
the generators and to map it onto the symmetric group Sn. Since this structure was very
complicated, the paper [19] offered a nice solution by an insight into the world of Coxeter
groups.

Firstly, this solved the problem which has been in the case of the T ×T surface, see [8]
and [10]. Secondly, the results of the paper [19] were very interesting from the algebraic
point of view, therefore there are a series of papers which generalize the results to other
types of Coxeter groups and Artin groups (see, e.g., [6], [4]), and extended the results
to other algebraic surfaces and applications (see, e.g., [9], [5]). In Section 2 we give a
detailed review of all these papers.

Our paper is in fact the fourth in a series of papers (the other three are [19], [6] and
[4]). In [4], there is a generalization of [19], A-type Artin groups (braid groups) instead of
A-type Coxeter groups (symmetric groups) are considered. In this paper, we generalize
[4], i.e., we deal with D-type Artin groups instead of dealing with A-type Artin groups.
So, we use the definitions, theorems and results given there.

In our Main Theorem (Theorem 31), we prove the following. Given a signed graph T
with n vertices, we define an Artin group A(T ). There exists a quotient G(T ) of A(T ),
which depends on the graph T , such that G(T ) ≃ K(m,n) ⋊ A(Dn) (the group A(Dn) is
the D-type Artin group with n generators), where the group K(m,n) depends only on the
number n of vertices and the number m of cycles in T .

Although the structure of G(T ) in this paper is similar to the structure of G(T ) defined
in [4], our paper is innovative, since the use of signed graphs and mapping onto A(Dn)
instead of mapping onto Brn (braid groups with n generators) allows us to deal with a
much wider class of simply laced Artin groups than those in [4].

The goal of this paper is to find a structure for certain quotients of Artin groups which
has a natural map onto the finite type simply laced Artin group A(Dn), such that through
that structure the word problem is solvable in that certain quotient.

The ultimate goal of this series of papers is to find general structures for certain
quotients of Coxeter and Artin groups, in a way that will make it easy to solve the word
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problem through natural maps onto Coxeter or Artin groups.
The paper is divided as follows. Section 2 reviews the scientific background which

relates to our paper. We sketch all the results of the related papers. Moreover, we present
the setup of our paper and state the main result. In Section 3, we define the group
A(T ) which we obtain from the signed graph T . Then we define AY (T ) as a quotient of
A(T ), which depends on certain configurations of subgraphs of T . We describe the basic
properties of AY (T ). In section 4, we recall the techniques and the main results of the
paper [4], which we use in the proofs of the Theorems of this paper. In Section 5, we
consider a graph T that contains only one cycle and only one anti-cycle. Then we define
G(T ) as a quotient of AY (T ). Using the properties of AY (T ) from Section 3, we prove
that G(T ) ≃ K ⋊A(Dn), where K is a group whose structure is described in the section.
Section 6 generalizes Section 5 to a signed graph T with arbitrary number of cycles and
anti-cycles. We prove the Main Theorem (Theorem 31): G(T ) ≃ K(m,n) ⋊ A(Dn). We
conclude that the word problem is solvable in G(T ).

2 Scientific background and motivation

The main goal of our work in algebraic geometry is the classification of algebraic surfaces.
One of the invariants to classify surfaces is the fundamental group of the Galois cover of
a surface. In general, we take a projective surface X , with a generic map of degree n to
CP

2, and S is its branch curve in CP
2. There is a natural map from the fundamental

group of the complement of the branch curve π1(CP
2 − S) to the symmetric group Sn.

The kernel of π1(CP
2 − S)→ Sn is the fundamental group of the Galois cover of X over

the squares of the generators, see [16].
The first works in this direction were done by Moishezon-Teicher in [16], [17], [18] and

[15]. They worked with the CP
1 × CP

1 surface, the Veronese surface and the Hirzebruch
surface. The next step was to deal with the surface T × T for T a complex torus.
The group π1(CP

2 − S) was with 54 generators and about 2000 relations, see [7]. The
computation of the kernel of π1(CP

2 − S) → Sn over the squares of the generators was
very complicated, and it was simplified in the breakthrough paper [19], which found an
easy description of the kernel which is denoted as CY (T ). The paper [19] describes the
structure of a certain quotient of a Coxeter group C(T ), which is defined by a graph T
and has a natural map onto Sn. Then there exists a certain quotient CY (T ) of C(T ).
This CY (T ) is isomorphic to At,n ⋊ Sn, where At,n is a group whose only invariants are t
(the number of cycles of T ) and n (the number of vertices of T ). Since the word problem
is solvable in At,n, it is also solvable in CY (T ).

In [6] we were motivated to generalize [19] to wider class of Coxeter groups C(T ).
This paper deals with Coxeter groups that can be mapped onto Bn or Dn (the classical
Coxeter groups). The graph T is generalized to a signed graph in which every edge is
labeled either by +1 or by −1, and which may include loops. Similar signed graphs were
introduced in [12]. The main theorem of [6] proves that there is a ceratin quotient CY (T )
of C(T ), which is isomorphic to At,n ⋊ Dn or At,n ⋊ Bn, depending whether T contains
loops, or not.
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The paper [19] can be generalized in a different algebraic direction. The paper [4]
generalizes Coxeter covers to Artin covers. The graph T defines an Artin group A(T )
(which means that the generators are not necessarily involutions). The main theorem of
[4] proves that there exists a quotient G(T ) of A(T ) that is isomorphic to Kt,n ⋊ Brn,
where Brn is the braid group with n strings, and Kt,n is a group which is defined by the
graph T and depends on t (the number of cycles in T ) and on n (the number of vertices
of T ). Since the word problem is solvable in Kt,n, it is solvable in G(T ) as well.

The paper [19] gave us solutions in order to proceed in the work in algebraic geometry
and to apply the techniques from this paper to algebraic surfaces. Firstly, we could solve
the problem which was raised by the surface T × T . In [8], we computed the Coxeter
quotient of the fundamental group of a Galois cover of T × T , and in [10], we computed
the fundamental group of the Galois cover of the surface. Secondly, we extended the work
to other algebraic surfaces such as CP1 × T in [2] and [3], and some Hirzebruch surface
in [9].

Another application to the above techniques is the paper [5]. In this paper, we survey
the fundamental groups of Galois covers of the cubic embedding of the Hirzebruch surface
F1, the Cayley cubic (or a smooth surface in the same family), a quartic surface that
degenerates to the union of a triple point and a plane not through the triple point, and a
quartic 4-point. We also complete the classification of the surface CP

1 ×CP
1, which was

begun in [16].
Our paper contains a combined generalization of [6] and [4] to Artin groups that

have natural maps onto the simply laced finite type Artin group A(Dn). According to
[13], A(Dn) ≃ F n−1 ⋊ Brn and A(Bn) ≃ F n ⋊ Brn. In Coxeter groups, it is known
that Dn 6 Bn, but A(Dn) is not embeddable into A(Bn). Therefore, it is impossible to
combine Artin covers A(Bn) and A(Dn) as done in [6]. Hence, in this paper, we deal only
with covers of A(Dn).

This paper is in the spirit of [4], and we consider here the definitions, theorems and
results given there. This paper deals with a wider class of groups, e.g., groups whose
Dynkin diagrams contain subgraphs of the form

(e.g., A(Dn)).

In our paper, we define the group A(T ) that we obtain from the signed planar graph
T . Then we define AY (T ) as a quotient of A(T ), where the configuration of the subgraphs
from which the relations of AY (T ) arise, is similar to the one in [4]. First we consider
a planar graph T that contains only one cycle and only one anti-cycle. Then we define
G(T ) as a quotient of AY (T ) and prove that G(T ) ≃ K ⋊A(Dn), where the structure of
K is similar to the structure defined in [4]. Moreover, we prove that every signed graph
T is equivalent to a signed graph T ′(m) in Figure 1.
Finally, we prove that G(T ) ≃ K(m,n)⋊A(Dn), where n is the number of vertices of T and
m+1 is the number of cycles and anti-cycles in T (T must include at least one anti-cycle).
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Since G(T ) ≃ K(m,n)
⋊A(Dn), the word problem in G(T ) is solvable. Our motivation

is that we can deal easily with quotients of specific Artin groups.

3 The quotient AY (T )

We start with a definition of a signed planar graph T . Then by the graph T we define
a generalized Artin group A(T ). After it, we construct AY (T ) which is the quotient of
A(T ), which plays an important role in the main Theorem 31.

Definition 1. We call a weighted planar graph T “a signed graph” if every edge of T
contained in a cycle is signed by +1 or by −1.

Example 2. Here we give an example of a signed graph T , in which the edges are signed
in each cycle by +1 or by −1. See Figure 2.
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Figure 2

In this paper, the edges that are not contained in any cycle are not signed, and we
may assume that the signs of all such edges are +1.

We denote by s(e) the sign of the edge e. Let A(T ) be the generalized Artin group
that corresponds to the graph T (i.e., A(T ) is generated by the edges of T ). The relations
in A(T ) in this paper are:

uu1 2
< u1, u2 >= 1 if u1 and u2 meet in a vertex. The signs of u1

and of u2 are not important, since the subgraph with the edges u1 and u2 does not form
a cycle.
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[u1, u2] = 1 if u1 and u2 are disjoint. The signs of u1 and

of u2 are not important, since the subgraph with the edges u1 and u2 does not form a
cycle.

u

u

1

2
−

−u

u
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+
There is no relation between u1 and u2 if u1

and u2 connect the same two vertices and s(u1) = s(u2).

uu1 2 u3

u4

+ + +

−

In the case of a cycle with odd number of negative

signs, we have an additional relation: [u−11 . . . u−1n−2un−1un−2 . . . u1, un] = 1. We call such
a cycle an anti-cycle (see [6]).

Note that an anti-cycle of length two has the form
u

u

1

2
−

+
, where u1 and u2

are two edges that connect the same two vertices but are signed differently. Hence the
induced relation is [u1, u2] = 1. Note also that the relation associated to an anti-cycle of
length n does not depend on the enumeration of the edges.

Remark 3. In [4], each edge in a graph is considered as a positive signed edge. In this
paper, there is a generalization to signed graphs, where each edge can be signed by + or -.

Remark 4. The graph
+

_

represents the finite type Artin

group A(Dn).

Now we define the quotient AY (T ).

Definition 5. Let T be a planar graph, AY (T ) is the quotient of A(T ) by the following
relations (similar to the relations in [4] with an additional case):

1. [w−1uw, v] = 1 if u, v, w as in
u

v

w

2. 〈w−1uw, v〉 = 1 if u, v, w as in
u

w

v

v

w
u

3. [w−1uw, v−1xv] = 1 if u, v, w, x as in

u x

w

v

w

v

u x u
w

v
x

u

x

v

w

+

−
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4. 〈w−1uw, v−1xv〉 = 1 if u, v, w, x as in
u x

v

w

w

v

u x

Now we define virtual edges.

Definition 6. Let x and y be paths in a signed planar graph T, such that x and y intersect
in no more than one point. Then we define a new edge x · y, called a virtual edge, as:

1. x · y = y if x and y do not intersect,

2. x · y is a virtual edge if x and y intersect in one vertex (See Fig. 3).

x . y

yx

Figure 3

The sign of x · y is +1 in the case when x and y have the same sign (both +1 or
both −1). The sign of x · y is −1 if x and y are signed differently (one of them +1
and the other −1).

We remind the reader that these edges originally do not appear in the given graph T .
We construct them and use them throughout the paper.

We note that the definition of x · y is similar to Definition 3.5 in [4], but we have also
introduced signs for virtual edges.

Definition 7. Let T be a planar graph. We define T̂ as a graph with the same vertices
as those of T . The edges of T̂ are either actual or virtual, and for every ordered pair of
edges x, y ∈ T, we have the virtual edge x · y in T̂ with the corresponding sign. (See [4],
Definition 3.7).

In the following theorem, we connect the group A(T̂ ) with the quotient AY (T ). This
gives us an algebraic meaning for the expression x · y.

Theorem 8. Let T be a planar graph. There is a well-defined map A(T̂ )→ AY (T ), that
maps each actual edge x ∈ T̂ to x ∈ T and each virtual edge x · y to x−1yx.

Proof. The proof is the similar to the proof of Theorem 3.8 of [4], where, we compare the
relations in the two groups. In case the edges x, and y are not intersect, x · y = y, and
x−1yx = y too, therefore the map is trivial in that case. Thus, we assume that x and y
are intersect, and therefore x−1yx 6= y. Let t be an edge in T , then the following holds:

• In case the edge t has no intersection vertex with both edges x and y: [t, x · y] = 1
in T̂ , and [t, x−1yx] = 1 in AY (T );
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• In case the three edges x, y, and t are intersect in a common vertex: [t, x · y] = 1 in
T̂ , and [t, x−1yx] = 1 in AY (T );

• In case the edges t and x are intersect in a vertex, but the edges t and y are not
intersect: 〈t, x · y〉 = 1 in T̂ , and 〈t, x−1yx〉 = 1 in AY (T );

• In case the edges t and y are intersect in a vertex, but the edges t and x are not
intersect: 〈x · y, t〉 = 1 in T̂ , and 〈x−1yx, t〉 = 1 in AY (T );

• In case the edge t intersect the edges x and y in two different vertices (i. e. t
connects the same two vertices which the edge x · y connects in T̂ ), and the three
edges x, y, and t are form an anti-cycle (i.e. s(t) = −s(x)s(y)), then we have:
[t, x−1yx] = 1 in AY (T ). In this case, the edges t and x · y are two differently signed
edges which connect the same two vertices in T̂ , therefore [t, x · y] = 1 in T̂ .

We denote by L(x, y) the element x−1yx, and more generally,
denote by L(x1, x2, . . . , xn) the element x−11 x−12 · · ·x

−1
n−1xnxn−1 · · ·x2x1. Then, in Theorem

8 the virtual edge x · y in Â maps to L(x, y) in AY (T ), and the virtual edge x1 · x2 · · ·xn

in (̂A) maps to L(x1, x2, . . . , xn) in AY (T ).

Remark 9. We mentioned that we consider signs of edges that are contained in a cycle
of the planar graph T , and we assume that all the edges of T which are not contained in
any cycle are positively signed. Moreover, all the relations of A(T ) and of AY (T ) which
depends on the signs of the edges, are relations which come from an anti-cycle of T (i.e.,
A cycle of T , with an odd number of negatively signed edges). Therefore, there are two
cases

1. If the graph T does not contain any anti-cycle, then there are no relations of A(T )
and of AY (T ) which depends on the signs of the edges of T . Thus, we may assume
in this case that the edges of T are not signed (Which is the same like all the edges
of T are positively signed). Moreover, the relations of A(T ) and of AY (T ) are the
same as it is for A(T ) and AY (T ) in the paper [4]. Thus, all the theorems of the
paper [4] holds in this case. Therefore, there is a homomorphism:

A(T )→ AY (T )→ Brn ≃ A(Sn).

2. If the graph T contains at least one anti-cycle, then there is at least one negatively
signed edge in T (which is in the anti-cycle). In this case there are relations of A(T )
and of Ay(T ) which comes from the anti-cycle, and which depend on the signs of
the edges in T . These relations are not appeared in the paper [4]. In this case, the
groups A(T ) and AY (T ) are quotients of A(T̃ ) and of AY (T̃ ) respectively, where T̃
is a planar graph which we get from T by omitting the signs of T . In this paper
we will show that in a case of signed planar graph T which is just one anti-cycle
connected to a path (The analogue of a tree in the case of non-signed planar graphs),
AY (T ) ≃ A(Dn), where n is the number of vertices of T . We will show also that in
every case of T which contains at least one anti-cycle, there is a homomorphism:

A(T )→ AY (T )→ A(Dn)
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4 Graphs without anti-cycles

Let T be a signed planar graph which does not contain anti-cycles, and let T̃ be the
non-signed planar graph which is obtained from T by omitting the signs of the edges in
T . By Remark 9, the groups A(T ) and AY (T ) are isomorphic to the groups A(T̃ ) and
to AY (T̃ ) respectively. The paper [4] deals with the case of non-signed graphs. Since,
the results of the current paper (where we consider the second case of Remark 9) are a
generalization of the results of the paper [4] (i.e. The first case of Remark 9), therefore,
in this section we recall the main results of the paper [4].

Let T be a non-signed planar graph, and Let A(T ) be the corresponding Artin group
which is generated by the edges of T , and with all the relations which is described in
Section 3, apart from the relations which involves anti-cycles. Let AY (T ) be a quotient
of A(T ) where we use the same relations of AY (T ) which is described in Section 3, again
apart from the relation which involves two differently signed edges. Then, the following
holds:

• In case where the graph T does not contain a cycle, AY (T ) ≃ Brn, where n is the
number of vertices of T ;

• The group AY (T ) depends only on the number of cycles of T . i.e. If two planar
graphs T1 and T2 have te same number of cycles, then AY (T1) ≃ AY (T2);

• Let T be a planar graph with n vertices which contains a single cycle, then
AY (T ) ≃ AY (T

(1)), where T (1) is a cycle with n vertices p1, p2, . . . , pn, and n edges
σ1, σ2, . . . σn−1, u, where the edge σr connects the vertices pr and pr+1

for 1 6 r 6 n − 1, and the edge u connects the vertices p1 and pn. Then, there is
defined the following specific elements in T (1):

1. α to be σ−11 σ−12 . . . σ−1n−2σn−1σn−2 . . . σ2σ1;

2. x−→α to be uα−1, and x←−α to be α−1u;

3. The quotient G of AY (T
(1)), with the additional relations

[x−→α , α
2] = 1, and [x−→α , σn−1σ

−1
1 ασ1σ

−1
n−1] = 1.

• The quotient G of AY (T
(1)) is isomorphic to K ⋊ Brn, where K is generated by

n− 1 conjugates of x−→α , namely: x−→σ1
, x−→σ2

, . . . , x−−−→σn−1
, where:

1. [x−→σr
, x−→σt

] = 1, for |r − t| > 2;

2. [x−→σr
, x−−−→σr+1

] = z, where z2 = 1, and z is a central element of G.

The action of Brn (which is generated by σ1, σ2, . . . , σn−1) on K is the following:
σt(z) = z, and

σt(x−→σ r
) =



















zx−1−→σ r
r = t;

x−→σ t
x−→σ t+1

r = t+ 1;

x−→σ t
x−→σ t−1

r = t− 1;

x−→σ r
|r − t| > 2.
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• Then, there is a generalization to T with more than one cycle. Let T be a planar
graph which contains n vertices and m cycles, then AY (T ) ≃ AY (T

(m)),
where T (m) is a planar graph with n vertices p1, p2, . . . , pn, and n − 1 + m edges
σ1, σ2 . . . σn−1, u1, u2, . . . um.
The edge σr connects the vertices pr and pr+1 for 1 6 r 6 n − 1, and the edge uj

connects the vertices p1 and pn, for 1 6 j 6 m. Then, similarly to the definitions of
specific elements in T (1) there is defined the following specific elements in A(T

(m)):

1. α to be σ−11 σ−12 . . . σ−1n−2σn−1σn−2 . . . σ2σ1;

2. x
(j)
−→α

to be ujα−1, and x
(j)
←−α

to be α−1uj, for 1 6 j 6 m;

3. The quotient G of AY (T
(m)), with the additional relations

[x
(j)
−→α
, α2] = 1, and [x

(j)
−→α
, σn−1σ

−1
1 ασ1σ

−1
n−1] = 1, for 1 6 j 6 m.

• The quotient G of AY (T
(m)) is isomorphic to K ⋊ Brn, where K is generated by

x
(j)
−→σ1
, x

(j)
−→σ2
, . . . , x

(j)
−−−→σn−1

, for 1 6 j 6 m, such that x
(j)
−→σr

is a conjugate of x
(j)
−→α

for 1 6 r 6

n− 1 and 1 6 j 6 m. The group K satisfies the following relations:

1. [x
(i)
−→σr
, x

(j)
−→σt
] = 1, for |r − t| > 2, 1 6 i, j 6 m;

2. [x
(i)
−→σr
, x

(i)
−−−→σr+1

] = zi, where z2i = 1, and zi is a central element of G, for 1 6 i 6 m;

3. [x
(i)
−→σr
x
(i)
−−−→σr−1

, x
(j)
−→σr
x
(j)
−−−→σr+1

] = 1, for 1 6 i, j 6 m;

4. [x
(i)
−→σr
, x

(−j)
−−−→σr+1

] = [x
(−i)
−−−→σr+1

, x
(j)
−→σr
], for 1 6 i, j 6 m.

The action of Brn (which is generated by σ1, σ2, . . . , σn−1) on K is the following:
σt(zi) = zi, and

σt(x
(i)
−→σ r

) =























zix
−(i)
−→σ r

r = t;

x
(i)
−→σ t

x
(i)
−→σ t+1

r = t+ 1;

x
(i)
−→σ t

x
(i)
−→σ t−1

r = t− 1;

x
(i)
−→σ r

|t− r| > 2.

• Then, simplifying the presentation of K by defining the element a
(i)
r

(where 1 6 i 6 m, 1 6 r 6 n− 1) to be:

a
(i)
n−1 = x

(i)
−→σ n−1

and a
(i)
r = x

(i)
−→σ n−1

x
(i)
−→σ n−2

· · ·x
(i)
−→σ r

, for 1 6 r 6 n− 2.

• By using the generators a
(i)
1 , . . . a

(i)
n−1 instead of the generators x

(i)
−→σ 1

, . . . x
(i)
−→σ n−1

, the

presentation of K is simplified to be:

1. [a
(i)
r , a

(i)
s ] = zi, for r 6= s, and 1 6 i 6 m;

2. [a
(i)
r , a

(j)
s ] = [a

(i)
r′ , a

(j)
s′ ] for any r 6= s, and r′ 6= s′, and 1 6 i 6 m.

• Finally, it is concluded that the word problem is solvable in G, since it is solvable
in both K and Brn.
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5 Graphs with a single cycle

From now on we consider signed planar graphs T , which contains at least one negatively
signed edge. By Remark 9, the graph T contains at least one anti-cycle. In this section
we describe the basic case of a signed planar graph T where in addition to an anti-cycle,
there is at most one more cycle or anti-cycle in T (i.e. The graph T̃ which we get from T
by omitting the signs of the edges, contains one or two cycles).

Definition 10. (pq → pr)− operation in a planar graph T :
Let T1 be a planar graph and let x and y be two edges in T1 that have a common vertex

q, where:

• x connecting the vertices p and q;

• y connecting the vertices q and r.

x y

x’p

q

r

Figure 4

Then we obtain a new planar graph T2 by (pq → pr)− operation in a graph T1 where
we omit the edge x, and add a new edge x′ (The virtual edge x · y) which connects the
vertices p and r (these vertices are not connected in T1 by an edge). The sign of x′ is the
product of the signs of x and y, i.e., if x and y have the same sign then the sign of x′ is
+1, and if x and y have different signs then the sign of x′ is −1.

Definition 11. The map f(pq→pr) from A(T2) to A(T1):
Let T1 and T2 be two planar graphs such that we obtain T2 from T1 by (pq → pr) −

operation on T1. Then we define a map

f(pq→pr)

from A(T2) to A(T1) as follows:

f(pq→pr)(x
′) = x−1yx

, where x′ is the path connecting p and r in T2, x is the edge connecting p and q in T1,
and y is the edge connecting q and r in T1, and

f(pq→pr)(v) = v

for every v ∈ T2, such that v 6= x′.
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The map f(pq→pr) defines an isomorphism between A(T2) and A(T1) and also between
AY (T2) and AY (T1), as described in Section 8 of [4].

Definition 12. Equivalence in graphs:
Two graphs T1 and T2 are considered equivalent, if we can obtain T2 from T1 by a

several number of (piqi → piri)− operations. for some vertices pi, qi, and ri.

First, we consider the simplest case of signed planar graph T , where T is a single
anti-cycle connected to a path.

Theorem 13. Let T be an anti-cycle of length n. Then T is equivalent to a graph T ′ that
contains an anti-cycle of length two connected to a path. See Figure 5.

∼∼ +

−

+

+ − + + −−

Figure 5

Proof. Let T be an anti-cycle with edges: σ1, σ2, . . . σn such that
∏n

j=1 s(σi) = −1, and
vertices p1, p2, . . . , pn, such that for 1 6 i 6 n−1, the edge σi connects between the vertices
pi and pi+1, and σn connects between p1 and pn. Then, first performing (p1pn → p1pn−1)-
operation on T , we get a graph T2, with a new edge σ′n, where s(σn′) = s(σn−1)s(σn)
and f(p1pn→p1pn−1)(σn′) = σ−1n−1σnσn−1. Therefore,

∏n−2
j=1 s(σi) · s(σn′) =

∏n

j=1 s(σi) =
−1, and then the edges σ1, σ2, . . . , σn−2, σn′ form an anti-cycle in T2. Now, performing
(p1pn−1 → p1pn−2)-operation on T2, then we get a graph T3, with a new edge σ′′n instead
of the edge σ′n, where s(σn′′) = s(σn−2)s(σn′) and f(p1pn−1→p1pn−2)(σ

′′

n) = σ−1n−2σn′σn−2, and

therefore f(p1pn→p1pn−1) ◦ f(p1pn−1→p1pn−2)(σn′′) = σ−1n−2σ
−1
n−1σnσn−1σn−2, and

∏n−3
j=1 s(σi) ·

s(σn′′) =
∏n

j=1 s(σi) = −1, and then the edges σ1, σ2, . . . , σn−3, σn′′ , form an anti-cycle
in T3. For i > 3, continue performing (p1pi → p1pi−1)-operation on Tn−i+1, then we

get the graph Tn−i+2, with a new edge σ
(n−i+1′)
n , where f(p1pn→p1pn−1) ◦ f(p1pn−1→p1pn−2) ◦

· · · ◦ f(p1pi→p1pi−1)(σ
(n−i+1′)
n ) = σ−1i−1σ

−1
i . . . σ−1n−1σnσn−1 . . . σiσi−1, and

∏i−2
j=1 s(σj) · s(σn′′) =

∏n

j=1 s(σj) = −1, and then the edges σ1, σ2, . . . , σi−2, σ
(n−i+1)′

n , form an anti-cycle in
Tn−i+1. In the last step, where i = 3, e get the graph Tn−1 by performing (p1p3 → p1p2)-

operation on Tn−2. Then we get a new edge σ
(n−2′)
n , which connects the vertices p1 and

p2. Denote by T ′ the graph Tn−1, and denote by σ1̄ be the edge σ
(n−i+1′)
n in the graph T ′.

Then f(p1pn→p1pn−1) ◦ f(p1pn−1→p1pn−2) ◦ · · · ◦ f(p1p3→p1p2)(σ1̄) = σ−12 σ−13 . . . σ−1n−1σnσn−1 . . . σ2.
Then s(σ1̄) =

∏n

j=2 s(σi) and since
∏n

j=1 s(σi) = −1, s(σ1̄) = −s(σ1). Hence we get T ′

which includes the anti-cycle of length two σ1 and σ1̄, where they are connected by a path.
Since the only edges of T that are involved in a cycle or in an anti-cycle are σ1 and σ1̄,
we can omit the signs from σ2, . . . , σn−1.

Corollary 14. All the anti-cycles of length n are equivalent, and therefore, AY (T ) ≃
A(Dn), where T is an anti-cycle of length n.
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Proof. By Theorem 13, every anti-cycle of length n is equivalent to an anti-cycle of length
two connected to a path. All the anti-cycles are equivalent to the same graph T ′. By
Remerk 4, The group AY (T

′) is isomorphic to A(Dn). The group A(Dn) is generated by
σ1, σ2, . . . , σn−1, σ1̄, where the following holds:

• For 1 6 i 6 n− 2, 〈σi, σi+1〉 = 1;

• For 1 6 i, j 6 n− 1, such that |i− j| > 2, [σi, σj ] = 1;

• 〈σ1̄, σ2〉 = 1;

• For 3 6 i 6 n− 1, [σ1̄, σi] = 1;

Therefore, AY (T
′) ≃ A(Dn). Then for every equivalent graph T , AY (T ) ≃ AY (T

′) ≃
A(Dn).

Theorem 15. Let T be a planar graph consisting of two anti-cycles connected to a path.
Then T is equivalent to T ′, where T ′ is a cycle with an additional negatively signed edge
connected to two adjacent vertices of the cycle. See Figure 6.

σ1
3σσ2 σ4 σ5 σ6 σ7∼∼+ −+ +−

+ +

u

−
+

σ−1

+

+ ++++ +

Figure 6

Proof. By Theorem 13, T is equivalent to T ′′, where T ′′ consists of two anti-cycles of
length two connected by a path. Let σ1, σ1̄ and σn, σn̄

σ1
3σσ2 σ4 σ5 σ6

σ−1

σ7+ + ++++ +

− − σ−7
be the edges of the two anti-cycles in T ′′

and σ2, . . . , σn−1 be the edges of the path connecting them. By a several (pq → pr)-
operations, it is possible to get a graph T ′ which is equivalent to T ′′, such that σn̄ is
replaced by u = σ−1

1̄
σ−12 . . . σ−1n−1σn̄σn−1 . . . σ2σ1̄ (Similarly to the proof of Theorem 13).

Now we classify the graphs T that include a single cycle connected by a path to an
anti-cycle or graphs that include only two anti-cycles connected to a path.

Theorem 16. Let T be a planar graph consisting of an anti-cycle C connected to a cycle
by a path. Then T is equivalent to T ′, where T ′ is a cycle with an additional negatively
signed edge, which is connected to two adjacent vertices of the cycle.

σ1
3σσ2 σ4 σ5 σ6 σ7∼∼+ ++ +−

+ +

u

−
+

σ−1

+

+ ++++ +

Figure 7
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∼∼+ ++ +−

+ +

+ ++ +

−

+ + +

+

Figure 8

Proof. By the same proof as in Lemma 9.3 in [4], we have Figure 8.
Notice, that the signs of edges which are used by the relations of AY (T ) are just signs

of the edges in the cycles of T . Therefore, where we consider T with two cycles C1 and
C2, we may consider just the parity of the negatively signed edges in the cycles C1 and
C2. Thus, every graph T with two given cycles C1 and C2, such that the number of
negatively signed edges of C1 is odd, and number of negatively signed edges of C2 is
even, gives the same AY (T ). In this case, an anti-cycle C1 is connected to a cycle C2 by a
path. Thus, we may assume that all the edges of the graph T apart from one edge in the
anti-cycle C1 are positively signed, as it appears in Figure 8. Then using Theorem 15,
the anti-cycle C1 is equivalent to an anti-cycle of length two connected to a path. Then,
combining this with the cycle, we get T ′ as in Figure 9.

Figure 9

Corollary 17. Every planar graph T with a path connecting either a cycle with an anti-
cycle or two anti-cycles is equivalent to T ′ of a form:

+

− .

Proposition 18. The length of the cycle in T ′ is one less than the number of edges in T .

Proof. T ′ contains a cycle and an additional edge signed by −1. Hence the length of the
cycle in T ′ is one less than the length of the number of edges in T ′. Since we get T ′ from
T by triangulation, and triangulation preserves the number of the edges, the proposition
follows.

Now we define the group G(T ) for a planar graph T , where T consists of either two
anti-cycles connected by a path or an anti-cycle connected to a cycle by a path.

By Theorems 15 and 16, T is equivalent to T ′, where T ′ is a cycle and an additional
edge signed by −1 that is connected to two adjacent vertices in the cycle in T ′, as in
Figure 10. Hence AY (T

′) ≃ AY (T ).
The edges of T ′ are labelled by σi, 1 6 i 6 n − 1, σ1̄ and u, the generators of A(T ′).

Without loss of generality, we may assume s(u) = (+1), s(σi) = (+1) for 1 6 i 6 n− 1,
and s(σ1̄) = (−1).
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Figure 10

We denote by α the element

α = L(σ1, . . . , σn−1) = σ−11 σ−12 . . . σ−1n−2σn−1σn−2 . . . σ2σ1.

Similarly to [4, Section 6], we define the path −→α as a directed signed path with the
starting point at the vertex v1 and the ending point at the vertex vn, with

−→α = (+1).
We notice that the path −→σ i is a positively signed path with the starting point at vi and
the ending point at vi+1, where

←−σ i is the positively signed path with opposite direction
to −→σ i, which means that the starting point of ←−σ i is vi+1, and the ending point of ←−σ i is
vi.

Now we define negatively signed paths for the action of A(Dn) in T ′. −→σ 1̄ is the
negatively signed path with starting point v1 and ending point v2, and similarly, ←−σ 1̄ is
the negatively signed path with starting point v2 and ending point v1.

By Definition 5, AY (T
′) is the group generated by σ1, . . . σn−1, σ1̄ and u with the

relations
[σi, σj ] = 1 for |i− j| > 1
[u, σi] = 1 for 2 6 i 6 n− 2
[σ1̄, σj ] = 1 for j 6= 2
〈σi, σi+1〉 = 1 for 1 6 i 6 n− 2
〈σ1̄, σ2〉 = 1
〈σ1, u〉 = 1
〈σ1̄, u〉 = 1
〈σn−1, u〉 = 1
[σ−1

1̄
uσ1̄, σ

−1
1 σ2σ1] = 1

[σ−11 uσ1, σ
−1
1̄
σ2σ1̄] = 1.

Note that AY (T
′) = 〈A(Dn), u〉, where A(Dn) is the parabolic subgroup of AY (T

′)
generated by σi, 1 6 i 6 n− 1 and σ1̄.

As in [4, Section 6], we define x−→α , and x←−α in the following way:

• x−→α = uα−1;

• x←−α = α−1x−→αα = α−1u.

The stabilizer of −→α in the action of A(Dn) is generated by
σ2, . . . , σn−2, σn−1σ

−1
1 ασ1σ

−1
n−1, α

2 as in [4, Remark 6.2], and moreover, σn−1σ
−1
1̄
ασ1̄σ

−1
n−1,

σ1̄σ
−1
1 ασ1σ

−1
1̄

and σ1σ
−1
1̄
ασ1̄σ

−1
1 (three elements that involve σ1̄).

In the spirit of [4, Section 6], we define the group G(T ′). Then we show the structure
of this group, given a graph with a single cycle, see Theorem 27.
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Definition 19. G(T ′) = 〈A(Dn), x−→α 〉 with the relations
〈σ1, x−→αα〉 = 1,
〈σ1̄, x−→αα〉 = 1,
〈σn−1, x−→αα〉 = 1,
[x−→α , σi] = 1, for 2 6 i 6 n− 2

which hold also in A(T ′), and five additional relations concerning the stabilizer of −→α :
[x−→α , α

2] = 1,
[x−→α , σn−1σ

−1
1 ασ1σ

−1
n−1] = 1,

[x−→α , σ1̄σ
−1
1 ασ1σ

−1
1̄
] = 1,

[x−→α , σ1σ
−1
1̄
ασ1̄σ

−1
1 ] = 1,

[x−→α , σn−1σ
−1
1̄
ασ1̄σ

−1
n−1] = 1.

Assume we get T ′ from T by obtaining k-times (pjqj → pjrj)−operations. Let T0 = T ,
and let Tj be the graph we get from Tj−1 by (pjqj → pjrj) − operation. Then Tk = T ′.

Let f
(j)
(pjqj→pjrj)

be the isomorphism from A(Tj) to A(Tj−1). Then, we define G(T ) in a

similar way as we defined G(T ′), where we take:

f
(1)
(p1q1→p1r1)

◦ f
(2)
(p2q2→p2r2)

◦ · · · ◦ f
(k)
(pkqk→pkrk)

(σi)

instead of σi, and we take:

f
(1)
(p1q1→p1r1)

◦ f
(2)
(p2q2→p2r2)

◦ · · · ◦ f
(k)
(pkqk→pkrk)

(u)

instead of u.
Since, f

(j)
(pjqj→pjrj)

is an isomorphism from AY (Ti) onto AY (Ti−1), we get G(T ) is iso-

morphic to G(T ′), for every graph T which is equivalent to the graph T ′.

Proposition 20.
[u, σn−1σ

−1
1 ασ1σ

−1
n−1] = 1,

[u, σ1̄σ
−1
1 ασ1σ

−1
1̄
] = 1,

[u, σ1σ
−1
1̄ ασ1̄σ

−1
1 ] = 1,

[u, σn−1σ
−1
1̄
ασ1̄σ

−1
n−1] = 1.

Proof. Since x−→α = uα−1, the relation [x−→α , σn−1σ
−1
1 ασ1σ

−1
n−1] = 1 implies

[uα−1, σn−1σ
−1
1 ασ1σ

−1
n−1] = 1. Now, [ασn−1α

−1, ασ1α
−1] = 1, which is equivalent to

[σ−1n−1ασn−1, σ
−1
1 ασ1] = 1 which implies [α, σn−1σ

−1
1 ασ1σ

−1
n−1].

Then we get [u, σn−1σ
−1
1 ασ1σ

−1
n−1] = 1. The proof for the other three commutation rela-

tions is very similar.

Definition 21. For 1 6 i 6 n− 1, and for i = 1̄ define the elements x−→σi
, and x←−σi

in the
following way.

• x−→σi
= u(σi)σ−1i where u(σi) = L(σi+1, . . . , σn−1, u, σ1, . . . , σi−1), and

u(σ1̄) = L(σ2, . . . , σn−1, σ
−1
1̄
σ1uσ

−1
1 σ1̄);

• x←−σi
= σ−1i x−→σi

σi = σ−1i u(σi).
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Proposition 22. The n elements of the form x−→σ1̄
, x−→σ1

, x−→σ2
, . . . , x−−−→σn−1

are conjugate ele-
ments in G(T ′), and these elements are conjugate to x−→α .

Proof. Since,

α = L(σ1, . . . , σn−1) = σn−1 . . . σ2σ1σ
−1
2 . . . σ−1n−1, σ1 = σ−12 . . . σ−1n−1ασn−1 . . . σ2.

It thus follows that σ1 is the conjugate of α by the element σn−1 . . . σ2.
Hence u(σ1) = σ−12 . . . σ−1n−1uσn−1 . . . σ2, which by definition is L(σ2, . . . , σn−1, u).

Now assume, by induction on i, that x−→σr
is a conjugate of x−→σ1

, for 1 6 r 6 i, and we
prove that te elements x−−→σi+1

and x−→σi
. First notice, σi+1 = σiσi+1σiσ

−1
i+1σ

−1
i . We get the

following:

σiσi+1u
(σi)σ−1i+1σ

−1
i = σiσi+1L(σi+1, . . . , σn−1, u, σ1, . . . , σi−1)σ

−1
i+1σ

−1
i

= σiσi+1σ
−1
i+1 . . . σ

−1
n−1u

−1σ−11 . . . σ−1i−2σi−1σi−2 . . . σ1uσn−1 . . . σi+1σ
−1
i+1σ

−1
i

= σ−1i+2 . . . σ
−1
n−1u

−1σ−11 . . . σ−1i−2σiσi−1σ
−1
i σi−2 . . . σ1uσn−1 . . . σi+2

= σ−1i+2 . . . σ
−1
n−1u

−1σ−11 . . . σ−1i−2σ
−1
i−1σiσi−1σi−2 . . . σ1uσn−1 . . . σi+2

= L(σi+2, . . . , σn−1, u, σ1, . . . , σi) = u(σi+1).

Thus,

x−−→σi+1
= u(σi+1)σ−1i+1

= σiσi+1(u
(σi)σ−1i )σ−1i+1σ

−1
i

= σiσi+1x−→σi
σ−1i+1σ

−1
i

Now we prove the expression for u(σ1̄). First, notice that σ1̄ = σ−12 σ−1
1̄
σ2σ1̄σ2. Hence

σ−12 σ−1
1̄
u(σ2)σ1̄σ2 = σ−12 σ−1

1̄
L(σ3, . . . , σn−1, u, σ1)σ1̄σ2

= σ−12 σ−1
1̄
σ−13 . . . σ−1n−1u

−1σ1uσn−1 . . . σ3σ1̄σ2

= σ−12 σ−13 . . . σ−1n−1σ
−1
1̄
u−1σ1uσ1̄σn−1 . . . σ3σ2

= σ−12 σ−13 . . . σ−1n−1(σ
−1
1̄
σ1uσ

−1
1 σ1̄)σn−1 . . . σ3σ2

= L(σ2, σ3, . . . , σn−1, σ
−1
1̄
σ1uσ

−1
1 σ1̄)

= u(σ1̄).

Now we prove that x−→σ i
and x−→σ 1̄

satisfy similar relations as in [4, Section 6].

Proposition 23.

1. [x−→σ i
, σj ] = 1 for |i− j| > 1,

2. [x−→σ i
, x−→σ j

] = 1 for |i− j| > 1,

3. [x−→σ 1̄
, σj] = 1 for j 6= 2,
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4. [x−→σ j
, σ1̄] = 1 for j 6= 2,

5. [x−→σ 1̄
, x−→σ j

] = 1 for j 6= 2.

Proof. For the proof of (1) and (2), see[4].
We now prove (3). First we prove [x−→σ 1̄

, σj ] = 1 for j > 4. Since x−→σ 1̄
= u(−→σ 1̄)−→σ −1

1̄
, and

[σ−1
1̄
, σj ] = 1, it is enough to prove that [u(σ1̄), σj ] = 1.

[u(σ1̄), σj ] = [L(σ2, σ3, . . . , σn−1, σ
−1
1̄
σ1uσ

−1
1 σ1̄), σj ]

= [σ−12 σ−13 . . . σ−1n−1σ
−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σ3σ2, σj ]

= [σ−1j−1σ
−1
j . . . σ−1n−1σ

−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σjσj−1, σj]

= [σ−1j . . . σ−1n−1σ
−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σj , σj−1σjσ

−1
j−1]

= [σ−1j . . . σ−1n−1σ
−1
1̄ σ1uσ

−1
1 σ1̄σn−1 . . . σj , σ

−1
j σj−1σj ]

= [σ−1j+1 . . . σ
−1
n−1σ

−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σj+1, σj−1],

since 3 6 j − 1 6 n− 2.
Now we prove that [u(σ1̄), σ1] = 1.

[u(σ1̄), σ1] = [σ−12 σ−13 . . . σ−1n−1σ
−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σ3σ2, σ1]

= [σ−1
1̄
σ1uσ

−1
1 σ1̄, σn−1 . . . σ3σ2σ1σ

−1
2 σ−13 . . . σ−1n−1]

= [σ−1
1̄
σ1uσ

−1
1 σ1̄, α] = [u, σ1̄σ

−1
1 ασ1σ

−1
1̄
]

by Proposition 20.
Now we prove that [u(σ1̄), σ3] = 1.

[u(σ1̄), σ3] = [σ−12 σ−13 . . . σ−1n−1σ
−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σ3σ2, σ3]

= [σ−13 . . . σ−1n−1σ
−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σ3, σ2σ3σ

−1
2 ]

= [σ−13 . . . σ−1n−1σ
−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σ3, σ

−1
3 σ2σ3]

= [σ−14 . . . σ−1n−1σ
−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σ4, σ2]

= [σ−1
1̄
σ1uσ

−1
1 σ1̄, σ2] = [σ−1

1̄
uσ1̄, σ

−1
1 σ2σ1] = 1

according to Relation (3) in Definition 5 (see Figure 11). Hence case (3) is proved.

σ1

u

1
σ

σ2

Figure 11

Now we prove case (4), [x−→σ i
, σ1̄] = 1 for i 6= 2. Since x−→σ i

= u(σi)σ−1i , and [σ−1i , σ1̄] = 1
for i 6= 2, it is enough to prove that [u(σi), σ1̄] = 1 for i 6= 2.

For the case i = 1, [u(σi), σ1̄] = 1 holds by [4, Lemma 3.9],
since u(σ1) = L(σ2, . . . , σn−1, u) and σ1̄ is disjoint from the virtual edge L(σ2, . . . , σn−1, u).
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If i > 3,

[u(σi), σ1̄] = [σ−1i+1 . . . σ
−1
n−1u

−1σ−11 σ−12 . . . σi−1 . . . σ2σ1uσn−1 . . . σi+1, σ1̄]

= [u−1σ−11 σ−12 . . . σi−1 . . . σ2σ1u, σ1̄] = [σi−1 . . . σ2σ1uσ
−1
1 σ−12 . . . σ−1i−1, σ1̄]

= [σ2σ1uσ
−1
1 σ−12 , σ1̄] = [σ1uσ

−1
1 , σ−12 σ1̄σ2] = [σ1uσ

−1
1 , σ1̄σ2σ

−1
1̄
]

= [σ−1
1̄
uσ1̄, σ

−1
1 σ2σ1] = 1

in AY (T
′). Hence (4) holds.

It remains to prove (5), [x−→σ 1̄
, x−→σ i

] for i 6= 2. Since x−→σ 1̄
= u(σ1̄)σ−1

1̄
and x−→σ i

= u(σi)σ−1i ,

and [σ−1
1̄
, σ−1i ] = 1 for i 6= 2, and by (3) and (4), [u(σ1̄), σ−1i ] = 1, [u(σi), σ−1

1̄
] = 1, it is

enough to prove: [u(σ1̄), u(σi)] = 1 for i 6= 2.
In the case i = 1,

[u(σ1̄), u(σ1)] = [σ−12 . . . σ−1n−1σ
−1
1̄
σ1uσ

−1
1 σ1̄σn−1 . . . σ2, σ

−1
2 . . . σ−1n−1uσn−1 . . . σ2]

= [σ−1
1̄
σ1uσ

−1
1 σ1̄, u] = [σ1uσ

−1
1 , σ1̄uσ

−1
1̄
] = [u−1σ1u, u

−1σ1̄u] = 1.

In the case i > 4,

[u(σ1̄), u(σi)] = [σ−12 . . . σ−1n−1σ1σ
−1
1̄
uσ1̄σ

−1
1 σn−1 . . . σ2, u

(σi)]

= [(σ−12 . . . σ−1n−1σ1σ
−1
1̄
σn−1 . . . σ2)u

(σ1)(σ−12 . . . σ−1n−1σ
−1
1 σ1̄σn−1 . . . σ2), u

(σi)]

= [σ−12 σ1σ
−1
1̄
σ2u

(σ1)σ−12 σ−11 σ1̄σ2, u
(σi)] = [u(σ1), u(σi)].

Since i > 4, [u(σ1), u(σi)] = 1 by [4].
In the case i = 3,

[u(σ1̄), u(σ3)] = [σ−12 σ1σ
−1
1̄
σ2u

(σ1)σ−12 σ−11 σ1̄σ2, u
(σ3)] = [σ1σ

−1
1̄
σ2u

(σ1)σ−12 σ1̄σ
−1
1 , σ2u

(σ3)σ−12 ]

= [σ1σ
−1
1̄
σ−11 u(σ2)σ1σ1̄σ

−1
1 , σ−13 u(σ2)σ3] = [σ−1

1̄
u(σ2)σ1̄, σ

−1
3 u(σ2)σ3]

= [u(σ2)σ1̄(u
(σ2))−1, u(σ2)σ3(u

(σ2))−1] = [σ1̄, σ3] = 1.

Proposition 24.

1. σix−→σ i+1
σ−1i = σ−1i+1x−→σ i

σi+1 = x−→σ i+1
x−→σ i

, 1 6 i 6 n− 2,

2. σ−1i x−→σ i+1
σi = σi+1x−→σ i

σ−1i+1 = x−→σ i
x−→σ i+1

, 1 6 i 6 n− 2,

3. σ2x−→σ 1̄
σ−12 = σ−1

1̄
x−→σ 2

σ1̄ = x−→σ 1̄
x−→σ 2

,

4. σ−12 x−→σ 1̄
σ2 = σ1̄x−→σ 2

σ−1
1̄

= x−→σ 2
x−→σ 1̄

.

Proof. The conjugation x−→σ i+1
= σiσi+1x−→σ i

σ−1i+1σ
−1
i for 1 6 i 6 n − 2 has been shown in

the proof of Proposition 22. Then, by conjugating both sides by σi, we get σ−1i x−→σ i+1
σi =

σi+1x−→σ i
σ−1i+1. Similarly, x−→σ i

= σi+1σix−→σ i+1
σ−1i σ−1i+1 for 1 6 i 6 n − 2, which is by conju-

gating both sides by σi+1 implies σix−→σ i+1
σ−1i = σ−1i+1x−→σ i

σi+1.

The conjugation x−→σ 1̄
= σ−12 σ−1

1̄
x−→σ 2

σ1̄σ2 has been shown in the proof of Proposition 22
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too. Then, by conjugating both sides by σ−12 , we have σ2x−→σ 1̄
σ−12 = σ−1

1̄
x−→σ 2

σ1̄. Similarly,
it is easy to show, x−→σ 2

= σ−1
1̄
σ−12 x−→σ 1̄

σ2σ1̄, which is by conjugating both sides by σ−1
1̄

implies σ1̄x−→σ 2
σ−1
1̄

= σ−12 x−→σ 1̄
σ2.

Now, we prove σ−1i x−→σ i+1
σi = x−→σ i

x−→σ i+1
for 1 6 i 6 n− 2. First, recall that

L(σi+2, . . . , σn−1, u, σ1, . . . , σi−1)

= σ−1i+2σ
−1
i+3 · · ·σ

−1
n−1σ

−1
u σ−11 · · ·σ

−1
i−2σi−1σi−2 · · ·σ1σuσn−1 · · ·σi+2.

Then,

〈σi+1, L(σi+2, . . . , σn−1, u, σ1, . . . , σi−1)〉

= 〈σi+1, σi+2〉 = 1.

Since
U (σi) = σ−1i+1L(σi+2, . . . , σn−1, u, σ1, . . . , σi−1)σi+1,

and,
σ−1i U (σi+1)σi = L(σi+2, . . . , σn−1, u, σ1, . . . , σi−1),

Thus,

L(σi+2, . . . , σn−1, u, σ1, . . . , σi−1)σi+1L(σi+2, . . . , σn−1, u, σ1, . . . , σi−1)
−1

= σ−1i+1L(σi+2, . . . , σn−1, u, σ1, . . . , σi−1)σi+1

implies,
σ−1i U (σi+1)σiσi+1 = U (σi)σ−1i U (σi+1)σi.

Thus,
σ−1i U (σi+1)σiσi+1σ

−1
i σ−1i+1 = U (σi)σ−1i U (σi+1)σ−1i+1,

and therefore,
σ−1i U (σi+1)σ−1i+1σi = U (σi)σ−1i U (σi+1)σ−1i+1

Then substituting x−→σ i
= U (σi)σ−1i , we get

σ−1i x−→σ i+1
σi = x−→σ i

x−→σ i+1
.

In a very similar way it can been shown the following identities

σ−1i+1x−→σ i
σi+1 = x−→σ i+1

x−→σ i
,

σ−1
1̄
x−→σ 2

σ1̄ = x−→σ 1̄
x−→σ 2

,

σ−12 x−→σ 1̄
σ2 = x−→σ 2

x−→σ 1̄
.

Proposition 25. [x−→σ i
, x−→σ i+1

] = [x−→σ 1̄
, x−→σ 2

] = z, where z2 = 1 and z ∈ C(G(T ′)).
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Proof. By [4, Proposition 6.8], [x−→σ i
, x−→σ i+1

] = [x−→σ j
, x−→σ j+1

] for each 1 6 i 6 n−2, 1 6 j 6
n− 2.

Let G′(T ′) be the subgroup of G(T ′) generated by σ1̄, σ2, . . . , σn−1 and u. By Propo-
sitions 23 and 24 : [σ1̄, u

(σi)] = 1 for i 6= 2 and σ1̄u
(σ2)σ−1

1̄
= σ−12 u(σ1̄)σ2, σ

−1
1̄
u(σ2)σ1̄ =

σ2u
(σ1̄)σ−12 . Hence G′(T ′) is isomorphic to the group G that is defined in [4, Section 6] as

a quotient of A(T (1)), where T (1) is a single cycle.
The map ϕ : G′(T ′) → G is an isomorphism, where ϕ(σ1̄) = σ1, ϕ(σi) = σi for

2 6 i 6 n − 1 and ϕ(x−→σ 1̄
) = x−→σ 1

. Since [x−→σ 1
, x−→σ 2

] = [x−→σ i
, x−→σ i+1

] = z in G, by the
isomorphism: [x−→σ 1̄

, x−→σ 2
] = [x−→σ i

, x−→σ i+1
] in G′(T ′). Hence [x−→σ 1̄

, x−→σ 2
] = [x−→σ i

, x−→σ i+1
] in

G(T ′). Since [x−→σ 1̄
, x−→σ 2

] is a central element in G′(T ′) and [x−→σ i
, x−→σ i+1

] = [x−→σ 1̄
, x−→σ 2

],
[[x−→σ i

, x−→σ i+1
], σ1̄] = 1, and from [4, Section 6], [[x−→σ i

, x−→σ i+1
], σi] = 1 for 1 6 i 6 n − 1, we

have [x−→σ i
, x−→σ i+1

] = [x−→σ 1
, x−→σ 2

] = z, where z ∈ C(G(T ′)) and z2 = 1.

Proposition 26. x←−σ i
= zx−1−→σ i

for 1 6 i 6 n− 1 and x←−σ 1̄
= zx−1−→σ 1̄

.

Proof. x←−σ i
= zx−1−→σ i

is proved in [4, Proposition 6.8]. x←−σ 1̄
= zx−1−→σ 1̄

can also be deduced from

[4, Proposition 6.8] by considering G′(T ′), which was defined in the proof of Proposition 25.

Finally, we prove the theorem which describes the structure of the group G(T ′) in the
case of a single cycle. Then, in Section 6, we generalize this theorem to a graph with an
arbitrary number of cycles.

Theorem 27. G(T ′) ≃ K⋊A(Dn), where K is the group generated by x−→σ i
, 1 6 i 6 n−1

and x−→σ 1̄
with the relations

1. [x−→σ i
, x−→σ j

] = 1, |i− j| > 1;

2. [x−→σ 1̄
, x−→σ j

] = 1, j 6= 2;

3. [x−→σ i
, x−→σ j

] = z, |i− j| = 1;

4. [x−→σ 1̄
, x−→σ 2

] = z, where

z is a central element and z2 = 1.

where the action of A(Dn) on x−→σ r
, 1 6 r 6 n− 1 and on x−→σ 1̄

is the following:
σt(z) = z,

σt(x−→σ r
) =



















zx−1−→σ r
r = t;

x−→σ t
x−→σ r

(r = t+ 1) or (t = 1̄ and r = 2);

x−→σ t
x−→σ r

(r = t− 1) or (t = 2 and r = 1̄);

x−→σ r
(|i− t| > 2) or (t = 1̄ and r 6= 2) or (t 6= 2 and r = 1̄).

Proof. The subgroup generated by σ1, . . . , σn−1 and σ1̄ is A(Dn). Then using Proposi-
tions 23 – 26, we get the result from the same argument as in [4, Theorems 6.11].
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6 The general case

In this section, we generalize the graph with a single cycle from Section 5 to a graph with
an arbitrary number of cycles. Moreover, we generalize the result of Theorem 27, see
Theorem 31.

In the following theorem, we show that all graphs with the same number of cycles are
equivalent.

Theorem 28. Every graph T that includes at least one anti-cycle is equivalent to a graph
T ′(m), where T ′(m) consists of m cycles including the edges σ1, . . . , σn−1, ui for 1 6 i 6 m
and a negatively signed edge σ1̄ that connects the vertices v1 and v2 (see Figure 12).

Remark. Here m+ 1 is the number of the cycles and anti-cycles in T , i.e., m+ 1 is the
number of cycles in T̄ , where T̄ is the graph obtained from T by omitting the signs.

u
1

σ σn−1σ 21

1
−σ

u
2

u
m

_
+

Figure 12

Proof. The proof is by induction onm. In the casem = 0, T contains an anti-cycle. Hence
the number of negative signs in T is odd. By Theorem 9, T̄ is equivalent by triangulation
to a cycle since T̄ contains just one cycle. Since triangulation can only convert an anti-
cycle to another anti-cycle and not to a cycle, T is equivalent to an anti-cycle connected
to a path,

+

_

which is T ′(0).

Assume by induction that for m 6 k the theorem holds. Then T , with k + 1 cycles
and anti-cycles, is equivalent to T ′(m). Now assume m = k + 1. If we consider only
k cycles (i.e., the subgraph T̃ obtained by omitting one edge from one of the cycles or
one of the anti-cycles of T ), T̃ is equivalent to T ′(k) by the induction hypothesis. Since
triangulation preserves the number of the edges of T , T contains one more edge e which
does not appear in T ′(k). The edge e forms one more cycle or one more anti-cycle, since
triangulation preserves the number of cycles. Hence T is equivalent to the graph T ′(k),e

(see Figure 13), where the edge e connects two vertices vi and vj.
Then we look at the subgraph T ′(0),e of T ′(k),e that contains the edges σi, 1 6 i 6 n−1,

σ1̄ and e (i.e. T ′(0),e we get from T ′(k),e by omitting ui for 1 6 i 6 k). By Theorems 15
and 16, T ′(0),e is equivalent to T ′(1). Hence T ′(k),e is equivalent to T ′(k+1) (adding the edges
ui to T ′(1)).
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Proposition 29. In AY (T
′(m)), the following relations hold for 1 6 i < j 6 m:

1. 〈σ1uiσ
−1
1 , uj〉 = 1,

2. 〈σ1̄uiσ
−1
1̄
, uj〉 = 1,

3. 〈σn−1uiσ
−1
n−1, uj〉 = 1,

4. [σ1uiσ
−1
1 , σn−1ujσ

−1
n−1] = 1,

5. [σ1̄uiσ
−1
1̄
, σn−1ujσ

−1
n−1] = 1,

6. [σ1uiσ
−1
1 , σ1̄ujσ

−1
1̄ ] = 1,

7. [σ1ujσ
−1
1 , σ1̄uiσ

−1
1̄
] = 1.

Proof. The proof is derived directly from the definition of AY (T
′(m)), see Figure 13.

In the spirit of [4], we define x
(j)
−→α

= ujα
−1 and x

(j)
←−α

= α−1uj for 1 6 j 6 m.

Now we define the group G(T ′(m)), which is a quotient of AY (T
′(m)). In Theorem 31,

we describe its structure precisely.

Definition 30. Let G(T ′(m)) be a quotient of AY (T
′(m)) by the following relations:

1. [x
(j)
−→α
, σn−1σ

−1
1 ασ1σ

−1
n−1] = 1;

2. [x
(j)
−→α
, σ1̄σ

−1
1 ασ1σ

−1
1̄
] = 1;

3. [x
(j)
−→α
, σ1σ

−1
1̄
ασ1̄σ

−1
1 ] = 1;

4. [x
(j)
−→α
, σn−1σ

−1
1̄
ασ1̄σ

−1
n−1] = 1;

5. [x
(j)
−→α
, α2] = 1, for 1 6 j 6 m.

Finally we present our main result, that is, the structure of the needed group G(T ′(m)).

Theorem 31. G(T ′(m)) ≃ K(m,n) ⋊ A(Dn), where K(m,n) is the group generated by x
(i)
−→σ k

and x
(i)
−→σ 1̄

, 1 6 i, j 6 m, 1 6 r, t 6 n− 1 with the following relations:
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1. [x
(i)
−→σ r

, x
(j)
−→σ t

] = 1, |r − t| > 1;

2. [x
(i)
−→σ 1̄

, x
(j)
−→σ t

] = 1, t 6= 2;

3. [x
(i)
−→σ 1̄

, x
(i)
−→σ 2

] = [x
(i)
−→σ r

, x
(i)
−→σ t

] = zi, |r − t| = 1;

4. [x
(i)
−→σ r

x
(i)
−→σ r−1

, x
(j)
−→σ r

x
(j)
−→σ r+1

] = [x
(i)
−→σ 2

x
(i)
−→σ 1̄

, x
(j)
−→σ 2

x
(j)
−→σ 1

] = [x
(i)
−→σ 2

x
(i)
−→σ 1̄

, x
(j)
−→σ 2

x
(j)
−→σ 3

] = 1;

5. [x
(i)
−→σ r

, x
−(j)
−→σ r+1

] = [x
−(i)
−→σ r+1

, x
(j)
−→σ r

];

6. [x
(i)
−→σ 1̄

, x
−(j)
−→σ 2

] = [x
−(i)
−→σ 2

, x
(j)
−→σ 1̄

];

7. zi are central elements for 1 6 i 6 m, and z2i = 1.

where similarly to Theorem 27, the action of A(Dn) on x
(i)
−→σ r

, 1 6 r 6 n − 1 and on x
(i)
−→σ 1̄

is the following:
σt(zi) = zi, for 1 6 i 6 m,

σt(x
(i)
−→σ r

) =



















zix
−(i)
−→σ r

r = t;

x
(i)
−→σ t

x
(i)
−→σ r

(r = t+ 1) or (t = 1̄ and r = 2);

x
(i)
−→σ t

x
(i)
−→σ r

(r = t− 1) or (t = 2 and r = 1̄);

x
(i)
−→σ r

(|i− t| > 2) or (t = 1̄ and r 6= 2) or (t 6= 2 and r = 1̄).

Proof. The relations in K(m,n) that do not involve x−→σ 1̄
were proved in [4, Section 10].

Now look at the subgroup K ′(m,n) of K(m,n), where K ′(m,n) is generated by x−→σ 1̄
and

x−→σ t
where 2 6 t 6 n − 1 (i.e., without the generator x−→σ 1

). Then K ′(m,n) is isomorphic

to K̃(m,n), where K̃(m,n) is the group K(m,n) from [4, Section 10], where ϕ(x
(i)
−→σ 1̄

) = x
(i)
σ1 ,

ϕ(x
(i)
−→σ t

) = x
(i)
σt for 2 6 t 6 n − 1. Hence, by [4, Section 10], [x

(i)
−→σ 1̄

, x
(j)
−→σ t

] = 1 for t > 3,

[x
(i)
−→σ 2

x
(i)
−→σ 1̄

, x
(j)
−→σ 2

x
(j)
−→σ 3

] = 1, and [x
(i)
−→σ 1̄

, x
−(j)
−→σ 2

] = [x
−(i)
−→σ 2

, x
(j)
−→σ 1̄

]. It remains to prove the relation

between x
(i)
−→σ 1̄

and x
(i)
−→σ 1

. By Proposition 29 ((5) and (6)), [σ1uiσ
−1
1 , σ−1

1̄
ujσ1̄] = 1 implies

that [σ1uiα
−1σ−11 , σ−1

1̄
ujα

−1σ1̄] = 1, since [σ1ασ
−1
1 , σ1̄ασ

−1
1̄
] = 1.

Hence [σ1x
(i)
−→α
σ−11 , σ1̄x

(j)
−→α
σ−1
1̄
] = 1. Then, from Proposition 24, [α−1x

(i)
−→σ 1

α, α−1x
(j)
−→σ 1̄

α] = 1 for

each i and j. This completes the proof.

Now, for 1 6 i 6 m, 1 6 r 6 n− 1, and r = 1̄ defining the element a
(i)
r to be:

• a
(i)
n−1 = x

(i)
−→σ n−1

;

• a
(i)
r = x

(i)
−→σ n−1

x
(i)
−→σ n−2

· · ·x
(i)
−→σ r

, for 1 6 r 6 n− 2;

• a
(i)

1̄
= x

(i)
−→σ n−1

x
(i)
−→σ n−2

· · ·x
(i)
−→σ 2

x
(i)
−→σ 1̄

.
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Theorem 32. By using the generators a
(i)

1̄
, a

(i)
1 , . . . a

(i)
n−1 instead of the generators

x
(i)
−→σ 1̄

, x
(i)
−→σ 1

, . . . x
(i)
−→σ n−1

, the presentation of K(m,n) can be simplified in the following way,

• [a
(i)

1̄
, a

(j)
1 ] = 1, for any 1 6 i, j 6 m;

• [a
(i)
r , a

(i)
s ] = zi, for r 6= s, r̄ 6= s, and 1 6 i 6 m;

• [a
(i)
r , a

(j)
s ] = [a

(i)
r′ , a

(j)
s′ ] for any r 6= s, r̄ 6= s, and r′ 6= s′, r̄′ 6= s′, and 1 6 i, j 6 m.

Proof. The proof of the first relation:

[a
(i)

1̄
, a

(j)
1 ] = [x

(i)
−→σ n−1

x
(i)
−→σ n−2

· · ·x
(i)
−→σ 2

x
(i)
−→σ 1̄

, x
(i)
−→σ n−1

x
(i)
−→σ n−2

· · ·x
(j)
−→σ 2

x
(j)
−→σ 1

]

= [σn−1(x
(i)
−→σ n−1

x
(i)
−→σ n−2

· · ·x
(i)
−→σ 2

x
(i)
−→σ 1̄

), σn−1(x
(i)
−→σ n−1

x
(i)
−→σ n−2

· · ·x
(j)
−→σ 2

x
(j)
−→σ 1

)]

= [x
(i)
−→σ n−2

x
(i)
−→σ n−3

· · ·x
(i)
−→σ 2

x
(i)
−→σ 1̄

, x
(i)
−→σ n−2

x
(i)
−→σ n−3

· · ·x
(j)
−→σ 2

x
(j)
−→σ 1

]

= [σn−2(x
(i)
−→σ n−2

x
(i)
−→σ n−3

· · ·x
(i)
−→σ 2

x
(i)
−→σ 1̄

), σn−2(x
(i)
−→σ n−2

x
(i)
−→σ n−3

· · ·x
(j)
−→σ 2

x
(j)
−→σ 1

)]

= . . .

= [x
(i)
−→σ 2

x
(i)
−→σ 1̄

, x
(j)
−→σ 2

x
(j)
−→σ 1

] = 1.

The proof of the other two relations are the same to the proof of [4, Colloraly 10.7].

Note that by similar arguments as in [4], the word problem is solvable in K(m,n) and
solvable in A(Dn) too, we get

Corollary 33. The word problem is solvable in G(T ).
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