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Abstract

A linear chord diagram of size n is a partition of the set {1, 2, . . . , 2n} into sets of
size two, called chords. From a table showing the number of linear chord diagrams
of degree n such that every chord has length at least k, we observe that if we proceed
far enough along the diagonals, they are given by a geometric sequence. We prove
that this holds for all diagonals, and identify when the effect starts.

1 Introduction

A linear chord diagram is a matching of {1, 2, . . . , 2n}. Chord diagrams arise in many
different contexts from the study of RNA [5] to knot theory [6]. In combinatorics chord
diagrams show up in the ménage problem [4], partitions [2], and interval orders [3]. In
many of the situations given above the objects being paired lie on a circle and so each pair
is a chord. In this paper the focus will be on linear chord diagrams which can be obtained
from a chord diagram by cutting the circle at some point. We will address diagrams where
there is a specified minimum length for each chord. From a table counting the number of
such diagrams for n, the size, and k, the minimum length, we observe that if we proceed
far enough along the diagonals, they are given by a geometric sequence. We prove that
this holds for all diagonals, and identify when the effect starts.

2 Statement of Result

A linear chord diagram of size n is a partition of the set {1, 2, . . . , 2n} into parts of size
2. We can draw linear chord diagrams with arcs connecting the partition blocks.

1 2 3 4 5 6

the electronic journal of combinatorics 24(4) (2017), #P4.20 1



Table 1: Counting chord diagram with long chords
n 1 2 3 4 5 6 7 8 9 10 11

|M(1)
n | 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575

|M(2)
n | 0 1 5 36 329 3655 47844 721315 12310199 234615096 4939227215

|M(3)
n | 0 0 1 10 99 1146 15422 237135 4106680 79154927 1681383864

|M(4)
n | 0 0 0 1 20 292 4317 69862 1251584 24728326 535333713

|M(5)
n | 0 0 0 0 1 40 876 16924 332507 6944594 156127796

|M(6)
n | 0 0 0 0 0 1 80 2628 67404 1627252 39892549

|M(7)
n | 0 0 0 0 0 0 1 160 7884 269616 8075052

|M(8)
n | 0 0 0 0 0 0 0 1 320 23652 1078464

|M(9)
n | 0 0 0 0 0 0 0 0 1 640 70956

|M(10)
n | 0 0 0 0 0 0 0 0 0 1 1280

|M(11)
n | 0 0 0 0 0 0 0 0 0 0 1

The first four rows can be found in the OEIS under the identification numbers A001147,
A000806, A190823, and A190824, respectively.

If c = {sc, ec} where sc < ec is a block of a linear chord diagram, we say that sc is the
start point of c and ec is the end point. The length of c is ec − sc.

We say that a chord c covers the integer i if sc < i < ec. We say that a chord c covers
a chord d if it covers sd and ed.

Definition 1 Let Dn denote the set of all linear chord diagrams with n chords. Let M(k)

denote the class of all linear chord diagrams such that every chord has length at least k.
Let M(k)

n denote the set of all linear chord diagrams with n chords such that every chord
has length at least k.

Table 1 shows the sizes ofM(k)
n for various n and k. If k is fixed,M(k)

n can be computed
using on the order of 2kn2 arithmetic operations. For k = 1,M(1)

n simply counts all linear
chord diagrams, which is given by

M(1)
n =

(2n)!

(n!2n)
.

For k = 2 and k = 3, an = |M(2)
n | and bn = |M(3)

n | can be computed using linear
recurrences:

an = (2n− 1)an−1 + an−2

bn = (2n+ 2)bn−1 − (6n− 10)bn−2 + (6n− 16)bn−3 − (2n− 8)bn−4 − bn−5.

The recurrence for |M(2)
n |, can be found in [1]; the recurrence for |M(3)

n | is new. Con-

jecturally, there is a linear recurrence for every sequence M(k)
n where k is fixed: We will

address these matters elsewhere.
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Here we address the diagonals of Table 1. The shaded squares highlight a pattern.
For each shaded square the number in the square one below and one to the right of it is
exactly (n − k + 1) times the number in the current square. This pattern holds for all
such squares:

Theorem 2 Let n and k be positive integers such that n > 3(n − k) and n > k. Then

|M(k+1)
n+1 | = (n− k + 1)|M(k)

n |.

3 Outline of the proof

We consider each diagonal separately. We refer to the ith diagonal as all the entries such
that (n−k+1) = i. For any entryM(k)

n on the ith diagonal we create (n−k+1) functions

αn,k,j (j ∈ {0, . . . , n − k}) which are injective into M(k+1)
n+1 . We show that the images of

these functions are disjoint and coverM(k+1)
n+1 . And so there are (n−k+1) times as many

elements in M(k+1)
n+1 as there are in M(k)

n .
To create the bijection αn,k,j we consider the middle 2(n − k) indices. Here is an

example from an element of M(4)
6 :

1 2 3 4 5 6 7 8 9 101112

Any chords starting or ending in the middle indices are highlighted:

1 2 3 4 5 6 7 8 9 101112

A new chord is inserted covering only the indices in the middle:

1 2 3 4 5 6 7 8 9 1011121314

the electronic journal of combinatorics 24(4) (2017), #P4.20 3



The new chord then has its start point iteratively swapped with the starting points of
the unbolded chords, starting with the one that started last and stopping when there are
j unswapped unbolded chords:

1 2 3 4 5 6 7 8 9 101112

D

1 2 3 4 5 6 7 8 9 1011121314

α6,4,2(D)

1 2 3 4 5 6 7 8 9 1011121314

α6,4,1(D)

1 2 3 4 5 6 7 8 9 1011121314

α6,4,0(D)

4 Details of the proof

Definition 3 Let C be a linear chord diagram. We define Ln,k = {1, 2, . . . , k}, Mn,k =
{k + 1, k + 3, . . . , 2n− k}, and Rn,k = {2n− k + 1, 2n− k + 1, . . . , 2n}. Let Cn,k denote
the set of all chords c ∈ C such that sc ∈Mn,k or ec ∈Mn,k, and SC denote the set of all
chords c ∈ C such that c /∈ Cn,k.

Lemma 4 Given any linear chord diagram in M(k)
n such that n > 3(n − k) and n > k,

there is no chord c such that sc, ec ∈Mn,k.

Proof. If a chord has both its start point and end point inside Mn,k, then the largest
length it could have is when it starts at k+1 and ends at 2n−k. So the maximum length
any such chord could have is 2n−2k−1. But n > 3(n−k) which is equivalent to 3k > 2n.
Thus the maximum length any such chord could have is 2n−2k−1 6 3k−2k−1 = k−1.
But every chord must have length at least k. Thus there is no chord such that its indices
of the start point and end point lie inside Mn,k

Lemma 5 Given any linear chord diagram in M(k)
n such that n > 3(n − k) and n > k,

Cn,k contains exactly n− k chords that start in Mn,k and n− k chords that end in Mn,k.

Proof.
We first observe that no chord has its end index in Ln,k, since it if did, its maximum

length would be k − 1. Similarly, no chord has its start index in Rn,k since it if did, its
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maximum length would be 2n− (2n− k+ 1) = k− 1. Thus every index in Ln,k is a start
index, and every index in Rn,k is an end index. We also observe that |Ln,k| = |Rn,k|.

Consider all chords in SC . Since they neither start nor end in Mn,k, they must start
in Ln,k and end in Rn,k. Thus |Ln,k| − |SC | chords start in Ln,k and end in Mn,k, and
|Rn,k| − |SC | chords end in Rn,k and start in Mn,k. By Lemma 4, every chord in M either
starts in Ln,k or ends in Rn,k. Thus Mn,k has the same number of start indices as end
indices, and that number is n− k.

Lemma 6 Given any linear chord diagram C ∈ M(k+1)
n+1 such that n > 3(n − k) and

n > k, let a be the chord whose end index is 2n − k + 2 (i.e. the smallest element in
Rn+1,k+1). Let m be the number of chords b ∈ SC such that sb < sa. Then m < n− k+ 1.

Proof.
Let M∗ be the ordered set of all chords c ∈ Cn+1,k+1 such that ec ∈Mn+1,k+1. We say

k < c for k, c ∈ M∗ if ek < ec. Observe that M∗ is completely ordered. By Lemma 5, we
have |M∗| = n − k. We may relabel the chords in M∗ to be {c1, c2, . . . , cn−k}. Observe
that by Lemma 5, eci 6 (k + 1) + (n − k) + i = n + i + 1. Since `ci = eci − sci > k + 1
we have sci 6 n + i + 1 − (k + 1) = n − k + i. Let mi be the number of chords a ∈ SC

such that sa < sci . Then m1 < n− k + 1. The largest number of start indices to the left
of sc2 is n − k + 1, but if it were that large, one of them must be the start of c1. Thus
m2 < n− k + 1. By induction we have mi < n− k + 1 for all i.

Now suppose m > n− k+ 1. Then sci < sa for all i since otherwise there would exists
an i such that mi > n− k + 1. Thus sa > (n− k + 1) + (n− k) + 1 = 2n− 2k + 2. Thus
`a is bounded above by 2n − k + 2 − (2n − 2k + 2) = k < k + 1 which contradicts that
fact that every chord has length at least k + 1.

Thus m < n− k + 1.

Definition 7 We define αn,k,i for i ∈ {0, . . . , n − k}, n > k, and n > 3(n − k) to be a

map from M(k)
n to Dn as follows. Given a diagram C, we insert a new chord c with start

point right before Mn,k and end point right after Mn,k to get diagram C∗. We then swap
the start index of the new chord with the closest start index of a chord in SC to its left.
We continue to swap until there are i start indices of chords in SC to its left.

Observe that since n > 3(n− k), the number of chords in S is at least n− (2n− 2k) >
3(n− k)− 2(n− k) = n− k. Thus every α exists and is well defined.

Example 1 Obtaining C∗ from C is shown below:

1 2 3 4 5 6 7 8 9 101112

C

1 2 3 4 5 6 7 8 9 1011121314

C∗
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Here is α3,2,0 applied to an element of M(2)
3 :

1 2 3 4 5 6 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Here is α4,3,1 applied to an element of M(3)
4 :

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

In these diagrams, the thick lines are chords in Cn,k, the thin chords are in SC and the
greyed dashed chord is the new inserted one.

Definition 8 We define βn,k for n > k, and n > 3(n − k) to be a map from M(k)
n to

Dn−1 as follows. Given a diagram C, we denote c to be the chord with end point right
after Mn,k. We then swap the start index of the new chord with the closest start index of
a chord in SC to its right. We continue to swap until there are no more start indices of
chords in SC to its right. We then remove chord c.

Lemma 9 αn,k,i

(
M(k)

n

)
⊆M(k+1)

n+1 .

Proof. We see that the result will have n + 1 chords, so it suffices to show that every
chord has length at least k + 1.

Consider a chord c in Cn,k. If it has sc ∈Mn,k and ec ∈ Rn,k, its length is increased by
1, since we inserted a index between Mn,k and Rn,k. Otherwise ec ∈ Mn,k and sc ∈ Ln,k,
in which case its length is increased by 1, since we inserted a index between Mn,k and
Ln,k. Since the length of such a chord had to be at least k to begin with, it must have at
least length k + 1 after applying αn,k,i.

Consider the chord we just inserted. It will cover all the indices in Mn,k, and every
time we swap, another index will be covered. Since there are a total of n chords before
inserting, of which Mn,k contains 2n − 2k of them, and it swaps until there are i chords
to its left in S, it swapped with at least n − (2n − 2k) − i. Recall that the length of
the chord will be the number of indices it covers plus 1. Thus its length is at least
1 + (2n− 2k) + (n− (2n− 2k)− i) = 1 + n− i > 1 + n− (n− k) = k + 1, as desired.

Now consider a chord in SC .
There are two cases, either it had its start index swapped at some point or it didn’t.

If it didn’t, then it covers the new chord c, and has length greater then c’s length. Thus
the chord has length at least k + 1 as desired.

If it did swap, then either its starting index increased by 1 or more.
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Suppose that its starting index increased by 1. Then the number of indices that lie
in between its endpoints has increased by 1. When we inserted c, it was increased by 2,
but then we moved the starting index forward by 1, causing it to lose 1. Thus its length
increased by exactly 1. Since it must have had length k to begin with it now has length
at least k + 1.

Suppose that its starting index increased by more then 1. Let a be its original starting
index after inserting c and b be its starting index after inserting and swapping c. Then the
index b− 1 is the starting index of some point in Mn+1,k+1, since b− a > 1 and otherwise
b would have occurred sooner. Thus the chord with starting index b − 1 has length at
least k + 1. Since the ending index of our chord lies in R which is at least 1 more then
the ending index of the chord at b− 1, the length of our chord after swapping is at least
k + 1.

Thus αn,k,i

(
M(k)

n

)
⊆M(k+1)

n+1 as desired.

Lemma 10 βn,k

(
M(k)

n

)
⊆M(k−1)

n−1 .

Proof. We see that the result will have n − 1 chords, so it suffices to show that every
chord has length at least k − 1.

Consider a chord r in Cn,k. If it has sr ∈ Mn,k and er ∈ Rn,k, its length is decreased
by 1, since we removed the first index in Rn,k. Otherwise er ∈ M and sr ∈ L, in which
case its length is decreased by 1, since we removed the last index from Ln,k. Since the
length of such a chord had to be at least k to begin with, it must have at least length
k − 1 after applying βn,k.

Now consider a chord r in SC . We break into two cases:
Case 1: sr was swapped with sc at some point. Then sr has decreased by at least 1,

which means that `r increased by at least 1. But when we remove sc at the end, `r is
deceased by 2. Thus `r never deceases by more then 1. Since `r > k, the length of r must
be at least length k − 1 after applying βn,k.

Case 2: sr did not swap with sc at some point. Then sr < sc, which means that `r is
at least 2 + `c = k + 2 since `c has length at least k. When we remove sc a the end, `r is
deceased by 2. Thus `r never deceases by more than 2. Since `r > k + 2, the length of r
must be at least length k after applying βn,k.

Thus βn,k

(
M(k)

n

)
⊆M(k−1)

n−1 as desired.

Proof (of theorem 2).

We shall proceed by constructing (n− k + 1) injective function from M(k)
n to M(k+1)

n+1

such that their images partition M(k+1)
n+1 . Let C ∈ M(k)

n . Let En,k,i be the set of all

linear chord diagrams in M(k)
n such that the chord c with es = 2n − k + 1 (i.e. the

first index after Mn,k) has i start points of chords in SC to its left. Then by lemma

6 the collection {En+1,k+1,0, . . . , En+1,k+1,n−k−1} partitions M(k+1)
n+1 . By construction we

see that Im(αn,k,i) ⊆ En+1,k+1,i. We also see that both βn+1,k+1|En+1,k+1,i
◦ αn,k,i and
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αn,k,i ◦ βn+1,k+1|En+1,k+1,i
are the identity map. Thus there is a bijection between M(k)

n

and En,k,i for every i. Thus

|M(k+1)
n+1 | =

n−k∑
i=0

|αn,k,i

(
M(k)

n

)
| = (n− k + 1)|M(k)

n |,

as desired.
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