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Abstract

We consider several new families of subgraphs of the square grid whose matchings
are enumerated by powers of several small prime numbers: 2, 3, 5, and 11. Our
graphs are obtained by trimming two opposite corners of an Aztec rectangle. The
result yields a proof of a conjecture posed by Ciucu. In addition, we reveal a hidden
connection between our graphs and the hexagonal dungeons introduced by Blum.
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1 Introduction and main results

A perfect matching of a graph G is a collection of edges of G so that each vertex is covered
by precisely one edge in the collection. A perfect matching is sometimes called 1-factor
(in graph theory) or dimmer covering (in statistical mechanics). The field of enumeration
of perfect matchings date back to the early 1960’s when Kasteleyn [8] and Temperley
and Fisher [29] found the number of tilings of a rectangle on the square grid. In 1992,
Elkies, Kuperberg, Larsen, and Propp [6, 7] proved a striking pattern for the number of
perfect matchings of an Aztec diamond graph (see the definition below), which is a power
of 2. This result opened two-and-a-half flourishing decades of the enumeration of perfect
matchings.

Consider a
√

2m ×
√

2n rectangular contour rotated 45◦ and translated so that its
vertices are centers of unit squares on the square grid (see the dotted contour on the left
picture of Figure 1.1). The m× n Aztec rectangle (graph)1 ARm,n is the subgraph of the
square grid induced by the vertices inside or on the boundary of the rectangular contour
(see the graph restricted by the left bold contour in Figure 1.1 for the Aztec rectangle
AR6,8). The Aztec rectangle ARm,n is called the Aztec diamond of order n when m = n.

1From now on, the term “Aztec rectangle” will be used to mean “Aztec rectangle graph”.
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Figure 1.1: The Aztec rectangle AR6,8 (left) and the augmented Aztec rectangle AA6,8

(right).

(a)

(b)

Figure 1.2: Obtaining a honeycomb graph from a trimmed augmented Aztec rectangle on
the brick lattice.

The augmented Aztec rectangle AAm,n is obtained by stretching the Aztec rectangle
ARm,n one unit horizontally, i.e. adding one square to the left of each row in the Aztec
rectangle (see the graph restricted by the black contour on the right of Figure 1.1; the
added squares are shaded ones). We can still define the Aztec rectangle and augmented
Aztec rectangle on sub-grids or weighted versions of the square grid. The graph AAn,n is
called the augmented Aztec diamond of order n.

It has been shown in [6, 7] that the Aztec diamond of order n (i.e. the Aztec rectangle
ARn,n) has 2n(n+1)/2 perfect matchings, and it is easy to see that ARm,n has no perfect
matching when m 6= n. Sachs and Zernitz [26] proved that the augmented Aztec diamond
of order n has D(n, n) perfect matchings, where the Delannoy number D(m,n), for m,n >
0, is the number of lattice paths on Z2 from the vertex (0, 0) to the vertex (m,n) using
north, northeast and east steps (see e.g. Exercise 6.49 in [28]). Dana Randall later gave a
simple combinatorial proof for the result. More general, the number of perfect matchings
of the augmented Aztec rectangle AAm,n is given by the D(m,n), for any m,n.

Various families of subgraphs of the square grid have been investigated, focusing on
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Figure 1.3: The B lattice (solid lines), and its partition into crosses (restricted by dotted
diamonds).

the ones having perfect matchings enumerated by perfect powers (see e.g., [1], [6], [13],
[23], [30], and the references therein). However, in most cases, the graphs are either highly
symmetric or some variants of the Aztec rectangles. In this paper, we introduced six new
families of subgraphs that are not Aztec-rectangle-like. However, their perfect matchings
are still enumerated by perfect powers (see the graphs A

(i)
a,b,c and F

(i)
a,b,c, for i = 1, 2, 3, in

Section 2).
Here is a simple observation that inspires our main results. Viewing a standard brick

lattice as a sub-grid of the square grid, we consider an augmented Aztec rectangle on
the standard brick lattice, where the north and the south corners have been trimmed
(see Figure 1.2(a)). One readily sees that the resulting graph can be deformed into the
honeycomb graph whose perfect matchings are enumerated by MacMahon’s formula [10]
(see Figure 1.2(b)).

Next, we consider a new brick lattice B pictured in Figure 1.3. In particular, the lattice
B is obtained by gluing copies of a cross pattern, which is restricted in a dotted diamond of
side 2

√
2. Let a and b be two non-negative integers. Consider a (2b+2a−2)×(2b+4a−2)

augmented Aztec rectangle on the new lattice so that its east corner is the east corner of
a cross pattern. Similar to the case of the standard brick lattice, we trim the north and
south corners of the augmented Aztec rectangle both from right to left at levels (2a− 1)
above and (4a−1) below the eastern corner, respectively. The only difference here is that
we are using two zigzag cuts containing alternatively “bumps” and “holes” of size 2, as
opposed to straight cuts in the case of standard brick lattice (see Figure 1.4). Denote
by TRa,b the resulting graph. The number of perfect matchings of TRa,b is given by the
theorem stated below.

Theorem 1.1. Assume that a and b are positive integers so that b > 2a. Then the number
of perfect matchings of TRa,b is 108k2112k2 if a = 2k, and 102(2k+1)2112k(k+1) if a = 2k+ 1.

We note that the number of perfect matchings of TRa,b in Theorem 1.1 does not
depend on b.

We now consider a 2m × 2n Aztec rectangle (m 6 n) on the lattice B whose east
corner is also the east corner of a cross pattern. Similar to the graph TRa,b, we also trim
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Figure 1.4: The trimmed augmented Aztec rectangle TR2,6 on the lattice B.

h1=4

h =32
trimming direction

trimming direction

Figure 1.5: The graph TA4,3
5,7 is obtained by trimming the rectangle AR10,14 (on the lattice

B) by two zigzag cuts.

the upper and lower corners of the Aztec rectangle by two zigzag cuts. The only difference
here is that we are trimming the north corner from right to left and the south corner from
left to right. Assume that h1 is the distance between the top of the Aztec rectangle and
the upper cut, and that h2 is the distance between the bottom of the graph and the lower
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Figure 1.6: The graph TB3,6
4,7 is obtained by trimming the rectangle AR7,11 (on the lattice

B) by trimming two corners.

cut. Denote by TAh1,h2m,n the resulting trimmed Aztec rectangle. We notice that an edge of
the zigzag cut is in the graph TAh1,h2m,n if and only if it is also a lattice edge in B. See Figure
1.5 for an example of the TA- graph; the dotted edges in the lower zigzag cut indicate
the ones not in the TA-graph. We also have a variant of TAh1,h2m,n by applying the same
process to the (2m− 1)× (2n− 1) Aztec rectangle whose east-most edge is the west-most
edge of a cross pattern on B. Denote by TBh1,h2

m,n the resulting graph (see Figure 1.6).
Ciucu [2] conjectured that

Conjecture 1.2. The numbers of perfect matchings of TAh1,h2m,n and TBh1,h2
m,n have only

prime factors less than 13 in their prime factorizations.

We prove Ciucu’s conjecture by giving explicit formulas for the numbers of perfect
matchings of TAh1,h2m,n and TBh1,h2

m,n as follows. Given three integer numbers a, b, c, we
define five functions g(a, b, c), q(a, b, c), α(a, b, c), β(a, b, c), and t(a, b) by setting

g(a, b, c) := (b− a)(b− c) +

⌊
(a− c)2

3

⌋
, (1.1)

q(a, b, c) :=

⌊
(a− b+ c)2

4

⌋
, (1.2)

α(a, b, c) :=


2 if 3b+ a− c ≡ 1 (mod 6);

3 if 3b+ a− c ≡ 5 (mod 6);

1 otherwise,

(1.3)

β(a, b, c) :=


3 if 3b+ a− c ≡ 1 (mod 6);

2 if 3b+ a− c ≡ 5 (mod 6);

1 otherwise,

(1.4)
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and

τ(a, b) :=


a+b
2

if h1 and h2 are even;
a
2

if h1 is even and h2 is odd;
b
2

if h1 is odd and h2 is even;

0 otherwise.

(1.5)

Theorem 1.3. Assume that
⌊
h1+1
2

⌋
+
⌊
h2+1
2

⌋
= 2(n−m).

(a) The number of perfect matchings of the trimmed Aztec rectangle TAh1,h2m,n equals

α(a, b, c)2g(a,b,c+1)3τ(h1,h2)5g(a,b,c)11q(a,b,c), (1.6)

where a = m−
⌊
h1+1
2

⌋
+ 1, b = n−

⌊
h1+1
2

⌋
+ 1 and c =

⌊
h2+1
2

⌋
.

(b) The number of perfect matchings of TBh1,h2
m,n is

β(a′, b′, c′)2g(a
′,b′,c′−1)3τ(h1+1,h2+1)5g(a

′,b′,c′)11q(a
′,b′,c′), (1.7)

where a′ = m−
⌊
h1+1
2

⌋
+ 1, b′ = n−

⌊
h1+1
2

⌋
+ 1 and c′ =

⌊
h2+1
2

⌋
.

It is easy to see that if a bipartite graph admits a perfect matching, then the numbers
of vertices in its two vertex classes are the same. A bipartite graph satisfying the later
balancing condition is called a balanced graph. If the condition

⌊
h1+1
2

⌋
+
⌊
h2+1
2

⌋
= 2(n−m)

in Theorem 1.3 is violated, then both TAh1,h2m,n and TBh1,h2
m,n are not balanced. Thus, their

numbers of perfect matchings are 0.
The rest of this paper is organized as follows. In Section 2, we introduce six new

families of subgraphs of the lattice B and present explicit formulas for the numbers of
perfect matchings of these graphs (see Theorem 2.1). The theorem is the key result of
our paper; and we will prove it in the next three sections. In Section 3, we prove several
recurrences for the numbers of perfect matchings of the six families of graphs by using
Kuo’s graphical condensation method [9]. Then, in Section 4, we show that the formulas in
Theorem 2.1 satisfy the same recurrences obtained in Section 3. This yields an inductive
proof of Theorem 2.1, which is presented in Section 5. Section 6 is devoted to the proofs
of Theorems 1.1 and 1.3 by using the result in Theorem 2.1. Finally, in Section 7, we
investigate a hidden connection between the graph in Theorem 1.1 and the hexagonal
dungeon introduced by Blum in his well-known conjecture (see [23], Problem 25). It is
worth noticing that Blum’s conjecture was confirmed by Ciucu and the author in [5].

2 Six new families of graphs

In this section, we consider six new families of graphs whose matching enumerations will
be employed in our proofs of Theorems 1.1 and 1.3 in Section 6.

Pick the center Vs of a cross pattern on the lattice B. Let a, b, c, d, e, x be six non-
negative integers. We create a six-sided contour starting from Vs as follows. We go 2a

√
2

units southeast from Vs, then 2b
√

2 units northeast, 4c units west, 2d
√

2 units northwest,
and 2e

√
2 units southwest. We adjust e so that the ending point Ve of the fifth side are
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(a) (b)

(c) (d)

V Vs e

VsVe

Figure 2.1: (a) The contour C(1)9,8,2 and the graph G9,8,2. (b) The contour C(1)5,8,4 and the

graph G5,8,4. (c) Obtaining the graph F
(1)
9,8,2 from the graph G9,8,2. (d) Obtaining the

graph F
(1)
5,8,4 from G5,8,4.

on the same level as Vs. Finally, we close the contour by going x units west or east, based
on whether Ve is on the east or the west of Vs (see Figures 2.1(a) and (b)). We denote
by C(1)(a, b, c) the resulting contour. We will show in the next three paragraphs that our
contour depends on only three parameter a, b, c.

The above choice of e requires that

a+ e = b+ d.

If Ve is x units on the east of Vs (i.e. a > c + d), then the closure of the contour yields
4a = x+ 4d+ 4c, so x = 4(a− c−d). Similarly, in the case when Ve is x units on the west
of Vs (i.e. a < c + d), we get x = 4(c + d− a). Thus, in all cases, we must have x = 4f ,
where f = |a− c− d|.

We now consider the subgraph Ga,b,c of the lattice B induced by the vertices inside
the contour (see the graphs restricted by the solid boundaries in Figures 2.1(a) and (b)).
Next, along each horizontal side of the contour, we apply a zigzag cut as in the definition
of the trimmed Aztec rectangles in the previous section (illustrated by bold zigzag lines in
Figures 2.1(c) and (d); the shaded vertices indicate the vertices of Ga,b,c, which have been
removed by the trimming process). In particular, for the c-side2, we perform the zigzag

2From now on, we usually call the first, the second, . . . , the sixth sides of the contour the a-, the b-,
. . . , and the f -sides. The same terminology will be used for the sides of the graph induced by vertices
inside the contour.
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cut from right to left and stop when having no room on this side for the next step of the
cut. Similarly, we cut along f -side from left to right and also stop when cannot reach
further. Denote by F

(1)
a,b,c the resulting graph. (see Figure 2.1(c) for the case a > c + d,

and Figure 2.1(d) for the case a 6 c+ d).
Recall that if a bipartite graph G admits a perfect matching, then the numbers of

vertices in the two vertex classes of G must be the same; and we say that the graph G is
balanced. One readily sees that the balance of F

(1)
a,b,c requires d = 2b − a − 2c. Moreover,

to guarantee that the graph is not empty, we assume in addition b > 2. In summary, we
have

d = 2b− a− 2c > 0, (2.1)

e = b+ d− a = 3b− 2a− 2c > 0, (2.2)

and
f = |a− c− d| = |2a− 2b+ c|. (2.3)

It means that d, e, f depend on a, b, c. This explains why our graph F
(1)
a,b,c is indeed

determined by a, b, c (and so is the contour C(1)(a, b, c)).
Next, we consider a variant A

(1)
a,b,c of the graph F

(1)
a,b,c as follows. We remove all vertices

along the a-, b-, d-, and e-sides of Ga,b,c (illustrated by white circles in Figures 2.2(a) and
(b)). We now trim along the c- and f -sides of the resulting graph in the same way as in

the definition of F
(1)
a,b,c (the vertices of Ga,b,c, which are removed by the trimming process,

are illustrated by shaded points in Figures 2.2(a) and (b); the edges removed are shown

by dotted edges). Figures 2.2(c) and (d) give examples of the graph A
(1)
a,b,c in the cases

a > c+ d and a 6 c+ d, respectively.

In the definitions of the next families of graphs, we always assume the constraints
(2.1), (2.2), (2.3), and b > 2.

In the spirit of the contour C(1)(a, b, c), we define a new contour C(2)(a, b, c) as follows.
Starting also from the center Vs of a cross pattern on the lattice B, we go 2a

√
2 units

southwest, then 4b units east, 2c
√

2 units northwest, 2d
√

2 units northeast, 4e units west,
and 2f

√
2 units northwest or southeast, depending on whether a > c+d or a 6 c+d (see

Figures 2.3(a) and (b) for examples). The contour C(2)(a, b, c) determines a new induced
subgraph Ha,b,c of the lattice B (i.e., Ha,b,c is induced by vertices inside the contour). The
graphs H9,8,2 and H5,8,4 are illustrated by the ones restricted by the solid boundaries in
Figures 2.3(a) and (b), respectively.

Next, we remove all vertices along the a- and d-sides of Ha,b,c; and we also remove
the vertices along the f -side if a > c + d (see white circles in Figures 2.3(c) and (d)).

Similar to the graph F
(1)
a,b,c, we obtain the graph F

(2)
a,b,c by applying the zigzag cuts along

two horizontal sides of the resulting graph (which are now the b- and e-sides). The graphs

F
(2)
9,8,2 and F

(2)
5,8,4 are pictured in Figures 2.3(c) and (d), respectively; the shaded points also

indicate the vertices of Ha,b,c, which are removed by the trimming process.

Similarly, the graph A
(2)
a,b,c is obtained from Ha,b,c by removing vertices along the c-side,

as well as vertices along the f -side when a 6 c + d, and trimming along two horizontal
sides (illustrated in Figures 2.3(e) and (f)).
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(a) (b)

(c) (d)

Figure 2.2: (a) Obtaining A
(1)
9,8,2 from G9,8,2. (b) Obtaining A

(1)
5,8,4 from G5,8,4. (c) The

graph A
(1)
9,8,2 with full details. (d) The graph A

(1)
5,8,4 with full details.

We define next the third contour C(3)(a, b, c) in the same fashion as the previous ones.
Starting the contour at the same point Vs, this time we go east, northwest, southwest,
west, southeast, and finally southwest or northeast depending on whether a > c + d or
a 6 c + d. The side-lengths of the contour are now 4a, 2b

√
2, 2c

√
2, 4d, 2e

√
2, and

2f
√

2, respectively (see Figures 2.4(a) and (b)). We denote by Ka,b,c the subgraph of

the lattice B induced by the vertices inside C(3)a,b,c (see the graph restricted by the solid
contours in Figures 2.4(a) and (b)). Our last two graphs are obtained from Ka,b,c by a

similar removing-trimming process as follows. The graph F
(3)
a,b,c is obtained from Ka,b,c by

removing vertices along its b-, c-, and e-sides, as well as vertices along the f -side when
a 6 c+d, and trimming along two horizontal sides (along the a-side from right to left, and

the d-side from left to right). The graph A
(3)
a,b,c is obtained similarly by removing vertices

along the f -side if a > c+d, and trimming along the two horizontal sides. Figures 2.4(c),

(d), (e), and (f) show the graphs F
(3)
9,8,2, F

(3)
5,8,4, A

(3)
9,8,2, and A

(3)
5,8,4, respectively.

We show in the following theorem that, while A
(i)
a,b,c’s and F

(i)
a,b,c’s are non-symmetric

and concave, their matching numbers are still given by perfect powers of small prime
numbers.

Theorem 2.1. Assume that a, b and c are three non-negative integers satisfying b > 2,
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Figure 2.3: (a) The contour C(2)9,8,2 and the graph H9,8,2. (b) The contour C(2)5,8,4 and the

graph H5,8,4. (c) The graph F
(2)
9,8,2. (d) The graph F

(2)
5,8,4. (e) The graph A

(2)
9,8,2. (f) The

graph A
(2)
5,8,4.

d := 2b− a− 2c > 0, and e := 3b− 2a− 2c > 0. Then

M
(
A

(1)
a,b,c

)
= α(a, b, c)2g(a,b,c+1)5g(a,b,c)11q(a,b,c), (2.4)

M
(
A

(2)
a,b,c

)
= α(a, b, c)2g(a,b,c−1)−b(a−c+1)/3c+(a−b)5g(a,b,c)11q(a,b,c), (2.5)

M
(
A

(3)
a,b,c

)
= α(a, b, c)2g(a,b,c−1)−b(a−c+1)/3c5g(a,b,c)11q(a,b,c), (2.6)

M
(
F

(1)
a,b,c

)
= β(a, b, c)2g(a,b,c−1)5g(a,b,c)11q(a,b,c), (2.7)

M
(
F

(2)
a,b,c

)
= β(a, b, c)2g(a,b,c+1)+b(a−c+1)/3c−(a−b)5g(a,b,c)11q(a,b,c), (2.8)

and
M
(
F

(3)
a,b,c

)
= β(a, b, c)2g(a,b,c+1)+b(a−c+1)/3c5g(a,b,c)11q(a,b,c), (2.9)
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(a)
(b)

(c)
(d)

(f)

(e)

Figure 2.4: (a) The contour C(3)9,8,2 and the graph K9,8,2. (b) The contour C(3)5,8,4 and the

graph K5,8,4. (c) The graph F
(3)
9,8,2. (d) The graph F

(3)
5,8,4. (e) The graph A

(3)
9,8,2. (f) The

graph A
(3)
5,8,4.

where α(a, b, c), β(a, b, c), q(a, b, c) and g(a, b, c) are defined as in Theorem 1.3, and where
M(G) denotes the number of perfect matchings of a graph G.

The proof of Theorem 2.1 will be given in the next three sections. In particular,
Sections 3 and 4 show that the expressions on the left and right hand sides of each of the
equalities (2.4)–(2.9) both satisfy the same recurrences. Then we will give an inductive
proof for the theorem in Section 5.

3 Recurrences of M
(
A

(i)
a,b,c

)
and M

(
F

(i)
a,b,c

)
Eric Kuo (re)proved the Aztec diamond theorem by Elkies, Kuperberg, Larsen, and Propp
(see [6, 7]) by using a method called “graphical condensation” [9]. The key of his proof
is the following combinatorial interpretation of the Desnanot-Jacobi identity in linear
algebra (also mentioned as Dodgson condensation; see e.g. [11], pp. 136–149). We refer

the electronic journal of combinatorics 24(4) (2017), #P4.19 11



the reader to [3, 4, 5, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27] for various recent
applications of this powerful method.

Theorem 3.1 (Kuo’s Condensation Theorem [9]). Let G be a planar bipartite graph, and
V1 and V2 the two vertex classes with |V1| = |V2|. Assume in addition that x, y, z and t
are four vertices appearing in a cyclic order on a face of G so that x, z ∈ V1 and y, t ∈ V2.
Then

M(G) M(G− {x, y, z, t}) = M(G− {x, y}) M(G− {z, t}) + M(G− {t, x}) M(G− {y, z}).
(3.1)

In this section, we use the Kuo’s Condensation Theorem to prove that the numbers of
perfect matchings of the six families of graphs A

(i)
a,b,c’s and F

(i)
a,b,c’s, for i = 1, 2, 3, satisfy

the following six recurrences (with some constraints).
We use the notations F(a, b, c) and �(a, b, c) for general functions from Z3 to Z. We

consider the following six recurrences:

F(a, b, c)F(a− 3, b− 3, c− 2) =F(a− 2, b− 1, c)F(a− 1, b− 2, c− 2)

+F(a− 1, b− 1, c− 1)F(a− 2, b− 2, c− 1),
(R1)

F(a, b, c)F(a− 2, b− 2, c) =F(a− 1, b− 1, c)2

+F(a, b, c+ 1)F(a− 2, b− 2, c− 1),
(R2)

F(a, b, 0)F(a− 2, b− 2, 0) =F(a− 1, b− 1, 0)2

+F(a, b, 1)F(3b− 2a, 2b− a, 1),
(R3)

F(a, b, c)F(a− 2, b− 3, c− 2) =F(a− 1, b− 1, c)F(a− 1, b− 2, c− 2)

+F(a− 2, b− 2, c− 1)F(a, b− 1, c− 1),
(R4)


F(a, b, c)F(a− 2, b− 3, c− 2) = �(c, b− 1, a− 1)F(a− 1, b− 2, c− 2)

+F(a− 2, b− 2, c− 1)F(a, b− 1, c− 1);
�(a, b, c)�(a− 2, b− 3, c− 2) =F(c, b− 1, a− 1)�(a− 1, b− 2, c− 2)

+�(a− 2, b− 2, c− 1)�(a, b− 1, c− 1),

(R5)

and 
F(a, b, 0)F(a− 2, b− 2, 0) =F(a− 1, b− 1, 0)2

+F(a, b, 1)�(3b− 2a, 2b− a, 1);
�(a, b, 0)�(a− 2, b− 2, 0) = �(a− 1, b− 1, 0)2

+�(a, b, 1)F(3b− 2a, 2b− a, 1).

(R6)

We notice that if F ≡ � in the recurrence (R6), we get the recurrence (R3).
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Lemma 3.2. Let a, b and c be non-negative integers so that b > 5, c > 2, d := 2b−a−2c >
0, e := 3b−2a−2c > 0, and a > c+d. Then for i = 1, 2, 3 the numbers of perfect matchings
M(A

(i)
a,b,c) and M(F

(i)
a,b,c) all satisfy the recurrence (R1), i.e. we have

M
(
A

(i)
a,b,c

)
M
(
A

(i)
a−3,b−3,c−2

)
= M

(
A

(i)
a−2,b−1,c

)
M
(
A

(i)
a−1,b−2,c−2

)
+ M

(
A

(i)
a−1,b−1,c−1

)
M
(
A

(i)
a−2,b−2,c−1

) (3.2)

and

M
(
F

(i)
a,b,c

)
M
(
F

(i)
a−3,b−3,c−2

)
= M

(
F

(i)
a−2,b−1,c

)
M
(
F

(i)
a−1,b−2,c−2

)
M
(
F

(i)
a−1,b−1,c−1

)
M
(
F

(i)
a−2,b−2,c−1

)
.

(3.3)

u

v w

t u

v

v w w

t

u t u

v w

t

(a) (b)

(c)
(d)

(e) (f)

Figure 3.1: Illustrating the proof of Lemma 3.2.

Proof. First, we prove the equality (3.2), for i = 1.

Apply Kuo’s Condensation Theorem 3.1 to the graphs G := A
(1)
a,b,c with the four vertices

u, v, w, t chosen as in Figure 3.1(a) (for a = b = 8 and c = 3). In particular, we pick u
on the west corner, v and w on the south corner, and t on the east corner of the graph.
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(a) (b)
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v

w

w

w

u

u

u t t

t

(c)

(d)

(e)

Figure 3.2: Illustrating the proof of Lemma 3.2.

Consider the graph G−{u, v}. There are several edges that are forced to be in any perfect
matchings of the graph (see the graph restricted by the bold contour in Figure 3.1(b)).
The removal of these forced edges does not change the number of perfect matchings of
G−{u, v}. By removing the forced edges we obtain a graph isomorphic to A

(1)
a−2,b−1,c (see

the graph restricted by the bold contour in Figure 3.1(b)), and get

M(G− {u, v}) = M(A
(1)
a−2,b−1,c).

Similarly, we have

M(G− {v, w}) = M(A
(1)
a−1,b−2,c−2) (see Figure 3.1(c)),

M(G− {w, t}) = M(A
(1)
a−1,b−1,c−1) (see Figure 3.1(d)),

M(G− {t, u}) = M(A
(1)
a−2,b−2,c−1) (see Figure 3.1(e)),

and
M(G− {u, v, w, t}) = M(A

(1)
a−3,b−3,c−2) (see Figure 3.1(f)).
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Figure 3.3: he graphs A
(1)
5,8,4 (a), A

(2)
5,8,4 (b), A

(3)
5,8,4 (c), A

(1)
4,5,0 (d), A

(2)
4,5,0 (e), and A

(3)
4,5,0 (f)

with the four vertices u, v, w, t in Lemma 3.3.

Substituting the above five equalities into the equality (3.1) in Kuo’s Condensation The-
orem, we get (3.2), for i = 1.

Similarly, apply Kuo’s Condensation Theorem 3.1 to the graphs A
(2)
a,b,c and A

(3)
a,b,c with

the four vertices u, v, w, t chosen as in Figures 3.2(a) and (b), respectively, we get the
equality (3.2), for i = 2, 3.

Finally, (3.3) is obtained by repeating the above arguments to the graphs F
(i)
a,b,c’s with

the four vertices u, v, w, t selected as in Figures 3.2(c), (d), and (e).

Lemma 3.3. Let a, b and c be non-negative integers satisfying a > 2, b > 4, d :=
2b− a− 2c > 2, and e := 3b− 2a− 2c > 2.

(a) If c > 1, then M(A
(i)
a,b,c) and M(F

(i)
a,b,c) all satisfy the recurrence (R2), for i = 1, 2, 3.

(b) If c = 0, then M(A
(1)
a,b,0) and M(F

(1)
a,b,0) both satisfy the recurrence (R3). Moreover,

for i = 2, 3 the two pairs of numbers of perfect matchings (M(A
(i)
a,b,0),M(A

(5−i)
a,b,0 )) and

(M(F
(i)
a,b,0),M(F

(5−i)
a,b,0 )) both satisfy the recurrence (R6) for (F,�).

Proof. (a) We prove only the statement for the A-graphs, as the statement for F -graphs
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can be obtained similarly. We need to show for i = 1, 2, 3 that

M
(
A

(i)
a,b,c

)
M
(
A

(i)
a−2,b−2,c

)
= M

(
A

(i)
a−1,b−1,c

)2
+ M

(
A

(i)
a,b,c+1

)
M
(
A

(i)
a−2,b−2,c−1

)
. (3.4)

Consider the graphs A
(i)
a,b,c with the four vertices u, v, w, t located as in Figures 3.3(a),

(b), and (c), for i = 1, 2, 3 respectively. Similar to the proof of Lemma 3.2, we have

M(G− {u, v}) = M(A
(i)
a−1,b−1,c), (3.5)

M(G− {v, w}) = M(A
(i)
a−1,b−1,c), (3.6)

M(G− {w, t}) = M(A
(i)
a,b,c+1), (3.7)

M(G− {t, u}) = M(A
(i)
a−2,b−2,c−1), (3.8)

M(G− {u, v, w, t}) = M(A
(i)
a−2,b−2,c). (3.9)

Again, by Kuo’s Theorem, we get (3.4).

(b) We prove the statement for the graphs A
(i)
a,b,c’s, and the one for F

(i)
a,b,c’s can be

obtained in an analogous manner. In particular, we need to show that

M
(
A

(1)
a,b,0

)
M
(
A

(1)
a−2,b−2,0

)
= M

(
A

(1)
a−1,b−1,0

)2
+ M

(
A

(1)
a,b,1

)
M
(
A

(1)
e,d,1

)
, (3.10)

and that for i = 2, 3

M
(
A

(i)
a,b,0

)
M
(
A

(i)
a−2,b−2,0

)
= M

(
A

(i)
a−1,b−1,0

)2
+ M

(
A

(i)
a,b,1

)
M
(
A

(5−i)
e,d,1

)
. (3.11)

The equalities (3.10) and (3.11) can be treated similarly to (3.4). We still pick the

four vertices u, v, w, t in the graphs A
(i)
a,b,0’s as in Figures 3.3(d), (e), and (f). We also

get the equalities (3.5), (3.6), (3.7), and (3.9), for c = 0. However, the graph obtained

by removing forced edges from the graph A
(i)
a,b,c − {u, t} is not A

(i)
a−2,b−2,c−1 any more (the

latter graph is not defined when c = 0); and it is now isomorphic to A
(1)
e,d,1 (resp., A

(3)
e,d,1,

A
(2)
e,d,1), where d = 2b− a and e = 3b− 2a. The graphs A

(1)
e,d,1, A

(3)
e,d,1, A

(2)
e,d,1 are illustrated

by the ones restricted by the bold contours in Figures 3.3(d), (e), and (f), respectively.
Thus, we have

M(A
(1)
a,b,0 − {t, u}) = M(A

(1)
e,d,1), (3.12)

M(A
(2)
a,b,0 − {t, u}) = M(A

(3)
e,d,1), (3.13)

and
M(A

(3)
a,b,0 − {t, u}) = M(A

(2)
e,d,1). (3.14)

Then (3.10) and (3.11) follow from Theorem 3.1.
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Figure 3.4: The graphs A
(1)
5,8,4 (a), A

2)
5,8,4 (b), A

(3)
5,8,4 (c), A

(1)
4,8,6 (d), A

(2)
4,8,6 (e), and A

(3)
4,8,6 (f)

with the selection of the vertices u, v, w, t in Lemma 3.4.

Lemma 3.4. Assume that a, b, c are three non-negative integers satisfying a > 2, b > 5,
c > 2, d := 2b−a−2c > 0, and e := 3b−2a−2c > 0. Assume in addition that a 6 c+d.

(a) If d > 1, then for i = 1, 2, 3 the numbers perfect matchings M(A
(i)
a,b,c) and M(F

(i)
a,b,c)

all satisfy the recurrence (R4).
(b) If d = 0, then for i = 1, 2, 3 the pairs of the numbers of perfect matchings(

M(A
(i)
a,b,c),M(F

(4−i)
a,b,c )

)
and

(
M(A

(i)
a,b,c),M(F

(4−i)
a,b,c )

)
both satisfy the recurrence (R5) for

(F,�).

Proof. (a) We prove here the number of perfect matchings ofA
(i)
a,b,c’s satisfies the recurrence

(R4), and the corresponding statement for F
(i)
a,b,c’s can be obtained in the same fashion.

We need to show that

M
(
A

(i)
a,b,c

)
M
(
A

(i)
a−2,b−3,c−2

)
= M

(
A

(i)
a−1,b−1,c

)
M
(
A

(i)
a−1,b−2,c−2

)
+ M

(
A

(i)
a−2,b−2,c−1

)
M
(
A

(i)
a,b−1,c−1

)
,

(3.15)

for i = 1, 2, 3.
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Similar to Lemmas 3.2 and 3.3, we apply Kuo’s Theorem 3.1 to the graph A
(i)
a,b,c with

the four vertices u, v, w, t chosen as in Figures 3.4(a), (b), and (c). By considering forced
edges, we have the following equalities:

M(G− {u, v}) = M(A
(i)
a−1,b−1,c), (3.16)

M(G− {v, w}) = M(A
(i)
a,b−1,c−1), (3.17)

M(G− {w, t}) = M(A
(i)
a−1,b−2,c−2), (3.18)

M(G− {t, u}) = M(A
(i)
a−2,b−2,c−1), (3.19)

M(G− {u, v, w, t}) = M(A
(i)
a−2,b−3,c−2). (3.20)

We get (3.15) by substituting (3.16)–(3.20) into the equality (3.1) in Kuo’s Theorem 3.1.
(b) First, we note that if d := 2b− a− 2c = 0 as in the part (b) of Lemma 3.4, then

2(b − 1) − (a − 1) − 2c = −1. It means that the graphs A
(i)
a−1,b−1,c and F

(i)
a−1,b−1,c do not

exist in this case (otherwise the d-sides of the contour C(i)(a− 1, b− 1, c) has a negative
length, a contradiction).

The similarity between the statement for the A- and the statement for the B-graphs
allows us to prove only first one. This part can be treated like part (a) by applying Kuo’s

Theorem 3.1 to the graphs A
(i)
a,b,c’s with the four vertices u, v, w, t selected as in Figures

3.4(d), (e), and (f). The only difference here is that, after removing forced edges from the

graph A
(i)
a,b,c − {u, v}, we get the graph F

(4−i)
c,b−1,a−1 (see the graphs restricted by the bold

contours in Figures 3.4(d), (e), and (f)), instead of the graph A
(i)
a−1,b−1,c as in the part

(a).

For i = 1, 2, 3 denote by Φi(a, b, c) the product on the right hand sides of the equalities
(2.4)–(2.6) in Theorem 2.1, respectively, and Ψi(a, b, c) the product on the right hand sides
of equalities (2.7)–(2.9), respectively. In the next section, we will show that these functions
satisfy the same recurrences (R1)–(R6).

4 Recurrences for the functions Φi(a, b, c) and Ψi(a, b, c)

Lemma 4.1. For any integers a, b, c, and i = 1, 2, 3, the functions Φi(a, b, c) and Ψi(a, b, c)
all satisfy the recurrence (R1).

Proof. We need to show that

Φi(a, b, c)Φi(a− 3, b− 3, c− 2) = Φi(a− 2, b− 1, c)Φi(a− 1, b− 2, c− 2)

+Φi(a− 1, b− 1, c− 1)Φi(a− 2, b− 2, c− 1)
(4.1)
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and

Ψi(a, b, c)Ψi(a− 3, b− 3, c− 2) = Ψi(a− 2, b− 1, c)Ψi(a− 1, b− 2, c− 2)

+Ψi(a− 1, b− 1, c− 1)Ψi(a− 2, b− 2, c− 1),
(4.2)

for i = 1, 2, 3.
We first consider the case of even b. There are six subcases to distinguish, based on

the values of a− c (mod 6). We show in details here the subcase when a− c ≡ 0 (mod 6)
(the other five subcases can be obtained in a perfectly analogous manner).

If a − c ≡ 0 (mod 6), by the definition of functions g(a, b, c) and q(a, b, c), we can
cancel out almost all the exponents of 2, 5 and 11 on both sides of the equalities (4.1)
and (4.2). The equality (4.1) becomes

11α(a, b, c)α(a− 3, b− 3, c− 2) = 2α(a− 2, b− 1, c)α(a− 1, b− 2, c− 2)

+α(a− 1, b− 1, c− 1)α(a− 2, b− 2, c− 1);
(4.3)

and the equality (4.2) becomes

11β(a, b, c)β(a− 3, b− 3, c− 2) = β(a− 2, b− 1, c)β(a− 1, b− 2, c− 2)

+β(a− 1, b− 1, c− 1)β(a− 2, b− 2, c− 1).
(4.4)

By definition of the functions α(a, b, c) and β(a, b, c), we have here α(a, b, c) = 1,
α(a−3, b−3, c−2) = 1, α(a−2, b−1, c) = 2, α(a−1, b−2, c−2) = 2, α(a−1, b−1, c−1) = 1,
α(a − 2, b − 2, c − 1) = 3, β(a, b, c) = 1, β(a − 3, b − 3, c − 2) = 1, β(a − 2, b − 1, c) = 2,
β(a− 1, b− 2, c− 2) = 3, β(a− 1, b− 1, c− 1) = 1, and β(a− 2, b− 2, c− 1) = 2. Then
the above equalities are equivalent to the following obvious equalities

11 · 1 · 1 = 2 · 2 · 2 + 1 · 3

and
11 · 1 · 1 = 3 · 3 + 1 · 2,

respectively.
The remaining case of odd b turns out to follow from the case of even b. Indeed, for

j = 0, 1, . . . , 5, verification of the case of odd b and a− c ≡ j (mod 6) is the same as the
verification of the case of even b and a− c ≡ 3 + j (mod 6).

Lemma 4.2. (a) For any integers a, b, c, and i = 1, 2, 3, the functions Φi(a, b, c) and
Ψi(a, b, c) also satisfy the recurrence (R2), i.e.

Φi(a, b, c)Φi(a− 2, b− 2, c) = Φ2
i (a− 1, b− 1, c)

+Φi(a, b, c+ 1)Φi(a− 2, b− 2, c− 1)
(4.5)

and

Ψi(a, b, c)Ψi(a− 2, b− 2, c) = Ψ2
i (a− 1, b− 1, c)

+Ψi(a, b, c+ 1)Ψi(a− 2, b− 2, c− 1),
(4.6)
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for i = 1, 2, 3.
(b) The function Φ1(a, b, c) and Ψ1(a, b, c) both satisfy the recurrence (R3), i.e.

Φ1(a, b, 0)Φ1(a− 2, b− 2, 0) = Φ2
1(a− 1, b− 1, 0)

+Φ1(a, b, 1)Φ1(3b− 2a, 2b− a, 1)
(4.7)

and

Ψ1(a, b, 0)Ψ1(a− 2, b− 2, 0) = Ψ2
1(a− 1, b− 1, 0)

+Ψ1(a, b, 1)Ψ1(3b− 2a, 2b− a, 1).
(4.8)

Moreover, for i = 2, 3, the pairs of functions (Φi(a, b, c),Φ5−i(a, b, c)) and (Ψi(a, b, c),
Ψ5−i(a, b, c)) both satisfy the recurrence (R6) for (F,�), i.e.

Φi(a, b, 0)Φi(a− 2, b− 2, 0) = Φ2
i (a− 1, b− 1, 0)

+Φi(a, b, 1)Φ5−i(3b− 2a, 2b− a, 1)
(4.9)

and

Ψi(a, b, 0)Ψi(a− 2, b− 2, 0) = Ψ2
i (a− 1, b− 1, 0)

+Ψi(a, b, 1)Ψ5−i(3b− 2a, 2b− a, 1),
(4.10)

for i = 2, 3.

Proof. (a) Arguing the same as the proof of Lemma 4.1, we only need to consider the case
of even b.

When b is even, we have also six subcases to distinguish, depending on the values
of a − c (mod 6). Again, we only show here the verification for the subcase a − c ≡ 0
(mod 6), and the other subcases can be obtained similarly.

Assume now that a − c is a multiple of 6. Similar to Lemma 4.1, we can cancel out
almost all the exponents of 2, 5 and 11 on two sides of the equalities (4.5) and (4.6).
These equalities are simplified to

10α(a, b, c)α(a− 2, b− 2, c) = α2(a− 1, b− 1, c)

+α(a, b, c+ 1)α(a− 2, b− 2, c− 1)
(4.11)

and

5β(a, b, c)β(a− 2, b− 2, c) = β2(a− 1, b− 1, c)

+β(a, b, c+ 1)β(a− 2, b− 2, c− 1),
(4.12)

respectively. By the definition of α(a, b, c) and β(a, b, c), one can verify easily the above
equalities.

(b) We only show that Φ1(a, b, c) and Ψ1(a, b, c) satisfy (R3), as the second statement
can be proven similarly.
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By definition of functions Φ1 and Ψ1, one readily verifies that

Φ1(a− 2, b− 2,−1) = Φ1(3b− 2a, 2b− a, 1) (4.13)

and
Ψ1(a− 2, b− 2,−1) = Ψ1(3b− 2a, 2b− a, 1), (4.14)

then (4.7) and (4.8) follow from part (a), for c = 0.

Lemma 4.3. a) For any integers a, b, c and i = 1, 2, 3, the functions Φi(a, b, c) and
Ψi(a, b, c) satisfy the recurrence (R4), i.e.

Φi(a, b, c)Φi(a− 2, b− 3, c− 2) = Φi(a− 1, b− 1, c)Φi(a− 1, b− 2, c− 2)

+Φi(a− 2, b− 2, c− 1)Φi(a, b− 1, c− 1)
(4.15)

and

Ψi(a, b, c)Ψi(a− 2, b− 3, c− 2) = Ψi(a− 1, b− 1, c)Ψi(a− 1, b− 2, c− 2)

+Ψi(a− 2, b− 2, c− 1)Ψi(a, b− 1, c− 1),
(4.16)

for i = 1, 2, 3.
(b) For i = 1, 2, 3, the pairs of functions (Φi(a, b, c),Ψ4−i(a, b, c)) and (Ψi(a, b, c),

Φ4−i(a, b, c)) all satisfy the recurrence (R5), i.e.

Φi(a, b, c)Φi(a− 2, b− 3, c− 2) = Ψ4−i(c, b− 1, a− 1)Φi(a− 1, b− 2, c− 2)

+Φi(a− 2, b− 2, c− 1)Φi(a, b− 1, c− 1)
(4.17)

and

Ψi(a, b, c)Ψi(a− 2, b− 3, c− 2) = Φ4−i(c, b− 1, a− 1)Ψi(a− 1, b− 2, c− 2)

+Ψi(a− 2, b− 2, c− 1)Ψi(a, b− 1, c− 1),
(4.18)

for i = 1, 2, 3.

Proof. (a) This part can be treated similarly to Lemma 4.1 and Lemma 4.2(a).
(b) From part (a), we only need to prove that

Ψi(a− 1, b− 1, c) = Φ4−i(c, b− 1, a− 1) (4.19)

and
Φi(a− 1, b− 1, c) = Ψ4−i(c, b− 1, a− 1), (4.20)

for i = 1, 2, 3. However, this follows directly from the definition of the functions Φi’s and
Ψi’s.

the electronic journal of combinatorics 24(4) (2017), #P4.19 21



5 Proof of Theorem 2.1

We will prove Theorem 2.1 in the same fashion as the proof of Theorem 3.1 in [5].

Proof of Theorem 2.1. We define the a function P (a, b, c) by setting

P (a, b, c) := a+ b+ c+ d+ e+ f,

where d := 2b − a − 2c, e := 3b − 2a − 2c, and f := |2a − 2b + c| as usual. Moreover,
one readily sees that P (a, b, c) equals 4b− 2c if a > c + d, and 8b− 4a− 4c if a 6 c + d.
In particular, P (a, b, c) is always even. We call P (a, b, c) the perimeter of our six graphs

A
(i)
a,b,c’s and F

(i)
a,b,c’s.

We need to show that

M(A
(i)
a,b,c) = Φi(a, b, c) and M(F

(i)
a,b,c) = Ψi(a, b, c), (5.1)

for i = 1, 2, 3, by induction of the value the perimeter P (a, b, c) of the six graphs.
For the base cases, one can verify easily (5.1) with the help of vaxmacs, a software

written by David Wilson3, for all the triples (a,b,c) satisfying at least one of the following
conditions:

(i) P (a, b, c) 6 14;

(ii) b 6 4;

(iii) c+ d = 2b− a− c 6 2.

For the induction step, we assume that (5.1) holds for all graphs A
(i)
a,b,c’s and F

(i)
a,b,c’s

having perimeter P (a, b, c) less than p, for some p > 16. We will prove (5.1) for all A-
and F -graphs with perimeter p.

By the base cases, we only need to show (5.1) for all graphs having the triple (a, b, c)
in the following domain

D := {(a, b, c) ∈ Z3 : P (a, b, c) = p, b > 5, c+ d > 3, d > 0, e > 0}. (5.2)

First, we partition D into four subdomains as follows

D1 := D ∩ {2 6 a 6 c+ d},

D2 := D ∩ {a 6 1},

D3 := D ∩ {a > c+ d, e > d},

and
D4 := D ∩ {a > c+ d, e < d}.

Next, we verify that (5.1) holds in each of the above subdomains.

3The software can be downloaded on the link http://dbwilson.com/vaxmacs/.
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First, we consider the case (a, b, c) ∈ D1. We divide further D1 into four subdomains
(not necessarily disjoint) by:

D1a := D1 ∩ {d > 2, c > 1},

D1b := D1 ∩ {d > 2, c = 0},
D1c := D1 ∩ {d > 1, c > 2},

and
D1d := D1 ∩ {d = 0, c > 2}.

If (a, b, c) ∈ D1a, then P (a − 2, b − 2, c) = p − 8, P (a − 1, b − 1, c) = P (a, b, c + 1) =
P (a− 2, b− 2, c− 1) = p− 4. Thus, by induction hypothesis, we have for i = 1, 2, 3

M(A
(i)
a−2,b−2,c) = Φi(a− 2, b− 2, c), (5.3)

M(A
(i)
a−1,b−1,c) = Φi(a− 1, b− 1, c), (5.4)

M(A
(i)
a,b,c+1) = Φi(a, b, c+ 1), (5.5)

M(A
(i)
a−2,b−2,c−1) = Φi(a− 2, b− 2, c− 1), (5.6)

M(F
(i)
a−2,b−2,c) = Ψi(a− 2, b− 2, c), (5.7)

M(F
(i)
a−1,b−1,c) = Ψi(a− 1, b− 1, c), (5.8)

M(F
(i)
a,b,c+1) = Ψi(a, b, c+ 1), (5.9)

and
M(F

(i)
a−2,b−2,c−1) = Ψi(a− 2, b− 2, c− 1). (5.10)

On the other hand, by Lemmas 3.3 and 4.2(a), we have M(A
(i)
a,b,c), M(F

(i)
a,b,c), Φi(a, b, c), and

Ψi(a, b, c) all satisfy the recurrence (R2), for i = 1, 2, 3. Therefore, by the above equalities

(5.3)–(5.10), we get M(A
(i)
a,b,c) = Φi(a, b, c) and M(F

(i)
a,b,c) = Ψi(a, b, c), for i = 1, 2, 3.

Similarly, if (a, b, c) ∈ D1b, D1c, or D1d, we get (5.1) by using the recurrences (R3)
and (R6) (see Lemmas 3.3(b) and 4.2(b)), (R4) (see Lemmas 3.4(a) and 4.3(a)), or (R5)
(see Lemmas 3.4(b) and 4.3(b)), respectively. This implies that (5.1) holds for any triples
(a, b, c) ∈ D1.

Next, we consider the case (a, b, c) ∈ D2 (i.e. we are assuming a < c + d). We reflect

the graph A
(i)
a,b,c about a vertical line, and get the graph F

(4−i)
f,e,d , for i = 1, 2, 3. Similarly,

we get graph A
(4−i)
f,e,d by reflecting the graph F

(i)
a,b,c about a vertical line. This means that

M(A
(i)
a,b,c) = M(F

(4−i)
f,e,d ) and M(F

(i)
a,b,c) = M(A

(4−i)
f,e,d ), (5.11)

for i = 1, 2, 3. Moreover, we can verify from the definition of the functions Φi(a, b, c) and
Ψi(a, b, c) that

Φi(a, b, c) = Ψ4−i(f, e, d) and Ψi(a, b, c) = Φ4−i(f, e, d), (5.12)
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for i = 1, 2, 3. By (5.11) and (5.12), we only need to show that

M(A
(i)
f,e,d) = Φi(f, e, d) and M(F

(i)
f,e,d) = Ψi(f, e, d), (5.13)

then (5.1) follows.
If e 6 4, then the triple (f, e, d) satisfy the condition (ii) in the base cases, thus (5.13)

follows. Then we can assume that e > 5. We now need to verify that the triple (f, e, d)
is in the domain D1. It is more convenient to re-write the domain D1 with all constraints
in terms of a, b, c as follows:

D1 = {(a, b, c) ∈ Z3 : P (a, b, c) = p; 2 6 a 6 2b− a− c; b > 5;

2b− a− c > 3; 2b− a− 2c > 0; 3b− 2a− 2c > 0}. (5.14)

We have in this case f = c+d−a > c+d−1 > 2 (we are assuming that a 6 1 and c+d > 3).
Moreover, the inequality f 6 2e − f − d is equivalent to a > 0, so (f, e, d) satisfies the
second constraint of the domain D1. This implies from the definition of the perimeter that
P (f, e, d) = 8e− 4f − 4d = 8b− 4a− 4c = p. Next, the third constraint follows from our
assumption e > 5. For the fourth constraint, we have 2e− f − d = 2b− a− c = c+ d > 3.
Finally, we have 2e− f − 2d = c > 0 and 3e− 2f − 2d = b > 0, which imply the last two
constraints. Thus, the triple (f, e, d) is indeed in D1. By the case treated above, we have
again (5.13). It means that (5.1) has just been verified for the case (a, b, c) ∈ D2.

The case (a, b, c) ∈ D3 can be treated similarly to the case (a, b, c) ∈ D1. We also
divide further D3 into three subdomains:

D3a := D3 ∩ {c > 2},

D3b := D3 ∩ {c = 1},

and
D3c := D3 ∩ {c = 0}.

If (a, b, c) ∈ D3,a,D3b, or D3c, we use the recurrences (R1) (see Lemmas 3.2 and 4.1),
(R2) (see Lemmas 3.3(a) and 4.2(a)), or (R3) and (R6) (see Lemmas 3.3(b) and 4.2(b)),
respectively.

Finally, we consider the case (a, b, c) ∈ D4 (i.e., we are assuming that a > c+ d). We

also reflect the graphs A
(i)
a,b,c’s and F

(i)
a,b,c’s over a horizontal line, and get the reflection

diagram as follows:
A

(1)
a,b,c → A

(1)
b,a,f ,

A
(2)
a,b,c → A

(3)
b,a,f ,

A
(3)
a,b,c → A

(2)
b,a,f ,

F
(1)
a,b,c → F

(1)
b,a,f ,

F
(2)
a,b,c → F

(3)
b,a,f ,
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F
(3)
a,b,c → F

(2)
b,a,f .

Moreover, one readily gets from the definition of the functions Φi(a, b, c) and Ψi(a, b, c)
that

Φ1(a, b, c) = Φ1(b, a, f),

Φ2(a, b, c) = Φ3(b, a, f),

Φ3(a, b, c) = Φ2(b, a, f),

Ψ1(a, b, c) = Ψ1(b, a, f),

Ψ2(a, b, c) = Ψ3(b, a, f),

and
Ψ3(a, b, c) = Ψ2(b, a, f).

Therefore, we only need to verify that

M(A
(i)
b,a,f ) = Φi(b, a, f) and M(F

(i)
b,a,f ) = Ψi(b, a, f), (5.15)

for i = 1, 2, 3, and (5.1) follows.
If a 6 4 or 2a− b− f = b− c 6 2, then (b, a, f) falls into one of the triples in our base

cases, and (5.15) follows. Therefore we can assume that a > 4 and b − c > 3. Similar
to the case when (a, b, c) ∈ D2, if c > 1, one readily verifies that (b, a, f) ∈ D3; and if
c = 0, it is easy to see that (b, a, f) ∈ D1. Then, by the cases treated above, we obtain
also (5.15).

6 Proofs of Theorems 1.1 and 1.3

Before going to the proofs of Theorems 1.1 and 1.3, we quote the following useful lemma
that was first introduced in [12] (see Lemma 3.6(a)).

Lemma 6.1 (Graph Splitting Lemma). Let G be a bipartite graph, and let V1 and V2 be
the two vertex classes..

Assume that an induced subgraph H of G satisfies following two conditions:

(i) (Separating Condition) There are no edges of G connecting a vertex in
V (H) ∩ V1 and a vertex in V (G−H).

(ii) (Balancing Condition) |V (H) ∩ V1| = |V (H) ∩ V2|.

Then
M(G) = M(H) M(G−H). (6.1)
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1 2
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Figure 6.1: Illustrating the proof of Theorem 1.1.

Proof of Theorem 1.1. We split the graph TRa,b into three subgraphs G1, G2 and G3 by
two zigzag cuts as in Figure 6.1, for a = 2 and b = 6. One readily sees that G1 satisfies
the conditions in Graph-splitting Lemma 6.1 as an induced subgraph of G, and G2 in
turn satisfies the conditions of the lemma as an induced subgraph of G−G1. Therefore,
we obtain

M(TRa,b) = M(G1) M(G−G1) = M(G1) M(G2) M(G3). (6.2)

It is easy to see that G2 has a unique perfect matching (see the bold edges in Figure

6.1), and the graph G1 and G2 are isomorphic to A
(3)
2a,3a,2a and F

(1)
2a,3a,2a, respectively. By

Theorem 2.1, we obtain

M(Ga,2a,b) = M(A
(3)
2a,3a,2a) M(F

(3)
2a,3a,2a)

= 2g(2a,3a,2a−1)+g(2a,3a,2a+1)52g(2a,3a,2a)112q(2a,3a,2a)

= 2a(a+1)+a(a−1)52a2112ba
2

4
c

= 102a211b
a2

2
c, (6.3)

then the theorem follows.

Proof of Theorem 1.3. The proof is illustrated in Figure 6.2, for m = 5, n = 7, h1 = 4
and h2 = 3. Consider the rightmost subgraph G1 of TAh1,h2m,n , which is restricted by a
dotted contour in Figure 6.2. By Graph Splitting Lemma 6.1, we obtain

M(TAh1,h2m,n ) = M(TAh1,h2m,n −G1) M(G1). (6.4)
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Next, we consider the graph G′ obtained from TAh1,h2m,n − G1 by removing horizontal
forced edges (the circled ones on the right of G1 in Figure 6.2). Applying Graph-splitting
Lemma 6.1 again to the second subgraph G2 of TAh1,h2m,n , which is restricted by a dotted
contour, we have

M(G′) = M(G′ −G2) M(G2). (6.5)

Repeat i := bh1+1
2
c − 2 more times the above process, we get a graph G and

M(TAh1,h2m,n ) = M(G)
i∏

j=1

M(Gj). (6.6)

Apply the same process for the lower part of G. We get a graph G (the subgraph
restricted by the bold contour in Figure 6.2) and

M(G) = M(G)
k∏
j=1

M(Hj), (6.7)

where k = bh2+1
2
c, and Hj is the j-th subgraph (from the left) restricted by a dotted

contour in the lower part of G.
Combining (6.6) and (6.7), we deduce

M(TA
(1)
m,n,h1,h2

) = M(G)
i∏

j=1

M(Gj)
k∏
j=1

M(Hj). (6.8)

It is easy to see that M(Gj) = 1 if h1 is odd, and 3 if h1 is even, for any j = 1, 2, . . . , i.
Similarly, M(Hj) = 1 if h2 is odd, and 3 if h2 is even, for any j = 1, 2, . . . , k. Thus,

M(TAh1,h2m,n ) = 3τ(h1,h2) M(G). (6.9)

On the other hand, G is isomorphic to the graph A
(1)
a,b,c, where a = n − bh2+1

2
c + 1,

b = m−bh2+1
2
c+ 1 and c = bh1+1

2
c. By (6.9) and Theorem 2.1, the equality (1.6) follows.

The equality (1.7) can be proved analogously.

Next, we consider a variation of Theorem 1.3 as follows. Instead of using horizontal
trimming lines as in Theorem 1.3, we consider two new stair-shaped trimming lines. The
structure of each level in the new trimming lines is similar to the old ones (i.e. is a zigzag
line with alternatively bumps and holes of size 2), and each two consecutive levels are
connected by a “staircase” (see Figure 6.3). Assume that h1 is the distance between the
top of the Aztec rectangle and the highest level of the upper trimming line, and h2 is
the distance between the bottom of the Aztec rectangle and the lowest level of the lower
trimming line. Again, by Graph Splitting Lemma 6.1(a), we can cut off small subgraphs
with the same structure as that of Gi and Hj. We get again the final graph isomorphic

to the graph A
(1)
a,b,c, with a, b, c defined as in the proof of Theorem 1.3 (see Figure 6.4).

Therefore, we have the following result.
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Figure 6.2: Illustrating the proof of Theorem 1.3.

h
1

h 2

Figure 6.3:

Theorem 6.2. Assume that bh1+1
2
c + bh2+1

2
c = 2(n − m). Then the number of perfect

matchings of the Aztec rectangle trimmed by two stair-shaped lines has all of its prime
factors less than or equal to 13.

The work of finding the explicit formulas for the numbers of perfect matchings (as
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well as the precise definition of the new trimmed Aztec rectangle) in Theorem 6.2 will be
left as an exercise.

G

G
GG

H
H

HH

1

1

2

2

3

3

4

4

Figure 6.4: Illustrating the proof of Theorem 6.2.

7 Relation between the graph TRa,b and Hexagonal Dungeons

We consider the hexagonal dungeon HDa,2a,b introduced by Blum [23] (see detailed defi-
nition of the hexagonal dungeon in [5]). Figure 7.1 shows the hexagonal dungeon HD2,4,6.
We consider the dual graph of HDa,2a,b (i.e. the graph whose vertices are the small right
triangles in HDa,2a,b and whose edges connect precisely two triangles sharing an edge),
which is denoted by Ga,2a,b. The upper graph with solid edges in Figure 7.3 illustrates
the dual graph of HD2,4,6. It has been proven by Ciucu and the author in [5] that the

number of perfect matchings of Ga,2a,b is given by 132a214b
a2

2
c, which is similar to the num-

ber of perfect matchings of TRa,b (102a211b
a2

2
c). This suggests the existence of a hidden

connection between TRa,b and the dual graph Ga,2a,b of the hexagonal dungeon.
If we assign some weights to the edges of a graph G, then we use the notation M(G) for

the sum of weights of the perfect matchings of G, where the weight of a perfect matching
is the product of weights of its constituent edges. We call M(G) the matching generating
function of the weighted graph G.

Next, we quote a well-known subgraph replacement trick called urban renewal, which
was first discovered by Kuperberg, and its variations found by Ciucu [1].

Lemma 7.1 (Urban renewal). Let G be a weighted graph. Assume that G has a subgraph
K as one of the graphs on the left column in Figure 7.2, where only white vertices can
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Figure 7.1: The hexagonal dungeon of sides 2, 4, 6, 2, 4, 6 (in cyclic order, starting from
the western side). This Figure first appeared in [5].

Figure 7.2: Urban renewal trick.

have neighbors outside K, and where all edges have weight 1. Let G′ be the weighted
graph obtained from G by replacing K by its corresponding graph K ′ on the right column
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Figure 7.3: Deforming the dual graph of HD2,4,6 into a weighted graph on the square
grid.

of Figure 7.2, where all dotted edges have weight 1
2
, and where the shaded vertices are the

new ones which were not in G. Then we always have M(G) = 2 M(G′).

Next, we apply suitable replacement rules in Lemma 7.1 to Ga,2a,b around the dotted
rectangles as in the upper graph in Figure 7.3). Then we deform the resulting graph
into a weighted graph Ga,2a,b on the square lattice (see the lower graph in Figure 7.3; the
bold edges have weight 1

2
). We want to emphasize that even though the graphs Ga,2a,b

and TRa,b have the same shape, their weight assignments are different. This means that
Theorem 1.1 can not be deduced from the work in [5], and vice versa.

We now want to consider a common generalization of the weight assignments in the
graphs Ga,2a,b and TRa,b as follows. Assume that x, y, z are three indeterminate weights.
We assign weights to edges of the lattice B so that each cross pattern is weighted as
in Figure 7.4. Denote by A

(i)
a,b,c(x, y, z)’s and F

(i)
a,b,c(x, y, z)’s the corresponding weighted
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Figure 7.4: The weight assignment for each cross pattern.

versions of the graphs A
(i)
a,b,c’s and F

(i)
a,b,c’s, for i = 1, 2, 3, respectively.

Define the weighted versions of the functions α(a, b, c) and β(a, b, c) by

α(a, b, c;x, y, z) =


(x+2yz)yz

x2
if 3b+ a− c ≡ 5 (mod 6);

yz
x

if 3b+ a− c ≡ 3 (mod 6);
x+yz
x

if 3b+ a− c ≡ 1 (mod 6);

1 otherwise

(7.1)

and

β(a, b, c;x, y, z) =


(x+2yz)

yz
if 3b+ a− c ≡ 1 (mod 6);

x
yz

if 3b+ a− c ≡ 3 (mod 6);
(x+yz)x
y2z2

if 3b+ a− c ≡ 5 (mod 6);

1 otherwise.

(7.2)

Our data suggests that

Conjecture 7.2. The matching generating functions of the weighted graphs
A

(i)
a,b,c(x, y, z)’s all have form

α(a, b, c;x, y, z)2X(x2 + 2xyz + 2y2z2)Y (2x2 + 5xyz + 4y2z2)ZxTyQzK , (7.3)

for some X, Y, Z, T,Q,K depending on only a, b, c. Similarly, the matching generating
functions of F

(i)
a,b,c(x, y, z)’s all have form

β(a, b, c;x, y, z)2X
′
(x2 + 2xyz + 2y2z2)Y

′
(2x2 + 5xyz + 4y2z2)Z

′
xT

′
yQ

′
zK

′
, (7.4)

for some X ′, Y ′, Z ′, T ′, Q′, K ′ depending on only a, b, c.

Denote by TRa,b(x, y, z) the corresponding weighted version of the graph TRa,b. If
Conjecture 7.2 is true, then by the graph-splitting trick in the proof of Theorem 1.1, we
can implies that the matching generating function of TRa,b(x, y, z) is also given by powers
of 2, x, y, z, (x2 + 2xyz + 2y2z2), and (2x2 + 5xyz + 4y2z2).
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