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Abstract

Let a, b ∈ N. A graph G is (a, b)-choosable if for any list assignment L such
that |L(v)| > a, there exists a coloring in which each vertex v receives a set C(v)
of b colors such that C(v) ⊆ L(v) and C(u)∩C(w) = ∅ for any uw ∈ E(G). In the
online version of this problem, on each round, a set of vertices allowed to receive
a particular color is marked, and the coloring algorithm chooses an independent
subset of these vertices to receive that color. We say G is (a, b)-paintable if when
each vertex v is allowed to be marked a times, there is an algorithm to produce a
coloring in which each vertex v receives b colors such that adjacent vertices receive
disjoint sets of colors.

We show that every odd cycle C2k+1 is (a, b)-paintable exactly when it is (a, b)-
chosable, which is when a > 2b + db/ke. In 2009, Zhu conjectured that if G is
(a, 1)-paintable, then G is (am,m)-paintable for any m ∈ N. The following results
make partial progress towards this conjecture. Strengthening results of Tuza and
Voigt, and of Schauz, we prove for any m ∈ N that G is (5m,m)-paintable when G
is planar. Strengthening work of Tuza and Voigt, and of Hladky, Kral, and Schauz,
we prove that for any connected graph G other than an odd cycle or complete graph
and any m ∈ N, G is (∆(G)m,m)-paintable.

1 Introduction

Let G be a graph, and let g : V (G) → N. A g-fold coloring of G assigns to each vertex
v a set of g(v) distinct colors such that adjacent vertices have disjoint sets of colors.
When g(v) = m for all v, we call this an m-fold coloring. When all colors come from
{1, . . . , k}, we call this a g-fold k-coloring and say that G is (k, g)-colorable. When G is
(k, g)-colorable and g(v) = m for all v, we say that G is (k,m)-colorable. An ordinary
proper k-coloring is also a 1-fold k-coloring.

More generally, let L be a list assignment specifying for each vertex v a set L(v) of
available colors. A g-fold L-coloring of G is a g-fold coloring φ of G such that φ(v) ⊆ L(v)
for each vertex v. A graph G is (f, g)-choosable if there is a g-fold L-coloring for any list
assignment L such that |L(v)| > f(v) for all v ∈ V (G). Introduced by Erdős, Rubin,
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and Taylor [2], when f(v) = k and g(v) = m for all v ∈ V (G) and G is (f, g)-choosable,
we say that G is (k,m)-choosable. When g(v) = 1 for every v ∈ V (G), we shorten
(f, g)-choosable to f -choosable. Erdős, Rubin, and Taylor [2] conjectured that if G is
k-choosable, then G is (km,m)-choosable for all m ∈ N.

Schauz [5] introduced an online version of choosability, and Zhu [9] generalized (f, g)-
choosability. Vertices are colored in rounds, where the coloring algorithm must decide on
round i which vertices will receive color i, without knowing which colors will appear on
any vertices later in the lists. This concept is formalized in the following game.

Definition 1.1. Let G be a graph where each vertex v is assigned a nonnegative number
f(v) of tokens and a nonnegative number g(v) specifying how many times v must be
colored. The (f, g)-paintability game is played by two players: Lister and Painter. Each
round, Lister marks a nonempty subset M of vertices that have been colored fewer than
g(v) times; every vertex in M loses one token. Painter responds by coloring an indepen-
dent subset D of M ; every vertex of D gains a color distinct from those used on earlier
rounds. Lister wins the game by marking a vertex that has no tokens remaining, and
Painter wins by coloring each vertex v on g(v) distinct rounds.

We say G is (f, g)-paintable when Painter has a winning strategy on G in the (f, g)-
paintability game. If f(v) = a and g(v) = b for every v ∈ V (G) and Painter has a winning
strategy, then we say G is (a, b)-paintable. We say G is degree-m-paintable if G is (f,m)-
paintable where f(v) = d(v)m for all v. When m = 1, we simply say “degree-paintable”.

Always, if G is not (f, g)-choosable, then G is not (f, g)-paintable since Lister can
mimic a bad list assignment L by marking in round i the set {v ∈ V (G) : i ∈ L(v)}. Thus
(f, g)-paintability implies (f, g)-choosability. In [9], Zhu made the following conjecture.

Conjecture 1.2 ([9]). If G is a-paintable, then G is (am,m)-paintable for all m ∈ Z.

Mahoney, Meng, and Zhu [4] proved that Conjecture 1.2 is true for all 2-paintable
graphs.

Thomassen [6] proved that every planar graph is 5-choosable. Tuza and Voigt [7]
strengthed this result by proving that planar graphs are (5m,m)-choosable for all m ∈ N.
Schauz [5] strengthened Thomassen’s result in a different way by proving that planar
graphs are 5-paintable.

In Section 2, we prove that planar graphs are (5m,m)-paintable for all m > 1, which
strengthens the previous results and makes partial progress towards Conjecture 1.2.

Let G be a connected graph other than an odd cycle or a complete graph, and let
∆(G) denote the maximum degree of G. Brooks’ Theorem [1] states that G is ∆(G)-
colorable. Stronger versions of Brooks’ Theorem are proved by Tuza and Voigt [7] and
by Hladky, Kral, and Schauz [3]. In Section 3, we prove that G is (∆(G)m,m)-paintable,
strengthing both results and making partial progress towards Conjecture 1.2.

In [8], Voigt proved that if C2k+1 is (a, b)-choosable, then a > 2b+db/ke. We conclude
the introduction by strengthening this result, characterizing the (a, b)-paintability and
(a, b)-choosability of odd cycles.

Theorem 1.3. For k > 1, the following are equivalent:

(a) C2k+1 is (a, b)-paintable.
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(b) C2k+1 is (a, b)-choosable.

(c) a > 2b+ db/ke.

Proof. (a)⇒ (b) Always (a, b)-paintability implies (a, b)-choosability.
(b)⇒ (c) Originally proved in [8], we provide a short proof for completeness. Suppose

C2k+1 is (a, b)-choosable. Consider the list assignment where L(v) = {1, . . . , a} for each
vertex v. Each color can be used on at most k vertices. Since each vertex must receive b
colors, we have that the lists must have size at least (2k + 1)b/k.

(c) ⇒ (a) Give the cycle a consistent orientation, and label the vertices v0, . . . , v2k.
Consider all indices modulo 2k+ 1. Let M be the set Lister marks. If |M | < 2k+ 1, then
the graph induced by the marked set is a linear forest. Painter colors vertices greedily
along each path starting at the tail.

If |M | = 2k + 1, then we keep track of how many times moves of this type have
occurred in the game. If a move of this type has been played i times before (mod 2k+1),
then Painter colors {vi, vi+2, . . . , vi+2k−2}. There are exactly 2k + 1 distinct independent
sets of size k for C2k+1. In this strategy, Painter balances which of these independent sets
is colored by cycling through all possible choices.

Suppose Lister can win against this particular Painter strategy when each vertex has
2b + db/ke tokens. Let Lister’s marked sets be M1, . . . ,Mt, where Lister wins on round
t, and let Painter’s responses be D1, . . . , Dt−1. Note that when Lister marks the set Mt,
some vertex will have been marked 2b+db/ke+1 times. In particular t > 2b+db/ke. If a
vertex vi is marked in the set Mj, then Painter strategy implies that vi−1 was also marked
in Mj. Since vi−1 is colored at most b times, there must be at least db/ke + 1 rounds
where both vi and vi−1 are marked and not colored. This only happens once every 2k+ 1
rounds when both vertices are marked. Thus the number of rounds where all vertices are
marked is at least db/ke (2k + 1) + 1, which is greater than 2b + db/ke. So there are at
elast 2b+ db/ke+ 1 rounds in which all vertices are marked. If any of these rounds were
preceded by a round in which not all vertices were marked, then one vertex would be
marked 2b + db/ke + 1 times earlier than round t. Thus the first 2b + db/ke + 1 marked
sets must all be V (C2k+1). After marking all vertices just 2b + db/ke times, Painter’s
strategy ensures that every vertex is colored b times. Thus there is no vertex for Lister
to mark on round 2b + db/ke + 1, and thus there is no way for Lister to win the game
against this Painter strategy.

2 Planar Graphs

The following lemma is a generalization of Lemma 2.2 in [5].

Lemma 2.1 (Edge Lemma). If G is (f, g)-paintable and uv 6∈ E(G), then G ∪ uv is

(f ′, g)-paintable where f ′(w) =

{
f(v) + f(u), if w = v
f(w), otherwise

.

Proof. Let S be a winning strategy for Painter in the (f, g)-paintability game on G. In
the (f ′, g′)-paintability game on G∪uv, whenever Lister marks u, we sacrifice a token on
v by having Painter respond to the marked set M −v. At most f(u) tokens are sacrificed
on v. In rounds when u is not marked, Painter may respond according to S because any
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response in G is an independent set in G ∪ uv. At least f(v) tokens are available for
moves of this type, so g(v) colors will be assigned to v by playing according to S.

The following lemma is a generalization of Lemma 2.5 in [5].

Lemma 2.2 (Merge Lemma). Let G = G1 ∪ G2, and let T = V (G1) ∩ V (G2). If Gi is
(fi, gi)-paintable and f2(v) = g2(v) = g1(v) for all v ∈ T , then G is (f, g)-paintable where

f(v) =

{
f1(v), if v ∈ V (G1)
f2(v), otherwise

and g(v) =

{
g1(v), if v ∈ V (G1)
g2(v), otherwise

.

Proof. We use induction on
∑
g(v). For the basis step, if

∑
g(v) = 0, then G is trivially

(f, g)-paintable. Now consider
∑
g(v) > 0.

Let M be the set marked by Lister. For i ∈ {1, 2}, let Si be a winning strategy for
Painter in Gi under token assignment fi, and let Mi = M∩V (Gi). Let D1 be the response
to M1 in G1 according to S1. In G2, Painter responds to the marked set M2 − (T −D1)
according to S2. We interpret vertices of (M −D1) ∩ T as having lost a token in G1 but
not in G2. Because f2(v) = g2(v) for all v ∈ T , it must be the case that (D1 ∩ T ) ⊆ D2.
Thus D1 ∪D2 is an independent set; Painter now colors D1 ∪D2.

Let G∗ = G − (D1 ∪ D2). To make use of the induction hypothesis, we define the
following functions:

f ′1(v) =

{
f1(v)− 1, if v ∈M
f1(v), otherwise

f ′2(v) =

{
f2(v)− 1, if v ∈M2 − (T −D1)
f2(v), otherwise

For i ∈ {1, 2}, g′i(v) =

{
gi(v)− 1, if v ∈ Di

gi(v), otherwise

Because D1 and D2 were chosen according to a winning strategies in G1 and in G2,
we have that Gi is (f ′i , g

′
i)-paintable for i ∈ {1, 2} and f ′2(v) = g′2(v) = g′1(v) for all

v ∈ T . Since M 6= ∅, we may assume that D1 ∪D2 6= ∅. Thus
∑
g(v) decreases, and by

induction this yields G∗ is (f ∗, g∗)-paintable where f ∗(v) =

{
f ′1(v), if v ∈ V (G1)
f ′2(v), otherwise

and

g∗(v) =

{
g′1(v), if v ∈ V (G1)
g′2(v), otherwise

. This proves that Painter’s response to M is a winning

move, and thus G is (f, g)-paintable.

We now prove the main theorem of this section.

Theorem 2.3. Planar graphs are (5m,m)-paintable for all m ∈ N.
Proof. We proceed using an argument mirroring that of Thomassen [6] and of Schauz [5].
First, we restrict our attention to weak triangulations of planar graphs since adding edges
only makes coloring the graph more difficult for Painter. Let G be a planar graph of order
n with vertices v1, . . . , vp in clockwise order on the unbounded face. By induction on n,
we prove a stronger result:

G is (f,m)-paintable when f(v) =


m, if v = vp
2m, if v = v1
3m, if v = vi for 1 < i < p
5m, otherwise

.
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Case 1: There is a chord vivj connecting two vertices on the unbounded face.
Let G1 be the graph induced by the vertices of the cycle containing v1 and vp and by
the vertices on the interior of this cycle. Let G2 have vertex set (V (G) − V (G1)) ∪
{vi, vj} and edge set E(G) − E(G1). f1(v) = f(v) for all v ∈ V (G1), and f2(v) ={
f(v), if v ∈ V (G2)− {vi, vj}
m, if v ∈ {vi, vj}

.

By the induction hypothesis G1 is (f1,m)-paintable, and G2 is (f2,m)-paintable by
first applying Lemma 2.1 to the edge vivj and then using the induction hypothesis.
Lemma 2.2 then implies that G is (f,m)-paintable.

Case 2: The unbounded face is chordless.
Consider N(v2). Since all bounded faces are triangles, there exists a path v1, u1, . . . , ut, v3.
Let U = {u1, . . . , ut}, and let G′ = G− v2. Applying the induction hypothesis to G′, we
show that if each u ∈ U is given 2m additional tokens, then we can extend a winning
strategy for Painter on G′ to a winning strategy on G.

Suppose Lister marks a set M , and let S be a winning strategy for Painter in G′. Let
D be Painter’s response to the marked set M − {v2} according to S. If v2 6∈ M , then
Painter colors D. If v2 ∈M and v1 ∈ D, then Painter colors D and sacrifices a token on
v2. When v2 ∈ M , and v1 6∈ D, then Painter obtains the response D′ to the marked set
(M − {v2})− U according to S and colors v2 if v3 6∈ D′. Each vertex of U loses at most
2m tokens from moves of this type. Also, v2 is marked and not colored at most m times
because of v3 ∈ D′. Finally, v3 never loses tokens because of v2. Therefore, every vertex
is colored m times before it runs out of tokens.

3 Brooks’ Theorem

Brooks’ Theorem [1] states that a connected graph G is ∆(G)-colorable except when G is
an odd cycle or a complete graph. Tuza and Voigt [7] strengthened this result by proving
that such a graph G is (∆(G)m,m)-choosable. Hladky, Kral, and Schauz [3] proved that
such a graph G is ∆(G)-paintable. The following theorem strengthens both results.

Theorem 3.1. If G is a connected graph other than an odd cycle or a complete graph,
then G is (∆(G)m,m)-paintable for all m ∈ N.

Let NG[v] denote the closed neighborhood NG(v) ∪ {v}. We will make use of a de-
generacy argument of Zhu [9] and a well-known structural lemma of Erdős, Rubin, and
Taylor [2]. A block in a graph is a maximal 2-connected subgraph or a cut-edge.

Proposition 3.2 ( [9]). Let G be a graph with token-color assignments f and g. If
f(v) >

∑
u∈N [v] g(u), then G is (f, g)-paintable if and only if G − v is (f ′, g′)-paintable

where f ′ and g′ are the restrictions of f and g to G− v.

Lemma 3.3 ([2]). If G is a 2-connected graph that is not an odd cycle or a complete
graph, then G contains an induced even cycle having at most one chord.

We now show that the induced subgraph obtained from the conclusion of Lemma 3.3
is degree-m-paintable for all m ∈ N.

Lemma 3.4. An even cycle with at most one chord is degree-m-paintable for all m ∈ N.
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Proof. Case 1: Let G be a chordless even cycle. Zhu [9] proved that C2n is (2m,m)-
paintable for n > 2,m ∈ N.

Case 2: Let G be an even cycle with exactly one chord. Let v1, . . . , vn be the vertices
of this cycle in clockwise order, and suppose v1vi is the chord. Consider the graph G′

obtained from G by removing the edge vnv1. Let f ′ be a token assignment obtained from
f by removing 2m tokens from v1. By Lemma 2.1, if G′ is (f ′, g)-paintable, then G is
degree-m-paintable. In G′, we repeatedly apply Proposition 3.2 to V (G′) in the order
vn, vn−1, . . . , v1. At each step, the vertex being removed has at least as many tokens as the
number of times it and its neighbors must be colored, therefore G′ is (f ′, g)-paintable.

The next lemma allows us to extend good strategies on an induced subgraph to a
larger graph.

Lemma 3.5. Given a connected graph G, if there exists an induced subgraph H that is
degree-m-paintable, then G is degree-m-paintable for all m ∈ N.
Proof. If H = G, there is nothing to show, so suppose V (G) − V (H) 6= ∅, and let
U = {u1, . . . , ut} = V (G)−V (H). Let S be a winning degree-m-paintability strategy for
Painter on H.

Let M be the set that Lister marks. Let D be the independent subset of M ∩ U
chosen greedily with respect to the ordering u1, . . . , ut. According to S, Painter obtains
a response D′ in H to the marked set (M ∩ V (H)) − N(D). We sacrifice a token on
each vertex of M ∩ V (H) ∩ N(D), and Painter colors D ∪ D′. Note that D ∪ D′ is an
independent set because we forbid coloring any neighbors of vertices in D.

Each v ∈ V (H) sacrifices at most m tokens for any neighbor outside of H, which
guarantees that at least dH(v)m tokens are available for the strategy S. Each u ∈ U is
marked and not colored at most m times for each earlier neighbor, which always leaves
at least m tokens available to color u when it has no more incomplete earlier neighbors.
Therefore G is degree-m-paintable.

Lemmas 3.3, 3.4, and 3.5 imply that every block of a non-degree-m-paintable con-
nected graph must be an odd cycle or a clique. A connected graph in which every block
is an odd cycle or a clique is called a Gallai tree.

Theorem 3.6. Given m ∈ N, a connected graph G is degree-m-paintable if and only if
G is not a Gallai tree.

Proof. If G is a Gallai tree, it is not degree-m-choosable [7], and hence, not degree-m-
paintable.

When G is not a Gallai tree, there exists a block B that is not a complete graph or
an odd cycle. By Lemma 3.3, B contains an induced even cycle with at most one chord.
Lemma 3.4 implies that B is degree-m-paintable. Lastly, Lemma 3.5 implies that G is
degree-m-paintable.

We conclude by proving Theorem 3.1.

Proof of Theorem 3.1. If G is not a Gallai tree, then Theorem 3.6 implies (∆(G)m,m)-
paintability. We may assume that G is a Gallai tree with at least two blocks. Thus G
is not ∆(G)-regular, and every vertex of maximum degree is a cut-vertex. Thus every
subgraph of G contains a vertex of degree at most ∆(G)− 1, so Proposition 3.2 implies
G is (∆(G)m,m)-paintable.
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