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Abstract

Building everything from scratch, we give another proof of Propp and Roby’s
theorem saying that the average antichain size in any reverse operator orbit of the
poset [m] × [n] is mn

m+n
. It is conceivable that our method should work for other

situations. As a demonstration, we show that the average size of antichains in any
reverse operator orbit of [m] ×Kn−1 equals 2mn

m+2n−1 . Here Kn−1 is the minuscule
poset [n − 1] ⊕ ([1] ⊔ [1]) ⊕ [n − 1]. Note that [m] × [n] and [m] × Kn−1 can be
interpreted as sub-families of certain root posets. We guess these root posets should
provide a unified setting to exhibit the homomesy phenomenon defined by Propp
and Roby.

Keywords: Antichain, homomesy, join-separate rule, reverse operator, root posets.

1 Introduction

Recently, the study of orbit structure of the reverse operator, which is also called rowmo-
tion [12] or Fon-Der-Flaass action [10] in the literature, has emerged at the front lines of
inquiry. This paper introduces a method that aims to calculate the sizes of antichains in
each orbit. Our method builds everything from scratch, and it turns out to be effective
in dealing with certain root posets coming from the classical Lie algebras.

Now let us be more precise. A subset I of a finite poset (P,6) is called an ideal if x 6 y
in P and y ∈ I implies that x ∈ I. Let J(P ) be the set of ideals of P , partially ordered by
inclusion. A subset A of P is an antichain if its elements are mutually incomparable. We
collect the antichains of P as An(P ). For any x ∈ P , let I6x = {y ∈ P | y 6 x}. Given
an ideal I of P , set Γ(I) := max(I). For an antichain A of P , let I(A) =

⋃

a∈A I6a. The
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reverse operator Ψ is defined by Ψ(A) = min(P \ I(A)). This operator was introduced
on hypergraphs by Duchet in 1974 [1], and studied on [m] × [n]—the product of two
chains—by Fon-Der-Flaass in 1993 [3]. Since antichains of P are in bijection with ideals
of P , the reverse operator acts on ideals of P as well. For convenience, we may just call
an ΨP -orbit of antichains or ideals an orbit.

Recently, the following result has been established in [6].

Theorem A. (Propp and Roby) The average size of antichains in any Ψ-orbit of
[m]× [n] equals mn

m+n
.

Later, Theorem A has been extended uniformly to all minuscule posets by Rush and
Wang [11]. Recall that as been classified by Proctor [5], the minuscule posets include two
exceptions J2([2]× [3]), J3([2]× [3]), and the following three infinite families:

• [m]× [n];

• Hn := [n]× [n]/S2;

• Kr := [r]⊕ ([1] ⊔ [1])⊕ [r] (the ordinal sum, see page 246 of Stanley [8]).

The first aim of this paper is to give another proof of Theorem A. Our approach builds
everything from scratch. It is conceivable that the method developed in Sections 3 and 4
can be applied to more general situations. As a demonstration, we report the following.

Theorem B. The average size of antichains in any Ψ-orbit of [m]×Kn−1 equals 2mn
m+2n−1

.

Theorem B follows from Propositions 17 and 22. In Section 7, we will recall certain
root posets ∆(1). They consists of the infinite families [m] × [n], Hn, [m] × Kn−1, and
twenty other posets. By Theorems A and B, and by checking the twenty posets directly,
one knows that the average size of antichains in any Ψ-orbit of ∆(1) equals #∆(1)

d+1
, where

d is the maximum height of the roots in ∆(1).
The paper is outlined as follows: Section 2 prepares necessary preliminaries. Section

3 aims to prove Theorem A via another method, where the proof of a key lemma is
postponed to Section 4. Sections 5 and 6 are devoted to proving Theorem B. More
precisely, they handle orbits in [m]×Kn−1 of type I and II, respectively. Section 7 recalls
the root posets ∆(1), and raises two conjectures pertaining to their orbit structure. Our
conjecures simply aim to guess that ∆(1) would provide a unified setting to exhibit the
homomesy phenomenon invented by Propp and Roby.

2 Preliminary results

Throughout this paper, we let N = {0, 1, 2, . . .}, and P = {1, 2, . . .}. For each k ∈ P,
the poset [k] := {1, 2, . . . , k} is equipped with the order-reversing involution c such that
c(i) = k + 1− i. For s, t ∈ P such that s < t, [s, t] := {s, s+ 1, . . . , t}.
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Figure 1: The labeled Hasse diagram of K3

As on page 244 of Stanley [8], a finite poset P is said to be graded if every maximal
chain in P has the same length. In this case, there is a unique rank function r from P
to the positive integers P such that all the minimal elements have rank 1, and r(x) =
r(y) + 1 if x covers y. We always assume that the finite poset P is graded. Let d be the
maximum value of r on P . For 1 6 j 6 d, let Pj be the j-th rank level of P . That is,
Pj = {p ∈ P | r(p) = j}. Set P0 to be the empty set. Note that each Pj is an antichain.
Put Li =

⊔i

j=1 Pj for 1 6 i 6 d, and let L0 be the empty set. We call those Li rank ideals.
Recall that the reverse operator acts on ideals as well. For instance, ΨP (Li) = Li+1,
0 6 i < d and ΨP (Ld) = L0.

It is well known that a general ideal of [m] × P can be identified with (I1, . . . , Im),
where each Ii is an ideal of P and Im ⊆ · · · ⊆ I1. We say that the ideal (I1, . . . , Im) is full
rank if each Ii is a rank ideal in P . Let O(I1, . . . , Im) be the Ψ[m]×P -orbit of (I1, . . . , Im).
The following lemma is taken from Section 2 of [2]. One may also verify it directly from
the definition of Ψ.

Lemma 1. Keep the notation as above. Then for any n0 ∈ N, ni ∈ P (1 6 i 6 s) such
that

∑s

i=0 ni = m, we have

Ψ[m]×P (L
n0

d , L
n1

i1
, . . . , Lns

is
) = (Ln0+1

i1+1 , L
n1

i2+1, . . . , L
ns−1

is+1 , L
ns−1
0 ), (1)

where 0 6 is < · · · < i1 < d, Ln0

d denotes n0 copies of Ld and so on.

In view of Lemma 1, the ideal (I1, . . . , Im) is full rank if and only if each ideal in its
Ψ[m]×P -orbit is full rank. Therefore, it makes sense to say that the orbit O(I1, . . . , Im) is
of type I if (I1, · · · , Im) is full rank, and to say it is of type II otherwise.

In this paper, we care most about the case that P = Kn−1, whose elements are labelled
by 1, 2, . . . , n − 1, n, n′, n + 1, . . . , 2n − 2, 2n − 1. Fig. 1 illustrates the labeling for
K3. Note that Li (0 6 i 6 2n − 1) are all the full rank ideals. For instance, we have
Ln = {1, 2, . . . , n, n′}. Moreover, we put In = {1, . . . , n−1, n} and In′ = {1, . . . , n−1, n′}.
The following lemma is taken from Section 2 of [2]. Again, it can be checked directly.
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Figure 2: NE-SE paths for three ideals of [2]× [3]

Lemma 2. Fix n0 ∈ N, ni ∈ P (1 6 i 6 s), mj ∈ P (0 6 j 6 t) such that
∑s

i=0 ni +∑t

j=0mj = m. Take any 0 6 jt < · · · < j1 < n 6 is < · · · < i1 < 2n− 1, we have

Ψ[m]×Kn−1
(Ln0

2n−1, L
n1

i1
, . . . , Lns

is
, Im0

n , Lm1

j1
, . . . , Lmt

jt
) =

{

(Ln0+1
i1+1 , L

n1

i2+1, . . . , L
ns−1

is+1 , I
ns

n′ , L
m0

j1+1, L
m1

j2+1, . . . , L
mt−1

jt+1 , L
mt−1
0 ) if j1 < n− 1;

(Ln0+1
i1+1 , L

n1

i2+1, . . . , L
ns−1

is+1 , L
ns
n , I

m0

n , Lm1

j2+1, . . . , L
mt−1

jt+1 , L
mt−1
0 ) if j1 = n− 1.

Keeping the notation of Lemma 2, one sees that any non-full-rank ideal of [m]×Kn−1

either has the form
(Ln0

2n−1, L
n1

i1
, . . . , Lns

is
, Im0

n , Lm1

j1
, . . . , Lmt

jt
) (2)

or the form
(Ln0

2n−1, L
n1

i1
, . . . , Lns

is
, Im0

n′ , L
m1

j1
, . . . , Lmt

jt
). (3)

We say that the above two ideals are dual to each other and use “∼” to denote this
relation. It is immediate from Lemma 2 that I ∼ I ′ implies that Ψ(I) ∼ Ψ(I ′), and thus
Ψi(I) ∼ Ψi(I ′) for any i ∈ Z. In such a case, we say that the two orbits are dual to each
other, and write this relation as O(I) ∼ O(I ′).

3 Another proof of Propp and Roby’s theorem

This section aims to give another proof of Theorem A. Let us build everything from
scratch. We use an NE-SE path to separate an ideal I from its complement. Here NE
stands for northeast, and SE stands for southeast. Such a path becomes a binary word
when we interpret an NE step by 1 and a SE step by 0. This process associates a binary
word Θ(I) to each I ∈ J([m]× [n]).

Example 3. We present the NE-SE paths in blue lines for three lower ideals of [2]× [3]
in Fig. 2. Their associated binary words are 01101, 10110 and 11001, respectively.

Let B(m,n) be the set of binary words with m 0’s and n 1’s. One sees easily that
Θ : J([m]× [n]) → B(m,n) is a bijection.

For any integer a, we put 1a := 1 . . . 1
︸ ︷︷ ︸

a

, which is interpreted as the empty word if a 6 0.

The notation 0a is defined similarly. A general binary word w in B(m,n) has the form

w = 1a10b1 . . . 1ai0bi . . . 1as0bs, (4)
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Figure 3: Part of the NE-SE paths

where s > 2, each ai, bi is positive except for that a1 and bs may be 0. We define

ψ : B(m,n) → B(m,n) (5)

via
ψ(w) = 0b1−11a1+1 . . . 0bi1ai . . . 0bs+11as−1.

The following lemma is essentially a translation of Lemma 1 into the language of
binary words. For convenience of reader, we provide a proof.

Lemma 4. Let I be an ideal of [m]× [n], we have

Θ(Ψ(I)) = ψ(Θ(I)). (6)

Proof. Suppose that Θ(I) = w has the form (4). Without loss of generality, we assume
that s > 3 and focus on a middle part 1ai0bi, where 1 < i < s. We draw the corresponding
portion of the path for I in red line in Fig. 3, where dots stand for elements in I, while
circles stand for elements in its complement. Note that the NE (resp. SE) thick red line
segment has length ai (resp. bi). Then two elements of the antichain Γ(Ψ(I)) are shown
in blue circles, and the corresponding portion of the path for Ψ(I) is drawn in blue. Now
the SE (resp. NE) thick blue line segment has length bi (resp. ai), as desired. We omit
the similar analysis for the first part 1a10b1 and the last part 1as0bs of Θ(I).

Remark 5. Note that in (4), we have
∑s

i=1 ai = n and
∑s

i=1 bi = m. Moreover, s = 1 in
(4) if and only if Θ(I) = 1n0m, if and only if I = [m]× [n]. In this case, Ψ(I) is the empty
ideal with the associated binary word 0m1n.

Let the binary word of I be given by (4). Assume that a1 > 1 and bs > 1. The pattern
of 0’s and 1’s are

− 0b1 − · · · − 0bi − · · · − 0bs (7)

and
1a1 − · · · − 1ai − · · · − 1as−, (8)
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respectively. There is a unique way to combine (7) and (8) in the zig-zag fashion, after
which we recover Θ(I).

If b1 > 2 and as > 2, then by Lemma 4, the pattern of 0’s becomes

0b1−1 − · · · − 0bi − · · · − 0bs0− . (9)

Comparing (9) with (7), one sees that the leftmost 0 has been bumped out, while we add
a new 0 from the right. We remember this new 0 as the (m+ 1)-th, and show it in bold.
Note that the (m + 1)-th 0 is followed by a −. This is not an accident: if one continues
the analysis for one more step, one sees that the (m+ 2)-th 0 will be separated from the
(m+ 1)-th. On the other hand, the pattern of 1’s becomes

− 11a1 − · · · − 1ai − · · · − 1as−1. (10)

Comparing (10) with (8), one sees that the rightmost 1 has been bumped out, while we
add a new 1 from the left. We remember this new 1 as the (n + 1)-th, and show it in
bold. Note that the (n+1)-th 1 is preceded by a −. Again, this is not an accident: if one
continues the analysis for one more step, one sees that the (n+ 2)-th 1 will be separated
from the (n + 1)-th 1. Finally, note that there is a unique way to combine (9) and (10)
in the zig-zag fashion, after which we recover Θ(Ψ(I)).

Recall that in the above analysis, we have assumed that a1 > 1, bs > 1, b1 > 2 and
as > 2. The important thing here is that the assumption “a1 > 1 and bs > 1” guarantees
that Θ(I) starts with 1 and ends with 0; while the assumption “b1 > 2 and as > 2”
guarantees that Θ(Ψ(I)) starts with 0 and ends with 1. Of course, there are situations
where these assumptions do not hold. However, in any case, guided by Lemma 4, the
Join-Separate rule always applies:

• if Θ(I) ends with 1, separate the (m+ 1)-th 0 from the m-th 0 by inserting a “−”
between them; otherwise, join the (m+1)-th 0 from right with the m-th 0 of Θ(I).

• if Θ(I) starts with 0, separate the (n + 1)-th 1 from the n-th 1 by inserting a “−”
between them; otherwise, join the (n+ 1)-th 1 from left with the n-th 1 of Θ(I).

This rule will be the basic component in the proof of Lemma 7.
Given an ideal I of [m]× [n], recall that Γ(I) := max(I) is the antichain corresponding

to I. The following lemma is immediate.

Lemma 6. Let I be an ideal of [m]× [n]. Then |Γ(I)| equals the times that “10” occurs
in Θ(I).

Suppose that

Θ(I) = 0a11bk−bk−10a2−a11bk−1−bk−2 · · · 0ak−ak−11b1 , (11)

where ak = m, bk = n, a1 > 1 and b1 > 1. Now let us define two functions for I on
the interval [1, m + n]. They will be crucial in calculating the sizes of antichains in the
Ψ-orbit O(I). Let A = {a1 + 1, · · · , ak + 1}, B = {m+ 1 + b1, · · · , m+ 1 + bk−1}. Put

PI(i) :=

{

0 if i ∈ A ∪ ([m+ 2, m+ n] \B),

1 if i ∈ ([1, m+ 1] \ A) ∪ B.
(12)
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Let C = {b1 + 1, · · · , bk + 1}, D = {n+ 1 + a1, · · · , n+ 1 + ak−1}. Put

QI(i) :=

{

0 if i ∈ ([1, n+ 1] \ C) ∪D,

−1 if i ∈ C ∪ ([n+ 2, n+m] \D).
(13)

The following lemma will play a key role in forthcoming discussion. We postpone its
proof to the next section so that one can quickly grasp the sketch.

Lemma 7. Suppose that I is the lower ideal of [m] × [n] given by (11). Then for i ∈
[1, m+ n], we have

∣
∣Γ
(
Ψi(I)

)∣
∣ = k − 1 +

i∑

j=1

(PI(j) +QI(j)). (14)

Let us give an eample to illustrate the formula (14).

Example 8. Fix m = 3, n = 7. Take a1 = 2, a2 = 3, b1 = 4, b2 = 7. That is, I is the
lower ideal of [3]× [7] with binary word 0011101111. Then one finds that

PI(i) =

{

1 if i = 1, 2, 8;

0 otherwise;

and that

QI(i) =

{

−1 if i = 5, 8, 9;

0 otherwise.

On the other hand, by Lemma 4, one calculates the binary words for Ψi(I) for i ∈ [1, 10]
as follows:

i Θ
(
Ψi(I)

)

1 0101110111
2 1010111011
3 1101011101
4 1110101110
5 1111010011
6 1111100101
7 0111111010
8 1011111100
9 1100011111
10 0011101111

Then by Lemma 6 it is direct to check that the formula (14) holds for each i ∈ [1, 10].

Proposition 9. Suppose that I is the ideal whose binary word Θ(I) is given by (11).
Then

m+n∑

i=1

∣
∣Γ
(
Ψi(I)

)∣
∣ = mn.
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Proof. For convenience, we temporarily put N = m+ n. We have that

N∑

i=1

∣
∣Γ
(
Ψi(I)

)∣
∣ = (k − 1)N +

N∑

i=1

i∑

j=1

(PI(j) +QI(j))

= (k − 1)N +
N∑

i=1

(N + 1− i)(PI(i) +QI(i))

= (k − 1)N +
∑

i∈([1,m+1]\A)∪B

(N + 1− i)−
∑

i∈C∪([n+2,N ]\D)

(N + 1− i)

= (k − 1)N +
∑

i∈C∪([n+2,N ]\D)

i−
∑

i∈([1,m+1]\A)∪B

i,

where the first step uses (14), the third step cites (12) and (13), while the last step uses
the fact that both ([1, m+ 1] \A) ∪B and C ∪ ([n+ 2, N ] \D) have cardinality m. Now
the desired result follows since elementary calculations lead to

∑

i∈C∪([n+2,N ]\D)

i−
∑

i∈([1,m+1]\A)∪B

i = mn− (k − 1)N.

Now we are ready to prove Propp and Roby’s theorem.

Proof of Theorem A. Take any I ∈ J([m] × [n]). By Theorem 2 of Fon-Der-Flaass [3],
O(I) has length (m + n)/d for some d dividing both m and n. Thus the multi-set
{Ψi(I) | i ∈ [1, m + n]} is d-copies of the orbit O(I). Hence it is equivalent to verify
that

m+n∑

i=1

∣
∣Γ
(
Ψi(I)

)∣
∣ = mn. (15)

When Θ(I) starts with 0 and ends with 1, say of the form (11), this has been done in
Proposition 9. Our argument works for the other three cases as well.

4 Proof of Lemma 7

This section is devoted to proving Lemma 7. We adopt the notations in Section 3. We
always suppose that (11) holds. Namely, let I be the lower ideal of [m]× [n] corresponding
to the binary word

0a11bk−bk−10a2−a11bk−1−bk−2 · · · 0ak−ak−11b1, (16)

where ak = m, bk = n, a1 > 1 and b1 > 1.
For any a ∈ P, we put

0− 0
︸ ︷︷ ︸

a

:= 0− · · · − 0− · · · − 0
︸ ︷︷ ︸

a

.
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Note that 0− 0
︸ ︷︷ ︸

1

= 0. The notation 1− 1
︸ ︷︷ ︸

a

is defined similarly. We associate the long 0−

sequence to I as follows:

0a1 − 0a2−a1 − · · · − 0ak−ak−1 − 0− 0
︸ ︷︷ ︸

b1

0− 0
︸ ︷︷ ︸

b2−b1

· · · 0− 0
︸ ︷︷ ︸

bk−bk−1

0a1 − 0a2−a1 − · · · − 0ak−ak−1− (17)

Note that this sequence contains 2m + n 0’s in total, and ends with −. Fix any i ∈
[1, m + n]. Cut out the consecutive segment of (17) starting with the (i + 1)-th 0 and
ending with the (i +m)-th 0, and include the “−” left (resp. right) to the (i + 1)-th 0
(resp. (i+m)-th 0) if there is such a “−”. We call this segment the i-th 0− sequence
for I.

In a similar fashion, we associate the long 1− sequence to I as follows:

− 1bk−bk−1 − · · · − 1b2−b1 − 1b1 1− 1
︸ ︷︷ ︸

ak−ak−1

· · · 1− 1
︸ ︷︷ ︸

a2−a1

1− 1
︸ ︷︷ ︸

a1

−1bk−bk−1 − · · · − 1b2−b1 − 1b1 (18)

Note that this sequence contains m + 2n 1’s in total, and ends with −. Here we always
read the long 1− sequence and its consecutive segments from right to left. For instance,
cut out the consecutive segment of (18) starting with the first 1 and the (n+ a1)-th 1, we
get

1− 1
︸ ︷︷ ︸

a1

−1bk−bk−1 − · · · − 1b2−b1 − 1b1 .

Fix any i ∈ [1, m+n]. Cut out the consecutive segment of (18) starting with the (i+1)-th
1 and ending with the (i+n)-th 1, and include the “−” left (resp. right) to the (i+n)-th
1 (resp. (i+1)-th 1) if there is such a “−”. We call this segment the i-th 1− sequence
for I.

The following lemma reads Θ(Ψi(I)) from (17) and (18) for any i ∈ [1, m+ n].

Lemma 10. Let I be the lower ideal of [m] × [n] given by (16). Fix any i ∈ [1, m + n].
There is a unique way to combine the i-th 0− sequence and the i-th 1− sequence for I in
the zig-zag fashion, and one gets Θ(Ψi(I)).

Proof. It amounts to check that (17) and (18) meet the requirements from the scratch.
Initially, the first m 0’s in (17) are obtained by replacing each consecutive part of 1’s in
(16) with a −. Similarly, the first n 1’s in (18) (counted from right to left) are obtained
by replacing each consecutive part of 0’s in (16) with a −. Recall that ak = m and bk = n.

Suppose that Θ(Ψi−1(I)) has been settled. Let us consider Θ(Ψi(I)). Note that
Θ(Ψi−1(I)) ends with 0 if and only if the (i − 1)-th 1− sequence starts with 1− (recall
that we read this sequence from right to left); Θ(Ψi−1(I)) starts with 1 if and only if the
(i− 1)-th 0− sequence starts with −0. Thus the Join-Separate rule says that

• if the (i − 1)-th 1− sequence starts with “1”, add “−0” to the right side of the
(m+ i−1)-th 0; if the (i−1)-th 1− sequence starts with “1−”, add “0” to the right
side of the (m+ i− 1)-th 0.
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• if the (i − 1)-th 0− sequence starts with “0”, add “1−” to the left side of the
(n+ i− 1)-th 1; if the (i− 1)-th 0− sequence starts with “−0”, add “1” to the left
side of the (n+ i− 1)-th 1.

(A). Firstly, let us analyze the pattern of the next n 0’s. Since the first n 1’s (counted
from right to left) are of the form

−1bk−bk−1 − · · · − 1b2−b1 − 1b1 ,

the (m+ 1)-th 0 to the (m+ n)-th 0 are of the form

− 0− 0
︸ ︷︷ ︸

b1

0− 0
︸ ︷︷ ︸

b2−b1

· · · 0− 0
︸ ︷︷ ︸

bk−bk−1

(19)

by the Join-Separate rule. This agrees with (17) up to the (m+ bk)-th 0.
(B). Secondly, let us switch to analyze the pattern of the next m 1’s. Since the first

m 0’s are of the form
0a1 − 0a2−a1 − · · · − 0ak−ak−1−,

the (n+ 1)-th 1 to the (n+m)-th 1 (counted from right to left) are of the form

1− 1
︸ ︷︷ ︸

ak−ak−1

· · · 1− 1
︸ ︷︷ ︸

a2−a1

1− 1
︸ ︷︷ ︸

a1

− (20)

by the Join-Separate rule. This agrees with (18) up to the (n + ak)-th 1.
(C). Thirdly, let us come back to analyze the pattern of the further next m 0’s. Since

the (n + 1)-th 1 to the (n + m)-th 1 are given by (20), the (m + n + 1)-th 0 to the
(m+ n + ak)-th 0 are of the form

0a1 − 0a2−a1 − · · · − 0ak−ak−1

by the Join-Separate rule. This agrees with (17) up to the (m+ bk + ak)-th 0.
(D). Fourthly, let us switch to analyze the pattern of the further next n 1’s. Since

the (m + 1)-th 0 to the (m + n)-th 0 are of the form (19), the (n +m + 1)-th 1 to the
(n+m+ n)-th 1 (counted from right to left) are of the form

1bk−bk−1 − · · · − 1b2−b1 − 1b1

by the Join-Separate rule. This agrees with (18) up to the (n + ak + bk)-th 1.
(E). Finally, the (m + n)-th 1− sequence starts with 1. Thus we should add “−0”

to the (2m+ n)-th 0 according to the Join-Separate rule. This agrees with the last − of
(17). Similarly, the (m+ n)-th 0− sequence starts with 0. Thus we should add “1−” to
the left side of the (m+ 2n)-th 1 in view of the Join-Separate rule. This agrees with the
last − of (18), and the proof finishes.

Remark 11. Note that the five steps above are carried out in the zig-zag way. Moreover,
Lemma 10 also says that Ψm+n(I) = I. Then it follows immediately that the reverse
operator Ψ[m]×[n] has order m + n. This partially recovers Theorem 2 of Fon-Der-Flaass
[3] saying that O(I) has length (m+ n)/d for some d dividing both m and n.
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Example 12. Let us revisit Example 8, where a1 = 2, a2 = 3, b1 = 4, b2 = 7 and I is
the lower ideal of [3]× [7] with binary word 0011101111. Now the long 0−sequence and
1−sequence for I are

00− 0− 0− 0− 0− 00− 0− 000− 0−

and
−111− 111111− 1− 111− 1111,

respectively. The third 0−sequence and 1− sequence are

−0− 0− 0−, 11− 1− 111− 1.

Combining them in the zig-zag fashion gives 1101011101, which agrees with the third row
of the table in Example 8. Similarly, the tenth 0−sequence and 1− sequence are

00− 0−, −111− 1111.

Combining them in the zig-zag fashion gives 0011101111, concurring with the last row of
the table in Example 8.

Lemma 13. Let I be the lower ideal of [m] × [n] given by (16). For any i ∈ [1, m+ n],
we have

∣
∣Γ
(
Ψi(I)

)∣
∣ =

∣
∣Γ
(
Ψi−1(I)

)∣
∣+ PI(i) +QI(i). (21)

Proof. In view of Lemmas 6 and 10, we should analyze the difference between the number
of “10”s in Θ(Ψi(I)) and that in Θ(Ψi−1(I)). Going from Θ(Ψi−1(I)) to Θ(Ψi(I)), we
shall delete the i-th 1 in (18) and add the (n+ i)-th 1 in (18) to form the i-th 1− sequence
for I.

Deleting the i-th 1 decreases the number of “10”s by one if and only if the i-th 1
has the form 1− in (18). This is measured precisely by the value QI(i) defined in (13).
Similarly, adding the (n+ i)-th 1 increases the number of “10”s by one if and only if the
(n+ i)-th 1 has the form 1− in (18). This is measured precisely by the value PI(i) defined
in (12). Now (21) follows.

Remark 14. The proof above tells us that PI(i) = −QI(i+ n).

Now (14) follows directly from (21) and Lemma 7 is established.

5 Type I orbits in [m] × Kn−1

This section aims to consider type I orbits in [m] ×Kn−1. Note that any full rank ideal
of [m]×Kn−1 must have the form

(Ln0

2n−1, L
n1

i1
, . . . , Lns

is
) (22)

where 0 6 is < · · · < i1 < 2n− 1, n0 ∈ N, ni ∈ P (1 6 i 6 s) are such that
∑s

i=0 ni = m
(see Lemma 1). By using NE-SE paths, one sees that these ideals are in bijection with
B(m, 2n−1)—all the binary words withm 0’s and 2n−1 1’s. We still denote this bijection
by Θ. Recall from (5) that there is a map ψ : B(m, 2n− 1) → B(m, 2n− 1). Similar to
Lemma 4, we have the following.
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Lemma 15. Let I be a full rank ideal of [m]×Kn−1. Then Θ(Ψ(I)) = ψ(Θ(I)).

Lemma 16. Let I be a full rank ideal of [m] × Kn−1. Then |Γ(I)| equals to the times
that “10” occurs in Θ(I) plus ǫn(Θ(I)), where ǫn(Θ(I)) equals one if the n-th 1 in Θ(I)
is followed immediately by 0, and it equals zero otherwise.

Proof. Note that ǫn(Θ(I)) = 1 if and only if Ln occurs at some place of I, and that the
antichain of Kn−1 corresponding to Ln = {1, · · · , n, n′} contains two elements.

Proposition 17. The average size of antichains in any type I orbit of [m]×Kn−1 equals
2mn

m+2n−1
.

Proof. In view of Lemmas 15 and 16, we can work on [m]× [2n− 1], with the exception
that whenever the n-th 1 is followed immediately by 0, we should add one to the antichain
size. Therefore, let us focus on the long-1-sequence (18) with ak = m, while bk = 2n− 1
instead. Recall that we always count the long-1-sequence from right to left. In view of
Proposition 9, it remains to prove that there are exactly m 1’s which are preceded by “−”
in a period of (18). It is easy to observe that the indices of these 1’s are as follows:

b1 + 1, . . . , bk + 1, [bk + 2, bk + a1], [bk + a1 + 2, bk + a2], . . . , [bk + ak−1 + 2, bk + ak],

bk + ak + b1 + 1, . . . , bk + ak + bk + 1, . . .

To focus on a period, let us count those living on the interval [n,m+ 3n− 2]. The total
number is

#{j ∈ [k] | bj + 1 > n} + (ak − k) + #{j ∈ [k] | bk + ak + bj + 1 6 m+ 3n− 2}

= (m− k) + #{j ∈ [k] | bj > n− 1}+#{j ∈ [k] | bj 6 n− 2}

= (m− k) + k = m,

as desired.

6 Type II orbits in [m] × Kn−1

This section aims to consider type II orbits in [m]×Kn−1. Recall that any non-full-rank
ideal of [m]×Kn−1 either has the form (2) or the form (3), and that we have introduced
the duality “∼” between these ideals and type II orbits at the end of Section 2. It is
obvious that two dual non-full-rank ideals have the same size, and their anticains have
the same size as well. Thus it does no harm to study non-full-rank ideals and their orbits
up to duality.

We let L∗ to be In or In′, and view the subscript * as a number between n− 1 and n.
Interpreted in this way, one sees that L∗ behaves like a rank ideal by comparing Lemmas
1 and 2. More precisely, the two cases in Lemma 2 can be written uniformly as

· · ·Lns

max{∗, j1+1}L
m0

min{∗, j1+1} · · · .
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Figure 4: The NE-SE path for the ideal (I24 , L3) in [3]×K3

Here we only present the middle part. Thinking in this way allows us to use a NE-SE path
to represent a non-full-rank ideal of [m]×Kn−1 up to duality: Instead of [m]× [2n− 1],
now we use [m]× [2n], with the rank * inserted between rank n−1 and rank n. See Fig. 4
for an example.

Let B(m, 2n) be the set of binary words with m 0’s and 2n 1’s, and that the n-th 1
is followed immediately by 0. Since the integer m0 in (2) or (3) is always positive, the
process gives a bijection

Θ : {non-full-rank ideals of [m]×Kn−1}/ ∼ −→ B(m, 2n). (23)

For instance, the equivalence class of (2) is mapped to the following binary word:

1jt0mt1jt−1−jt0mt−1 · · · 1j1−j20m11n−j10m01is+1−n0ns · · · 1i1−i20n112n−10n0.

A general binary word w in B(m, 2n) has the form

w = 1a10b1 . . . 1ai0bi . . . 1as0bs, (24)

where s > 2, each ai, bi is positive except for that a1 and bs may be 0. By the definition
of B(m, 2n), there must exist an index i such that a1 + · · ·+ ai = n. We define

ψ : B(m, 2n) → B(m, 2n) (25)

via

ψ(w) =







0b1−11a10b2+11a2 if i = 1 and s = 2;

0b1−11a10b21a2+1 · · · 0bs+11as−1 if i = 1 and s > 2;

0b1−11a1+1 · · · 0bi1ai · · · 0bs+11as−1 if 1 < i and ai = 1;

0b1−11a1+1 · · · 0bi1ai−10bi+11ai+1+1 · · · 0bs+11as−1 if 1 < i < s− 1 and ai > 1;

0b1−11a1+1 · · · 0bi1ai−10bs+11as if 1 < i = s− 1 and ai > 1.

The following result is a translation of Lemma 2 into the language of binary words.
This time we omit the details.
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Lemma 18. Let I be a non-full-rank ideal of [m]×Kn−1. Then

Θ(Ψ(I)) = ψ(Θ(I)).

Note that although there are five cases in the definition of (25), the pattern of 0’s is
always the same as that of (4). Therefore, guided by Lemma 18, the Join-Separate rule
always applies:

• if Θ(I) ends with 1, separate the (m+ 1)-th 0 from the m-th 0 by inserting a “−”
between them; otherwise, join the (m+1)-th 0 from right with the m-th 0 of Θ(I).

As in Section 4, the long-0-sequence can be formed by the above Join-Separate rule, and
it records the zero patterns in Θ(Ψi(I)) for i > 0.

Given any binary word w in B(m, 2n), the n-th 1 always indicates the occurrence of L∗

in the ideal I of [m]×Kn corresponding to w. Replacing the n-th 1 in w by ∗ establishes
a bijection between B(m, 2n) and B∗(m, 2n − 1). Here B∗(m, 2n − 1) consists of binary
words with m 0’s, 2n − 1 1’s and a “*”; moreover, we require that there are n − 1 1’s
before *, and * is followed immediately by 0. For instance, the element in B∗(m, 2n− 1)
corresponding to the binary word (24) in B(m, 2n) is

1a10b1 . . . 1ai−1 ∗ 0bi . . . 1as0bs , (26)

where 1ai−1 is viewed as the empty word if ai = 1. Separating 1’s and the * from the
above equation, we get its 1 − ∗ pattern:

1a1 − · · · − 1ai−1 ∗ − · · · − 1as. (27)

Here we omit the last possible −. Moving from Θ(I) to Θ(Ψ(I)), it is direct to check via
Lemma 18 that the 1− ∗ pattern becomes

p(1a1+1 − · · · − 1ai−1 ∗ − · · · − 1as−1) (28)

if a1 > 1, and it becomes

p(1− 1a1 − · · · − 1ai−1 ∗ − · · · − 1as−1) (29)

if a1 = 0. Here in both cases, −1as−1 is interpreted as the empty word if as = 1. Moreover,
the operator p firstly exchanges * and the n-th 1, then it moves the 1 immediately following
* (if there exists) to the next segment. For instance, when n = 4, we have

p(1− 111 ∗ −11− 1) = 1− 11 ∗ −111− 1, p(111− 1− ∗ − 111) = 111− ∗ − 1− 111.

Therefore, after adding a new 1, the operator p pushes the n-th 1 through the *. Note
that this process does not change the relative patterns of the 1’s preceding *. For instance,
after adding n− 1 1’s to (27) one by one, in the form 1 or 1−, and applying p once after
adding a 1, then the n − 1 1’s before * will be pushed after *. However, their relative
pattern is still

1a1 − · · · − 1ai−1.

Therefore, we should pay attention to how the new 1’s are added to (27). By the analysis
around (28) and (29), this process obeys the Join-Separate rule:
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• if Θ(I) starts with 0, add the new 1 from left in the form “1−”; otherwise, add it
from left in the form “1”.

Similar to Section 4, we can form the long-1-sequence by consecutively applying the above
rule. However, we emphasize that unlike the [m]× [n] situation, now the long-1-sequence
no longer aims to record the ones pattern in Θ(Ψi(I)) for i > 0. Instead, it simply records
how the new ones are added in.

The following lemma is immediate.

Lemma 19. Let I be a non-full-rank ideal of [m]×Kn−1. Then |Γ(I)| equals to the times
that “10” occurs in Θ(I).

Lemma 20. Let I be the non-full-rank ideal of [m] × Kn−1 corresponding to the binary
word

0a11b10a21b2 · · · 0as1bs, (30)

where
∑s

i=1 ai = m,
∑s

i=1 bi = 2n, a1 > 1, b1 > 1 and
∑k

i=1 bi = n. Then the long-0-
sequence associated to I is

0a1−0a2−· · ·−0as−0− 0
︸ ︷︷ ︸

bs

· · · 0− 0
︸ ︷︷ ︸

bk+2

0− 0
︸ ︷︷ ︸

bk+1

(−0)bk−1 0− 0
︸ ︷︷ ︸

bk−1

· · · 0− 0
︸ ︷︷ ︸

b1

0a1−0a2−· · ·−0as− (31)

Here (−0)bk−1 is interpreted as the empty word if bk = 1.

Proof. Let us start with
0a1 − 0a2 − · · · − 0as (32)

the zeros pattern of (30).
(A). The 1− ∗ pattern of (30) is

1b1 − 1b2 − · · · − 1bk−1 − 1bk−1 ∗ −1bk+1 − · · · − 1bs. (33)

The last n 1’s will be bumped out one by one in the form of

−1bk+1 − · · · − 1bs.

Therefore, by the Join-Separate rule, the next n zeros will be added to (32) in the form

− 0− 0
︸ ︷︷ ︸

bs

· · · 0− 0
︸ ︷︷ ︸

bk+2

0− 0
︸ ︷︷ ︸

bk+1

.

(B). Now let us handle the next n − 1 step. As noted earlier, the n − 1 1’s before *
in (33) will be pushed through *, and they will be bumped out in the relative form

−1b1 − 1b2 − · · · − 1bk−1 − 1bk−1.

Therefore, by the Join-Separate rule, the next n− 1 zeros will be added in the form

(−0)bk−1 0− 0
︸ ︷︷ ︸

bk−1

· · · 0− 0
︸ ︷︷ ︸

b2

0− 0
︸ ︷︷ ︸

b1

.
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(C). Now let us analyze the last m 0’s. Since the first m 0’s are in the form (32), the
first m 1’s will be added to (33) in the form

1− 1
︸ ︷︷ ︸

as

· · · 1− 1
︸ ︷︷ ︸

a2

1− 1
︸ ︷︷ ︸

a1

−.

Again they will be pushed through *, and then bumped out in the above relative form.
Therefore, by the Join-Separate rule, the last m 0’s will be added in the form

0a1 − 0a2 − · · · − 0as .

This finishes the proof.

Remark 21. In the setting of Lemma 20, the binary word Θ(Ψm+2n−1(I)) has the same
zeros pattern as that of Θ(I), namely, (32). On the other hand, the long-1-sequence goes
like

1b1 − · · · − 1bk−1 − · · · − 1bs 1− 1
︸ ︷︷ ︸

as

· · · 1− 1
︸ ︷︷ ︸

a2

1− 1
︸ ︷︷ ︸

a1

−1b1 − · · · − 1bk−1 ∗ − · · · − 1bs.

Since pushing a sequence of ones through * does not change their relative pattern, one sees
that Θ(Ψm+2n−1(I)) has the same 1 − ∗ pattern as that of Θ(I), namely, (33). Thus we
conclude that Ψm+2n−1(I) = I. Then it is immediate that Ψ[m]×Kn−1

has order m+2n−1.
This result should already be known by Rush and Shi. Indeed, in Theorem 10.1 of [10],
the cyclic sieving phenomenon defined in [9] has been established for [m]×Kn−1.

Proposition 22. The average size of antichains in any type II orbit of [m]×Kn−1 equals
2mn

m+2n−1
.

Proof. Without loss of generality, let I be the non-full-rank ideal of [m] × Kn−1 corre-
sponding to the binary word (30). According to Theorem 10.1 of [10], which verifies the
cyclic sevieving phenomenon [9] for [m] ×Kn−1, the order of Ψ is m + 2n − 1. One can
consecutively cut off m + 2n − 1 segments of zeros from (31), each having length m. It
remains to show that the total number of −0’s in these m + 2n − 1 segments is 2mn.
On the other hand, one can consecutively cut off m+ 2n segments of zeros, each having
length m, from the following sequence:

0a1 − 0a2 − · · · − 0as − 0− 0
︸ ︷︷ ︸

bs

· · · 0− 0
︸ ︷︷ ︸

bk+1

0− 0
︸ ︷︷ ︸

bk

· · · 0− 0
︸ ︷︷ ︸

b1

0a1 − 0a2 − · · · − 0as−

The number we want is the same as the number of −0’s in the m + 2n segments. By
Proposition 9, the latter number is 2mn. This finishes the proof.
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7 Certain root posets

In this section, we shall introduce a bit Lie theory, and illustrate that the several infinite
families of posets in Section 1 occur as sub-families of certain root posets.

Let g be a finite-dimensional simple Lie algebra over C. Fix a Cartan subalgebra h of
g. The associated root system is ∆ = ∆(g, h) ⊆ h∗. Fix a set of positive roots ∆, and
let Π = {α1, . . . , αl} be the corresponding simple roots. Let [αi] be the set of all positive
roots α such that the coefficient of αi in α is one. Note that [αi] inherits a poset structure
from the usual one of ∆+: let α and β be two roots of [αi], then α 6 β if and only if
β − α is a nonnegative integer combination of simple roots. We call the posets [αi] by
∆(1). The latter notation reflects that fact that they come from Z-gradings of g, see [2]
and references therein for more background.

Previously, by using Ringel’s paper [7], we have analyzed the structure of ∆(1) in
Section 4 of [2]. More precisely, they include three infinite families [m] × [n], Hn, [m] ×
Kn−1; and the following twenty posets:

• [2]× [3]× [3], [2]× [3]× [4], [2]× [3]× [5];

• [2]×H4, [3]×H4, [4]×H4; [2]×H5, [2]×H6;

• J2([2]× [3]), [2]× J2([2]× [3]), [3]× J2([2]× [3]); J3([2]× [3]), [2]× J3([2]× [3]);

• [α4] in F4; [α2] in E6; [α1] and [α2] in E7; [α1], [α2] and [α8] in E8.

The above posets all come from exceptional Lie algebras. Here we label the simple roots
as Knapp [4].

Finally, let us raise two conjectures pertaining to the orbit structure of ∆(1). Let wi
0

be the longest element of the subgroup 〈sαj
| j 6= i〉 of the Weyl group. Here sαj

is the
reflection according to the simple root αj. Then wi

0 permutes the roots in ∆(1) = [αi].
Given a root p of ∆(1), we denote wi

0(p) by p
∗. For any p ∈ ∆(1), and for any orbit O,

define MO(p) to be the number of times that p occurs in the ideals of O. That is,

MO(p) :=
∣
∣{I ∈ O | p ∈ I}

∣
∣. (34)

Conjecture 23. For any p ∈ ∆(1), we have

MO(p) +MO(p
∗) =

∣
∣O

∣
∣. (35)

Similarly, we define NO(p) to be the number of times that p occurs in the antichains
of O. That is,

NO(p) :=
∣
∣{Γ ∈ O | p ∈ Γ}

∣
∣. (36)

Conjecture 24. For any p ∈ ∆(1), we have

NO(p) = NO(p
∗). (37)
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Remark 25. We mention that the previous two conjectures can be formulated in the
language of homomesy invented by Propp and Roby [6]. Indeed, let χp be the function
on J(∆(1)) such that χp(I) = 1 if p ∈ I and χp(I) = 0 otherwise. Then Conjecture 23
amounts to the claim that the function χp + χp∗ is 1-mesic for any p ∈ ∆(1) under the
reverse operator. Similarly, in the antichain setting, let χ′

p be the function on An(∆(1))
such that χ′

p(A) = 1 if p ∈ A and χ′
p(A) = 0 otherwise. Then Conjecture 24 is exactly the

claim that the function χ′
p − χ′

p∗ is 0-mesic for any p ∈ ∆(1) under the reverse operator.
Therefore, the two conjectures amount to guess that ∆(1) could be a good place to exhibit
homomesy.
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