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Abstract

In this paper, we introduce Stirling permutations of the second kind. In particu-
lar, we count Stirling permutations of the second kind by their cycle ascent plateaus,
fixed points and cycles. Moreover, we get an expansion of the ordinary derange-
ment polynomials in terms of the Stirling derangement polynomials. Finally, we
present constructive proofs of a kind of combinatorial expansions of the Eulerian
polynomials of types A and B.

Keywords: Eulerian polynomials; Stirling permutations of the second kind; Stir-
ling derangements

1 Introduction

Let [n] denote the set {1, 2, . . . , n}. Let Sn be the set of all permutations of [n] and let
π = π(1)π(2) · · · π(n) ∈ Sn. Let Bn be the hyperoctahedral group of rank n. Elements
π of Bn are signed permutations of the set ±[n] such that π(−i) = −π(i) for all i, where
±[n] = {±1,±2, . . . ,±n}. Let #S denote the cardinality of a set S. We define

des A(π) := #{i ∈ {1, 2, . . . , n− 1}|π(i) > π(i+ 1)},
des B(π) := #{i ∈ {0, 1, 2, . . . , n− 1}|π(i) > π(i+ 1)},

where π(0) = 0. The Eulerian polynomials of types A and B are respectively defined by

An(x) =
∑
π∈Sn

xdes A(π), Bn(x) =
∑
π∈Bn

xdes B(π).
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There is a larger literature devoted to An(x) and Bn(x) (see, e.g., [5, 10, 13, 19, 26]
and references therein). Let s = (s1, s2, . . .) be a sequence of positive integers. Let

I(s)
n = {(e1, e2, . . . , en) ∈ Zn| 0 6 ei < si} ,

which is known as the set of s-inversion sequences. The reader is referred to Savage [28]
for recent progress on this subject. The number of ascents of an s-inversion sequence
e = (e1, e2, . . . , en) ∈ I(s)

n is defined by

asc (e) = #

{
i ∈ [n− 1] :

ei
si
<
ei+1

si+1

}
∪ {0 : if e1 > 0}.

Let Es
n(x) =

∑
e∈I(s)n

xasc (e). Following [25] and [26], we have

An(x) = E(1,2,...,n)
n (x), Bn(x) = E(2,4,...,2n)

n (x).

Let Mn(x) be a sequence of polynomials defined by

M(x, z) =
∑
n>0

Mn(x)
zn

n!
=

√
x− 1

x− e2z(x−1)
. (1)

Combining (1) and an explicit formula of the Ehrhart polynomial of the s-lecture hall

polytope, Savage and Viswanathan [27] proved that Mn(x) = E
(1,3,...,2n−1)
n (x).

A perfect matching of [2n] is a partition of [2n] into n blocks of size 2. Let M2n be
the set of perfect matchings of [2n]. Let el (M) be the number of blocks of M ∈M2n with
even larger entries. We define

N(n, k) = #{M ∈M2n : el (M) = k}.

The numbers N(n, k) satisfy the recurrence relation

N(n+ 1, k) = 2kN(n, k) + (2n− 2k + 3)N(n, k − 1)

for n, k > 1, whereN(1, 1) = 1 andN(1, k) = 0 for k > 2 or k 6 0 (see [24, Proposition 1]).
Let Nn(x) =

∑n
k=1 N(n, k)xk. The first few of the polynomials Nn(x) are

N0(x) = 1, N1(x) = x,N2(x) = 2x+ x2, N3(x) = 4x+ 10x2 + x3.

The exponential generating function for Nn(x) is given as follows (see [21, Eq. (25)]):

N(x, z) =
∑
n>0

Nn(x)
zn

n!
=

√
1− x

1− xe2z(1−x)
. (2)

Combining (1) and (2), we get Mn(x) = xnNn( 1
x
) for n > 0. Let ol (M) be the number of

blocks of M ∈M2n with odd larger entries. Then

Mn(x) =
∑

M∈M2n

xol (M).
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Context-free grammar was introduced by Chen [6] and it is a powerful tool for studying
exponential structures in combinatorics. We refer the reader to [8, 11, 22] for further
information. Using [22, Theorem 10], one can present a grammatical proof of the following
result.

Proposition 1. For n > 0, we have

2nxAn(x) =
n∑
k=0

(
n

k

)
Nk(x)Nn−k(x), (3)

Bn(x) =
n∑
k=0

(
n

k

)
Nk(x)Mn−k(x). (4)

Recall that the exponential generating function for xAn(x) is

A(x, z) = 1 +
∑
n>1

xAn(x)
tn

n!
=

1− x
1− xez(1−x)

.

An equivalent formula of (3) is given as follows:

N2(x, z) = A(x, 2z).

Motivated by Proposition 1, the main purpose of this paper is to introduce some cycle
structure related to N(x, z) or M(x, z). This paper is organized as follows. In Section 2,
we introduce the Stirling permutations of the second kind, which is a disjoint union of
Stirling permutations. In Section 3, we count Stirling permutations of the second kind by
their cycle ascent plateaus, fixed points and cycles. In Section 4, we present a constructive
proof of Proposition 1.

2 Stirling permutations of the second kind

Stirling permutations were introduced by Gessel and Stanley [14]. A Stirling permutation
of order n is a permutation of the multiset [n]2 such that every element between the two
occurrences of i is greater than i for each i ∈ [n], where [n]2 = {1, 1, 2, 2 . . . , n, n}. Let
Qn be the set of Stirling permutations of [n]2. For example, Q2 = {1122, 1221, 2211}. Let
σ1σ2 · · ·σ2n ∈ Qn. An index i is a descent of σ if σi > σi+1 or i = 2n. Let C(n, k) be
the number of Stirling permutations of [n]2 with k descents. Following [14, Eq. (6)], the
numbers C(n, k) satisfy the recurrence relation

C(n, k) = kC(n− 1, k) + (2n− k)C(n− 1, k − 1) (5)

for n > 2, with the initial conditions C(1, 1) = 1 and C(1, 0) = 0. The second-order
Eulerian polynomial is defined by

Cn(x) =
n∑
i=1

C(n, k)xk.
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In recent years, there has been much work on Stirling permutations (see [2, 12, 15, 16,
23]). In particular, Bóna [2] introduced the plateau statistic on Stirling permutations, and
proved that descents and plateaus have the same distribution over Qn. Given σ ∈ Qn,
the index i is called a plateau if σi = σi+1. We say that an index i ∈ [2n− 1] is an ascent
plateau if σi−1 < σi = σi+1, where σ0 = 0. Let ap (σ) be the number of the ascent plateaus
of σ. For example, ap (221133) = 2. Very recently, we present a combinatorial proof of
the following identity (see [24, Theorem 3]):∑

M∈M2n

xel (M) =
∑
σ∈Qn

xap (σ). (6)

Motivated by Proposition 1 and (6), we shall introduce Stirling permutations of the
second kind.

Let [k]n denote the set of words of length n in the alphabet [k]. For ω = ω1ω2 · · ·ωn ∈
[k]n, the reduction of ω, denoted by red (ω), is the unique word of length n obtained by
replacing the ith smallest entry by i. For example, red (33224547) = 22113435.

Definition 2. A permutation σ of the multiset [n]2 is a Stirling permutation of the second
kind of order n whenever σ can be written as a nonempty disjoint union of its distinct
cycles and σ has a standard cycle form satisfying the following conditions:

(i) For each i ∈ [n], the two copies of i appear in exactly one cycle;

(ii) Each cycle is written with one of its smallest entry first and the cycles are written
in increasing order of their smallest entry;

(iii) The reduction of the word formed by all entries of each cycle is a Stirling permuta-
tion. In other words, if (c1, c2, . . . , c2k) is a cycle of σ, then red (c1c2 · · · c2k) ∈ Qk.

Let Q2
n denote the set of Stirling permutations of the second kind of order n. In the

following discussion, we always write σ ∈ Q2
n in standard cycle form.

Example 3.

Q2
1 = {(11)}, Q2

2 = {(11)(22), (1122), (1221)},
Q2

3 = {(11)(22)(33), (11)(2233), (11)(2332), (1133)(22), (1331)(22), (1122)(33), (112233),

(112332), (113322), (133122), (1221)(33), (122133), (122331), (123321), (133221)}.

Let (c1, c2, . . . , c2k) be a cycle of σ. An entry ci is called a cycle plateau (resp. cycle
ascent) if ci = ci+1 (resp. ci < ci+1), where 1 6 i < 2k. Let cplat (π) and casc (π)
be the number of cycle plateaus and cycle ascents of π, respectively. For example,
cplat ((1221)(33)) = 2 and casc ((1221)(33)) = 1. Now we present a dual result of [2,
Proposition 1].

Proposition 4. For n > 1, we have

Cn(x) =
∑
π∈Q2

n

xcplat (π) =
∑
π∈Q2

n

xcasc (π)+1.
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Proof. There are two ways in which a permutation σ′ ∈ Q2
n with k cycle plateaus can be

obtained from a permutation σ ∈ Q2
n−1. If cplat (σ) = k, then we can put the two copies

of n right after a cycle plateau of σ. This gives k possibilities. If cplat (σ) = k − 1, then
we can append a new cycle (nn) right after σ or insert the two copies of n into any of
the remaining 2n − 2 − (k − 1) = 2n − k − 1 positions. This gives 2n − k possibilities.
Comparing with (5), this completes the proof of Cn(x) =

∑
π∈Q2

n
xcplat (π). Along the same

lines, one can easily prove the assertion for cycle ascents. This completes the proof.

Let (c1, c2, . . . , c2k) be a cycle of σ, where k > 2. An entry ci is called a cycle ascent
plateau if ci−1 < ci = ci+1, where 2 6 i 6 2k − 1. Denote by cap (σ) (resp. cyc (σ)) the
number of cycle ascent plateaus (resp. cycles) of σ. For example, cap ((1221)(33)) = 1.
We define

Qn(x, q) =
∑
σ∈Q2

n

xcap (σ)qcyc (σ),

Q(x, q; z) = 1 +
∑
n>1

Qn(x, q)
zn

n!
.

Our main result of this section is the following.

Theorem 5. The polynomials Qn(x, q) satisfy the recurrence relation

Qn+1(x, q) = (q + 2nx)Qn(x, q) + 2x(1− x)
∂

∂x
Qn(x, q) (7)

for n > 0, with the initial condition Q0(x) = 1. Moreover,

Q(x, q; z) =

(√
x− 1

x− e2z(x−1)

)q

. (8)

Proof. Given σ ∈ Q2
n. Let σi be an element of Q2

n+1 obtained from σ by inserting the two
copies of n + 1, in the standard cycle decomposition of σ, right after i ∈ [n] or as a new
cycle (n+ 1, n+ 1) if i = n+ 1. It is clear that

cyc (σi) =

{
cyc (σ), if i ∈ [n];
cyc (σ) + 1, if i = n+ 1.

Therefore, we have

Qn+1(x, q) =
∑

π∈Q2
n+1

xcap (π)qcyc (π)

=
n+1∑
i=1

∑
σi∈Q2

n

xcap (σi)qcyc (σi)

=
∑
σ∈Q2

n

xcap (σ)qcyc (σ)+1 +
n∑
i=1

∑
σi∈Q2

n

xcap (σi)qcyc (σi)

= qQn(x, q) +
∑
σ∈Q2

n

(2cap (σ)xcap (σ) + (2n− 2cap (σ))xcap (σ)+1)qcyc (σ)
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and (7) follows. By rewriting (7) in terms of the exponential generating function Q(x, q; z),
we have

(1− 2xz)
∂

∂z
Q(x, q; z) = qQ(x, q; z) + 2x(1− x)

∂

∂x
Q(x, q; z). (9)

It is routine to check that the generating function

Q̃(x, q; z) =

(√
x− 1

x− e2z(x−1)

)q

satisfies (9). Also, this generating function gives Q̃(x, q; 0) = 1, Q̃(x, 0; z) = 1 and

Q̃(0, q; z) = eqz. Hence Q(x, q; z) = Q̃(x, q; z).

Combining (1) and (8), we get Q(x, q; z) = M q(x, z). Thus Qn(x, 1) = Mn(x). More-
over, it follows from (7) that

Qn+1(1, q) = (q + 2n)Qn(1, q).

So the following corollary is immediate.

Corollary 6. For n > 1, we have∑
σ∈Q2

n

qcyc (σ) = q(q + 2) · · · (q + 2n− 2).

Let An(x) =
∑n−1

k=0

〈
n
k

〉
xk. The numbers

〈
n
k

〉
are called Eulerian numbers of type A

and satisfy the recurrence relation〈
n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n− 1

k − 1

〉
,

with the initial conditions
〈

0
0

〉
= 1 and

〈
0
k

〉
= 0 for k > 1 (see [3, 5] for instance). Hence

An+1(x) = (1 + nx)An(x) + x(1− x)A′n(x), (10)

Let CQn denote the set of Stirling permutations of Q2
n with only one cycle, which can be

named as the set of cyclic Stirling permutations. Define

Yn(x) =
∑
σ∈CQn

xcap (σ).

Comparing (7) with (10), we get the following corollary.

Corollary 7. For n > 1, we have

Yn+1(x) = 2nxAn(x).
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3 The joint distribution of cycle ascent plateaus and fixed points
on Q2

n

Given σ ∈ Q2
n. Let the entry k ∈ [n] be called a fixed point of σ if (kk) is a cycle of σ.

The number of fixed points of σ is defined by fix (σ) = #{k ∈ [n] : (kk) is a cycle of σ}.
For example, fix ((1133)(22)) = 1. Define

Pn(x, y, q) =
∑
σ∈Q2

n

xcap (σ)yfix (σ)qcyc (π),

P (x, y, q; z) =
∑
n>0

Pn(x, y, q)
zn

n!
.

Now we present the main result of this section.

Theorem 8. For n > 1, the polynomials Pn(x, y, q) satisfy the recurrence relation

Pn+1(x, y, q) = qyPn(x, y, q) + qx

n−1∑
k=0

(
n

k

)
Pk(x, y, q)2

n−kAn−k(x), (11)

with the initial conditions P0(x, y, q) = 1, P1(x, y, q) = yq. Moreover,

Pn+1(x, y, q) = (2nx+qy)Pn(x, y, q)+2x(1−x)
∂

∂x
Pn(x, y, q)+2x(1−y)

∂

∂y
Pn(x, y, q). (12)

Furthermore,
P (x, y, q; z) = eqz(y−1)Q(x, q; z). (13)

In the following, we shall prove Theorem 8 by using context-free grammars. For
an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in
monomials formed from letters in A. Following [6], a context-free grammar over A is a
function G : A → Q[[A]] that replace a letter in A by a formal function over A. The
formal derivative D is a linear operator defined with respect to a context-free grammar
G. More precisely, the derivative D = DG: Q[[A]] → Q[[A]] is defined as follows: for
x ∈ A, we have D(x) = G(x); for a monomial u in Q[[A]], D(u) is defined so that D is a
derivation, and for a general element q ∈ Q[[A]], D(q) is defined by linearity.

Lemma 9. If A = {a, b, c, d} and G = {a→ qab2, b→ b−1c2d2, c→ cd2, d→ c2d}, then

Dn(a) = a
∑
σ∈Q2

n

qcyc (σ)b2fix (σ)c2cap (σ)d2n−2fix (σ)−2cap (σ). (14)

Proof. Let Q2
n(i, j, k) = {σ ∈ Q2

n : cyc (σ) = i, fix (σ) = j, cap (σ) = k}. Given σ ∈
Q2
n(i, j, k). We now introduce a labeling scheme for σ:

(i) Put a superscript label a at the end of σ and a superscript q before each cycle of σ;
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(ii) If k is a fixed point of σ, then we put a superscript label b right after each k;

(iii) Put superscript labels c immediately before and right after each cycle ascent plateau;

(iv) In each of the remaining positions except the first position of each cycle, we put a
superscript label d.

When n = 1, we have Q2
1(1, 1, 0) = {q(1b1b)a}. When n = 2, we have Q2

2(2, 2, 0) =
{q(1b1b)q(2b2b)a} and Q2

2(1, 0, 1) = {q(1d1c2c2d)a, q(1c2c2d1d)a}. Let n = m. Suppose we
get all labeled permutations in Q2

m(i, j, k) for all i, j, k, where m > 2. We consider the
case n = m+ 1. Let σ′ ∈ Q2

m+1 be obtained from σ ∈ Q2
m(i, j, k) by inserting two copies

of the entry m+ 1 into σ. Now we construct a correspondence, denoted by ϑ, between σ
and σ′. Consider the following cases:

(c1) If the two copies of m+ 1 are put at the end of σ as a new cycle ((m+ 1)(m+ 1)),
then we leave all labels of σ unchanged except the last cycle. In this case, the
correspondence ϑ is defined by

σ = · · · (· · · )a ϑ←−−→ σ′ = · · · (· · · )q((m+ 1)b(m+ 1)b)a,

which corresponds to the operation a→ qab2. Moreover, σ′ ∈ Q2
m+1(i+ 1, j + 1, k).

(c2) If the two copies of m + 1 are inserted to a position of σ with label b, then ϑ
corresponds to the operation b→ b−1c2d2. In this case, σ′ ∈ Q2

m+1(i, j − 1, k + 1).

(c3) If the two copies of m + 1 are inserted to a position of σ with label c, then ϑ
corresponds to the operation c→ cd2. In this case, σ′ ∈ Q2

m+1(i, j, k).

(c4) If the two copies of m + 1 are inserted to a position of σ with label d, then ϑ
corresponds to the operation d→ c2d. In this case, σ′ ∈ Q2

m+1(i, j, k + 1).

By induction, we see that ϑ is the desired correspondence between permutations in Q2
m

and Q2
m+1, which also gives a constructive proof of (14).

Lemma 10. If A = {b, c, d} and G = {b→ b−1c2d2, c→ cd2, d→ c2d}, then

Dn(b2) = 2n
n−1∑
k=0

〈
n

k

〉
c2k+2d2n−2k = 2nd2nc2An

(
c2

d2

)
for n > 1.

Proof. Note that D(b2) = 2c2d2. Hence Dn(b2) = 2Dn−1(c2d2) for n > 1. Note that
D(c2d2) = 2(c2d4 + c4d2). Assume that

Dn(b2) = 2n
n−1∑
k=0

F (n, k)c2n−2kd2k+2.

Since

D(Dn(b2)) = 2n+1

n−1∑
k=0

(n− k)F (n, k)c2n−2kd2k+4 + 2n+1

n−1∑
k=0

(k + 1)F (n, k)c2n−k+2d2k+2,
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there follows

F (n+ 1, k) = (k + 1)F (n, k) + (n− k + 1)F (n, k − 1).

We see that the coefficients F (n, k) satisfy the same recurrence relation and initial con-
ditions as

〈
n
k

〉
, so they agree.

Proof of Theorem 8:
By Lemma 9 and Lemma 10, we get

Dn+1(a) =qDn(ab2)

=q
n∑
k=0

(
n

k

)
Dk(a)Dn−k(b2)

=qb2Dn(a) + q

n−1∑
k=0

(
n

k

)
Dk(a)2n−kd2n−2kc2An−k

(
c2

d2

)
.

Taking c2 = x, b2 = y and d2 = 1 in both sides of the above identity, we immediately
get (11). Set Sn(i, j, k) = #Q2

n(i, j, k). The following recurrence relation follows easily
from the proof of Lemma 9:

Sn+1(i, j, k) = Sn(i− 1, j − 1, k) + 2(j + 1)Sn(i, j + 1, k − 1)+

2kSn(i, j, k) + 2(n− j − k + 1)Sn(i, j, k − 1).

Multiplying both sides of the last recurrence relation by qiyjxk and summing for all i, j, k,
we immediately get (12).

Note that

Pn(x, y, q) =
n∑
i=0

(
n

i

)
(yq − q)i

∑
σ∈Q2

n

xcap (σ)qcyc (π)

=
n∑
i=0

(
n

i

)
(yq − q)iQn−i(x, q).

Thus P (x, y, q; z) = eqz(y−1)Q(x, q; z). This completes the proof of Theorem 8.
It should be noted that there exists a straightforward proof of (13). Note that each

object of Q2
n is a disjoint union of one object counted by P (x, 0, q; z) and some fixed

points. Since each fixed point contributes no cycle ascent plateau but one cycle, by rules
of exponential generating function one has Q(x, q; z) = eqzP (x, 0, q; z) and P (x, y, q; z) =
eyqzP (x, 0, q; z).

Given σ ∈ Q2
n. We say that σ is a Stirling derangement if σ has no fixed points. Let

DQn be the set of Stirling derangements of [n]2. Let Rn,k(x, q) be the coefficient of yk in
Pn(x, y, q). Note that Rn,0(x, q) is the corresponding enumerative polynomials on DQn.
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Set Rn(x, q) = Rn,0(x, q). Note that

Rn,k(x, q) =
∑
σ∈Q2

n
fix (σ)=k

xcap (σ)qcyc (π)

=

(
n

k

)
qk

∑
σ∈DQn−k

xcap (σ)qcyc (π)

=

(
n

k

)
qkRn−k(x, q).

Comparing the coefficients of both sides of (12), we get the following result.

Theorem 11. For n > 1, the polynomials Rn(x, q) satisfy the recurrence relation

Rn+1(x, q) = 2nxRn(x, q) + 2x(1− x)
∂

∂x
Rn(x, q) + 2nxqRn−1(x, q), (15)

with the initial conditions R1(x, q) = 0, R2(x, q) = 2qx,R3(x, q) = 4qx(1 + x).

Let qn = #DQn. Then the following corollary is immediate.

Corollary 12. For n > 1, the numbers qn satisfy the recurrence relation

qn+1 = 2n(qn + qn−1),

with the initial conditions q0 = 1, q1 = 0 and q2 = 2.

Note that #Q2
n = Qn = (2n− 1)!!. Then

∑
n>0 #Q2

n
zn

n!
= 1√

1−2z
. Thus

∑
n>0

qn
zn

n!
=

e−z√
1− 2z

,

which can be easily proved by using the exponential formula (see [3, Theorem 3.50]).
It should be noted that qn+1 is also the number of minimal number of 1-factors in a 2n-
connected graph having at least one 1-factor (see [1]). It would be interesting to study the
relationship between Stirling permutations of the second kind and 2n-connected graphs.

Recently, there has been much work on derangements polynomials (see [7, 9, 18, 19, 31]
for instance). For each π ∈ Sn, let the index i be called an excedance (resp. anti-
excedance) if π(i) > i (resp. π(i) < i). Let exc (π) be the number of excedances of π.
A permutation π ∈ Sn is a derangement if π(i) 6= i for any i ∈ [n]. Let Dn denote
the set of derangements of Sn. The ordinary derangements polynomial is defined by
dn(x) =

∑
π∈Dn

xexc (π). Brenti [4, Proposition 5] derived that∑
n>0

dn(x)
zn

n!
=

1− x
exz − xez

. (16)
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Let dn(x, q) =
∑

π∈Dn
xexc (π)qcyc (π) and let d(x, q; z) =

∑
n>0 dn(x, q) z

n

n!
. Following [17],

we have

d(x, q; z) =

(
1− x

exz − xez

)q
.

Taking y = 0 in (13), we have

P (x, 0, q; z) = e−qzQ(x, q; z) =

(√
x− 1

xe2z − e2xz

)q

. (17)

Thus P 2(x, 0, q; z) = d(x, q, 2z), which is a dual result of (1). So the following result is
immediate.

Theorem 13. For n > 0, we have

2ndn(x, q) =
n∑
k=0

(
n

k

)
Rk(x, q)Rn−k(x, q). (18)

Let Rn(x) =
∑
DQn

xcap (σ) be the Stirling derangement polynomials. Combining (15), (17)
and [20, Corollary 2.4], we immediately get the following result.

Proposition 14. For n > 2, the polynomial Rn(x) is symmetric and has only simple real
zeros.

Let ı2 =
√
−1. From (17), putting x = −1, we deduce the expression

S(−1, z) =

√
2

e2z + e−2z
=
√

sec(2ız). (19)

Note that sec(z) is an even function. Therefore, for n > 1, we have∑
σ∈DQn

(−1)cap (σ) =

{
0, if n = 2k − 1;
(−1)khk, if n = 2k,

where the number hn is defined by the following series expansion:√
sec(2ız) =

∑
n>0

(−1)nhn
z2n

(2n)!
.

The first few of the numbers hn are h0 = 1, h1 = 2, h2 = 28, h3 = 1112, h4 = 87568. It
should be noted that the numbers hn also count permutations of S4n having the following
properties:

(a) The permutation can be written as a product of disjoint cycles with only two ele-
ments;

(b) For i ∈ [2n], indices 2i−1 and 2i are either both excedances or both anti-excedances.

For example, when n = 1, there are only two permutations having the desired properties:
(1, 3)(2, 4) and (1, 4)(2, 3). This kind of permutations was introduced by Sukumar and
Hodges [30].
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4 Perfect matchings and a constructive proof of Proposition 1

Given M ∈ M2n. The standard form of the perfect matching M is a list of blocks
{(i1, j1), (i2, j2), . . . , (in, jn)} such that ir < jr for all 1 6 r 6 n and 1 = i1 < i2 < · · · < in.
In the following discussion we always write M in standard form. For convenience, we call
(i, j) a marked block (resp. an unmarked block) if j is even (resp. odd) and large than i.

4.1 Permutations and pairs of perfect matchings

Let the entry π(i) be called a descent (resp. an ascent) of π if π(i) > π(i + 1) (resp.
π(i) < π(i + 1)). By using the reverse map, it is evident that ascent and descent are
equidistributed. Let asc (π) be the number of ascents of π. Hence

An(x) =
∑
π∈Sn

xasc (π). (20)

Throughout this subsection, we shall always use (20) as the definition of the Eulerian
polynomial An(x).

We now constructively define a set of decorated permutations on [n] with some entries
of permutations decorated with hats and circles, denoted by Pn. Let w = w1w2 · · ·wn ∈
Pn. We say that wi with a hat (resp. circle) if wi = k̂ or wi = k̂ (resp. wi = k or

wi = k̂ ) for some k ∈ [n]. Start with P1 = {1, 1̂}. Suppose we have get Pn−1, where
n > 2. Given v = v1v2 · · · vn−1 ∈ Pn−1. We now construct entries of Pn by inserting
n, n , n̂ or n̂ into v according the following rules:

(r1) We can only put n or n̂ at the end of v;

(r2) For 1 6 i 6 n−1, if vi with no hat, then we can only put n or n immediately before
vi; if vi with a hat, then we can only put n̂ or n̂ immediately before vi.

It is clear that there are 2n elements in Pn that can be generated from any v ∈ Pn−1.
By induction, we obtain |Pn| = 2n|Pn−1| = 2nn!. Let ϕ(w) = ϕ(w1)ϕ(w2) · · ·ϕ(wn) be a
permutation of Sn obtained from w ∈ Pn by deleting the hats and circles of all wi. For
example, ϕ(3̂ 1̂ 4 2) = 3142. Let Pn(π) = {w ∈ Pn : ϕ(w) = π}. Let k` be a consecutive

subword of π ∈ Sn. We see that if k < `, then k` can be decorated as k`, k̂̀, k̂`, k̂ ̂̀. If

k > `, then k` can be decorated as k`, k `, k̂ ̂̀ or k̂ ̂̀. Therefore, |Pn(π)| = 2n for any

π ∈ Sn. It should be noted that k̂̀or k̂` is a consecutive subword of w ∈ Pn if and only
if k < `. Let the entry wi be called an ascent (resp. a descent) of w if ϕ(wi) < ϕ(wi+1)
(ϕ(wi) > ϕ(wi+1)). Also a conventional ascent is counted at the beginning of w. That
is, we identify a decorated permutation w = w1 · · ·wn with the word w0w1 · · ·wn, where
w0 = 0. Let asc (w) be the number of ascents of w. Therefore, we obtain

2nxAn(x) =
∑
w∈Pn

xasc (w).
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Example 15. The following decorated permutations are generated from 3̂ 1̂4 2:

3̂ 1̂425, 3̂ 1̂4 2 5̂, 3̂ 1̂4 5 2, 3̂ 1̂4 5 2, 3̂ 1̂542,

3̂ 1̂ 5 42, 3̂ 5̂ 1̂42, 3̂ 5̂ 1̂ 4 2, 5̂ 3̂ 1̂42, 5̂ 3̂ 1̂42.

Example 16. We have P2 = {12, 1 2̂, 1̂ 2, 1̂ 2̂, 21, 2 1, 2̂ 1̂, 2̂ 1̂}.

Let In,k be a set of subsets of [n] with cardinality k. Let Hat (w) be a set of entries
of w with hats and let hat (w) = #Hat (w). Let ϕ(Hat (w)) be a subset of [n] obtained
from Hat (w) by deleting all hats and circles of all entries of Hat (w). For example, if

w = 5̂ 3̂ 1̂42, then Hat (w) = {1̂, 3̂, 5̂ } and ϕ(Hat (w)) = {1, 3, 5}. We define

Pn,k = {w ∈ Pn : hat (w) = k},
PMn,k = {(S1, S2, In,k) : S1 ∈M2k, S2 ∈M2n−2k, In,k ∈ In,k}.

In this subsection, we always assume that the weight of w ∈ Pn,k is xasc (w) and that of
the pair of matchings (S1, S2) is xel (S1)+el (S2).

Now we start to construct a bijection, denoted by Φ, between Pn,k and PMn,k. When

n = 1, set Φ(1) = (∅, (1, 2),∅) and Φ(1̂) = ((1, 2),∅, {1}). This gives a bijection between
P1,k and PM1,k. When n = 2, the bijection Φ between P2,k and PM2,k is given as follows:

Φ(12) = (∅, (1, 2)(3, 4),∅), Φ(21) = (∅, (1, 3)(2, 4),∅)

Φ( 2 1) = (∅, (1, 4)(2, 3),∅), Φ(1̂2) = ((1, 2), (1, 2), {1}),
Φ(12̂) = ((1, 2), (1, 2), {2}), Φ(1̂ 2̂) = ((1, 2)(3, 4),∅, {1, 2}),

Φ(2̂ 1̂) = ((1, 3)(2, 4),∅, {1, 2}), Φ( 2̂ 1̂) = ((1, 4)(2, 3),∅, {1, 2}).

Suppose Φ is a bijection between Pm−1,k and PMm−1,k for all k, where m > 3. Assume
that w = w1w2 · · ·wm−1 ∈ Pm−1,k, asc (w) = i + j and Hat (w) = {wi1 , wi2 , . . . , wik}. Let
Φ(w) = (S1, S2, Im−1,k), where S1 ∈M2k, S2 ∈M2m−2k−2, Im−1,k = ϕ(Hat (w)), el (S1) =
i and el (S2) = j.

Consider the case n = m. Let w′ be a decorated permutation generated from w. We
first distinguish two cases: If w′ = wm, then let Φ(w′) = (S1, S2(2m − 2k − 1, 2m −
2k), Im,k), where Im,k = ϕ(Hat (w)); If w′ = wm̂, then let Φ(w′) = (S1(2k + 1, 2k +
2), S2, Im,k+1), where Im,k+1 = ϕ(Hat (w)) ∪ {m}.

Now let `1`2 be a consecutive subword of w. Firstly, suppose that `2 with no hat.
We say that `2 is a unhat-ascent-top (resp. unhat-descent-bottom) if ϕ(`1) < ϕ(`2) (resp.
ϕ(`1) > ϕ(`2)). Consider the following two cases:

(c1) If w′ = · · · `1m`2 (resp. w′ = · · · `1m`2 · · · ) and `2 is the pth unhat-ascent-top of
w, then let Φ(w′) = (S1, S

′
2, Im,k), where Im,k = ϕ(Hat (w)) and S ′2 is obtained from

S2 by replacing pth marked block (a, b) by two blocks (a, 2m− 2k− 1), (b, 2m− 2k)
(resp. (a, 2m− 2k), (b, 2m− 2k − 1)).
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(c2) If w′ = · · · `1m`2 · · · (resp. w′ = · · · `1m`2 · · · ) and `2 is the pth unhat-descent-
bottom of w, then let Φ(w′) = (S1, S

′
2, Im,k), where Im,k = ϕ(Hat (w)) and S ′2 is

obtained from S2 by replacing pth unmarked block (a, b) by two blocks (a, 2m −
2k − 1), (b, 2m− 2k) (resp. (a, 2m− 2k), (b, 2m− 2k − 1)).

Secondly, suppose that `2 with a hat. We say that `2 is a hat-ascent-top (resp. hat-
descent-bottom) if ϕ(`1) < ϕ(`2) (resp. ϕ(`1) > ϕ(`2)). Consider the following two cases:

(c1) If w′ = · · · `1m̂ `2 · · · (resp. w′ = · · · `1 m̂ `2 · · · ) and `2 is the pth hat-ascent-
top of w, then let Φ1(w′) = (S ′1, S2, Im,k+1), where Im,k+1 = ϕ(Hat (w)) ∪ {m}
and S ′1 is obtained from S1 by replacing the pth marked block (a, b) by two blocks
(a, 2k + 1), (b, 2k + 2) (resp. (a, 2k + 2), (b, 2k + 1)).

(c2) If w′ = · · · `1m̂ `2 · · · (resp. w′ = · · · `1 m̂ `2 · · · ) and `2 is the pth hat-descent-
bottom of w, then let Φ(w′) = (S ′1, S2, Im,k+1), where Im,k+1 = ϕ(Hat (w)) ∪ {m}
and S ′1 is obtained from S1 by replacing the pth unmarked block (a, b) by two blocks
(a, 2k + 1), (b, 2k + 2) (resp. (a, 2k + 2), (b, 2k + 1)).

After the above step, we write the obtained perfect matchings in standard form. Sup-
pose that w ∈ Pn,k and Φ(w) = (S1, S2, In,k). Then asc (w) = i + j if and only if
el (S1) + el (S2) = i+ j. By induction, we see that Φ is the desired bijection between Pn,k
and PMn,k for all k, which also gives a constructive proof of (3).

Example 17. Let w = 3̂ 1̂42 6̂ 5̂ ∈ P6,4. The correspondence between w and Φ(w) is
built up as follows:

1̂⇔ ((1, 2),∅, {1});
1̂2⇔ ((1, 2), (1, 2), {1});

3̂ 1̂2⇔ ((1, 3)(2, 4), (1, 2), {1, 3});
3̂ 1̂42⇔ ((1, 3)(2, 4), (1, 3)(2, 4), {1, 3});

3̂ 1̂425̂⇔ ((1, 3)(2, 4)(5, 6), (1, 3)(2, 4), {1, 3, 5});
3̂ 1̂42 6̂ 5̂⇔ ((1, 3)(2, 4)(5, 8)(6, 7), (1, 3)(2, 4), {1, 3, 5, 6}).

4.2 Signed permutations and pairs of perfect matchings

In this subsection, we write signed permutations of Bn as π = π(0)π(1)π(2) · · · π(n),
where some elements are associated with the minus sign and π(0) = 0. As usual, we
denote by i the negative element −i. For π ∈ Bn, let

RLMIN (π) = {π(i) : |π(i)| < |π(j)| for all j > i}.

For example, RLMIN (3 142675) = {1, 2, 5}. For π ∈ Bn, we let rlmin (π) = #RLMIN (π).
For π ∈ Sn, we let rlmin (π) = #{π(i) : π(i) < π(j) for all j > i}. For n > 1, we have∑

π∈Bn

xrlmin (π) = 2n
∑
π∈Sn

xrlmin (π) = 2nx(x+ 1)(x+ 2) · · · (x+ n− 1).
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Definition 18. A block of π is a maximal subsequence of consecutive elements of π ending
with π(i) ∈ RLMIN (π) and not contain any other element of RLMIN (π).

It is clear that any π has a unique decomposition as a sequence of its blocks. If
rlmin (π) = k, then we write π 7→ B1B2 · · ·Bk, where Bi is ith block of π. A bar-block
(resp. unbar-block) is a block ending with a negative (resp. positive) element. Let Bar (π)
be the union of elements of bar-blocks of π and let bar (π) = #Bar (π). We define a map
θ by

θ(Bar (π)) = {|π(i)| : π(i) ∈ Bar (π)}.
Set NBar (π) = [n]/Bar (π). For example, if π = 3 142675, then π 7→ [3 1][42][675],
[3 1] and [675] are bar-blocks of π, Bar (π) = {6, 5, 3, 1, 7}, bar (π) = 5, θ(Bar (π)) =
{1, 3, 5, 6, 7}. and NBar (π) = {2, 4}.

We define Bn,k = {π ∈ Bn : bar (π) = k} and

BMn,k = {(T1, T2, In,k) : T1 ∈M2k, T2 ∈M2n−2k, In,k ∈ In,k},

where In,k is the set of subsets of [n] with the cardinality k. In this subsection, we always
assume that the weight of π ∈ Bn,k is xdes B(π) and that of the pair of matchings (T1, T2)
is xel (T1)+ol (T2).

Along the same lines as the proof of (3), we start to construct a bijection, denoted
by Ψ, between Bn,k and BMn,k. When n = 1, set Ψ(1) = (∅, (1, 2),∅) and Ψ(1) =
((1, 2),∅, {1}). This gives a bijection between B1,k and BM1,k. When n = 2, the bijection
Ψ between B2,k and BM2,k is given as follows:

Ψ(12) = (∅, (1, 2)(3, 4),∅), Ψ(21) = (∅, (1, 3)(2, 4),∅)

Ψ(21) = (∅, (1, 4)(2, 3),∅), Ψ(12) = ((1, 2), (1, 2), {1}),
Ψ(12) = ((1, 2), (1, 2), {2}), Ψ(1 2) = ((1, 2)(3, 4),∅, {1, 2}),
Ψ(21) = ((1, 3)(2, 4),∅, {1, 2}), Ψ(2 1) = ((1, 4)(2, 3),∅, {1, 2}).

Suppose Ψ is a bijection between Bm−1,k and BMm−1,k for all k, where m > 3.
Assume that π = π(1)π(2) · · · π(m − 1) ∈ Bm−1,k, des B(π) = i + j and Bar (π) =
{π(i1), π(i2) . . . , π(ik)}. Let Ψ(π) = (T1, T2, Im−1,k), where

T1 ∈M2k, T2 ∈M2m−2k−2, Im−1,k = θ(Bar (π)), el (T1) = i, ol (T2) = j.

Consider the case n = m. Let π′ be obtained from π by inserting the entry m (resp. m)
into π. We first distinguish two cases: If π′ = πm, then let

Ψ(π′) = (T1, T2(2m− 2k − 1, 2m− 2k), Im,k),

where Im,k = θ(Bar (π)); If π′ = πm, then let Ψ(π′) = (T1(2k + 1, 2k + 2), T2, Im,k+1),
where Im,k+1 = θ(Bar (π)) ∪ {m}.

For 0 6 i 6 m − 2, consider the consecutive subword π(i)π(i + 1) of π. Firstly,
suppose that π(i + 1) ∈ NBar (π). We say π(i + 1) is a unbar-ascent-top (resp. unbar-
descent-bottom) if π(i) < π(i + 1) (resp. π(i) > π(i + 1)). Consider the following two
cases:
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(c1) If π′ = · · · π(i)mπ(i+1) · · · (resp. π′ = · · · π(i)mπ(i+1) · · · ) and π(i+1) is the pth
unbar-ascent-top of π, then let Ψ(π′) = (T1, T

′
2, Im,k), where T ′2 is obtained from T2

by replacing the pth marked block (a, b) by two blocks (a, 2m−2k−1), (b, 2m−2k)
(resp. (a, 2m− 2k), (b, 2m− 2k − 1)) and Im,k = θ(Bar (π)).

(c2) If π′ = · · · π(i)mπ(i + 1) · · · (resp. π′ = · · · π(i)mπ(i + 1) · · · ) and π(i + 1) is the
pth unbar-descent-bottom of π, then let Ψ(π′) = (T1, T

′
2, Im,k), where T ′2 is obtained

from T2 by replacing the pth unmarked block (a, b) by two blocks (a, 2m − 2k −
1), (b, 2m− 2k) (resp. (a, 2m− 2k), (b, 2m− 2k − 1)) and Im,k = θ(Bar (π)).

Secondly, suppose that π(i + 1) ∈ Bar (π). We say π(i + 1) is a bar-ascent-top (resp.
bar-descent-bottom) if π(i) < π(i+ 1) (resp. π(i) > π(i+ 1)). Consider the following two
cases:

(c1) If π′ = · · · π(i)mπ(i + 1) · · · (resp. π′ = · · · π(i)mπ(i + 1) · · · ) and π(i + 1) is the
pth bar-ascent-top of π, then let Ψ(π′) = (T ′1, T2, Im,k+1), where T ′1 is obtained from
T1 by replacing the pth unmarked block (a, b) by two blocks (a, 2k + 1), (b, 2k + 2)
(resp. (a, 2k + 2), (b, 2k + 1)) and Im,k+1 = θ(Bar (π)) ∪ {m}.

(c2) If π′ = · · · π(i)mπ(i + 1) · · · (resp. π′ = · · · π(i)mπ(i + 1) · · · ) and π(i + 1) is the
pth bar-descent-bottom of π, then let Ψ(π′) = (T ′1, T2, Im,k+1), where T ′1 is obtained
from T1 by replacing the pth marked block (a, b) by two blocks (a, 2k+1), (b, 2k+2)
(resp. (a, 2k + 2), (b, 2k + 1)) and Im,k+1 = θ(Bar (π)) ∪ {m}.

After the above step, we write the obtained perfect matching in standard form. Sup-
pose that π ∈ Bn,k and Ψ(π) = (T1, T2, In,k). Then des B(π) = i + j if and only if
el (T1) + ol (T2) = i+ j. By induction, we see that Ψ is the desired bijection between Bn,k
and BMn,k for all k, which also gives a constructive proof of (4).

Example 19. The correspondence between π = 3 142675 and Ψ(π) is built up as follows:

1⇔ ((1, 2),∅, {1});
12⇔ ((1, 2), (1, 2), {1});

3 12⇔ ((1, 4)(2, 3), (1, 2), {1, 3});
3 142⇔ ((1, 4)(2, 3), (1, 3)(2, 4), {1, 3});

3 1425⇔ ((1, 4)(2, 3)(5, 6), (1, 3)(2, 4), {1, 3, 5});
3 1426 5⇔ ((1, 3)(2, 4)(5, 8)(6, 7), (1, 3)(2, 4), {1, 3, 5, 6});
3 142675⇔ ((1, 3)(2, 4)(5, 8)(6, 9)(7, 10), (1, 3)(2, 4), {1, 3, 5, 6, 7}).

5 Concluding remarks

Given σ = σ1σ2 · · ·σ2n ∈ Qn. We say that σi is a left-to-right minimum of σ if σi < σj
for all 1 6 j < i. We now present a bijection between Qn and Q2

n. Define σ̂ to be the
Stirling permutation of the second kind obtained from σ by inserting a left parenthesis
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in σ preceding every left-to-right minimum. Then insert a right parenthesis before every
internal left parenthesis and at the end. For example, if σ = 331221, then σ̂ = (33)(1221).
It is easy to verify that we can uniquely recover σ from σ̂ by requiring that (a) each cycle
is written with its smallest element first, (b) the cycles are written in decreasing order of
their smallest element, and (c) we then erase all parentheses.

A natural generalization of Stirling permutations is k-Stirling permutations. Let ji de-
note the i copies of j, where i, j > 1. We call a permutation of the multiset {1k, 2k, . . . , nk}
a k-Stirling permutation of order n if for each i, 1 6 i 6 n, all entries between the two
occurrences of i are at least i. One can introduce k-Stirling permutations of the second
kind along the same line as in Definition 2. Moreover, it would be interesting to investi-
gate an analog of (18) on Coxeter groups of types B and D. Furthermore, one may find
some multivariate extensions of Proposition 1.
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