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Abstract

We initiate the study of general neighborhood growth dynamics on two-dimen-
sional Hamming graphs. The decision to add a point is made by counting the
currently occupied points on the horizontal and the vertical line through it, and
checking whether the pair of counts lies outside a fixed Young diagram. We focus
on two related extremal quantities. The first is the size of the smallest set that
eventually occupies the entire plane. The second is the minimum of an energy-
entropy functional that comes from the scaling of the probability of eventual full
occupation versus the density of the initial product measure within a rectangle. We
demonstrate the existence of this scaling and study these quantities for large Young
diagrams.

1 Introduction

We consider a long-range deterministic growth process on the discrete plane, restricted
for convenience to the first quadrant Z2

+. These dynamics iteratively enlarge a subset of
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Z2
+ by adding points based on counts on the entire horizontal and vertical lines through

them. The connectivity is therefore that of a two-dimensional Hamming graph, that is,
a Cartesian product of two complete graphs. The papers [24, 15, 25, 3] address some
percolation and growth processes on vertices of Hamming graphs, but such highly non-
local growth models remain largely unexplored. In particular, the few two-dimensional
problems addressed so far appear to be too limited to offer much insight, and we seek to
remedy this with a class of models we now introduce.

For integers a, b ∈ N2, we let Ra,b = ([0, a − 1] × [0, b − 1]) ∩ Z2
+ be the discrete

a × b rectangle. A set Z = ∪(a,b)∈IRa,b, given by a union of rectangles over some set
I ⊆ N2, is called a (discrete) zero-set . We allow the trivial case Z = ∅, and also the
possibility that Z is infinite. However, in most of the paper the zero-sets will be finite and
therefore equivalent to Young diagrams in the French notation [23] (see Figure 1.1a). Our
dynamics will be given by iteration of a growth transformation T : 2Z2

+ → 2Z2
+ , and will

be determined by the associated zero-set Z, so we will commonly not distinguish between
the two.

Fix a zero-set Z. Suppose A ⊆ Z2
+ and x ∈ Z2

+. Let Lh(x) and Lv(x) be the horizontal
and the vertical line through x, so that the neighborhood of x is Lh(x) ∪ Lv(x). If x ∈ A,
then x ∈ T (A). If x /∈ A, we compute the horizontal and vertical counts

row(x,A) = |Lh(x) ∩ A| and col(x,A) = |Lv(x) ∩ A|,

form the pair (u, v) = (row(x,A), col(x,A)), and declare x ∈ T (A) if and only if (u, v) /∈
Z. Observe that, by definition of a zero set, monotonicity holds: A ⊆ A′ implies T (A) ⊆
T (A′). We call such a rule a neighborhood growth rule. So defined, this class in fact
comprises all rules that satisfy the natural monotonicity and symmetry assumptions and
have only nearest-neighbor dependence under the Hamming connectivity; see Section 2.1.

A given initial set A ⊆ Z2
+ and T then specify the discrete-time trajectory: At = T t(A)

for t > 0. The points in At and Act are respectively called occupied and empty at time t.
We define A∞ = T ∞(A) = ∪t>0At to be the set of eventually occupied points. We say
that the set A spans if A∞ = Z2

+. See Figure 1.1b for an example of these dynamics. We
also say that a set B ⊆ Z2

+ is spanned if B ⊆ T ∞(A) and that B is internally spanned by
A if the dynamics restricted to B spans it; that is, B = T ∞B (A∩B), where the restricted
growth transformation TB is given by TB(A) = T (A) ∩B.

The central theme of this paper is the minimization of certain functionals on the set A
of all finite spanning sets. Perhaps the simplest such functional is the cardinality, which
results in the quantity

γ(T ) = γ(Z) = min{|A| : A ∈ A}.
Our second functional is related but requires further explanation and notation, and we
will introduce it below when we state our main results. We first put the topic in the
context of previous work.

The best known special case of neighborhood growth is given by an integer threshold
θ > 1, with the rule that x joins the occupied set whenever the entire neighborhood count
is at least θ. This rule makes sense on any graph; in our case it translates to triangular
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(a) A zero-set Z (grey re-
gion). Shapes on external
boundary correspond to dis-
tinct minimal neighborhood
counts that will result in oc-
cupation of vertices. E.g.,
the diamond signifies occu-
pation by having at least one
horizontal and at least two
vertical neighbors.

)

+

(

1

(b) Example of growth from an initial occupied set A
(top left, circles). Different shapes correspond to the row
and column counts at the time of occupation, as indicated
in 1.1a. The last configuration (bottom left) is inert, that
is, T 4(A) = T 3(A).

Figure 1.1: An example of neighborhood growth.

Z = Tθ = {(u, v) : u + v 6 θ − 1}. Such dynamics are known by the name of threshold
growth [13] or bootstrap percolation [11]. Bootstrap percolation on graphs with short
range connectivity has a long and distinguished history as a model for metastability and
nucleation. The most common setting is a graph of the form [k]`, a Cartesian product of `
path graphs of k points, and thus with standard nearest neighbor lattice connectivity. The
foundational mathematical paper is [1], which studied what we call the classic bootstrap
percolation, which is the process with θ = 2 on [n]2. A brief summary of this paper’s
ongoing legacy is impossible, so we mention only a few notable successors: [16] gives the
precise asymptotics for the classical bootstrap percolation; [4] extends the result for all
[n]d and θ; the hypercube [2]n with θ = 2 is analyzed in [2, 4]; and a recent paper [7]
addresses a bootstrap percolation model with drift. The main focus of the voluminous
research is the estimation of the critical probability on large finite sets, that is, the initial
occupation density pc that makes spanning occur with probability 1/2. It is typical for
this class of models that pc approaches zero very slowly with increasing system size,
certainly slower than any power, and that the transition in the probability of spanning
from small to close to 1 near pc is very sharp. For example, pc ∼ π2/(18 log n) for the
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classic bootstrap percolation [16]. Neither slow decay nor sharp transition happen for
supercritical threshold growth on the two-dimensional lattice [13] or threshold growth
on Hamming graphs [15, 25], where instead power laws hold. One of our main results,
Theorem 3, shows that, for any neighborhood growth, there is a well-defined power-
law relationship between the density of the initial set, the size of the system, and the
probability of spanning.

Another special case is the line growth, where Z = Ra,b for some a, b ∈ N. This
was introduced under the name line percolation in the recent paper [3], which proves
that γ(Ra,b) = ab, establishes a similar result in higher dimensions, and obtains the
large deviation rate (defined below) for Z = Ra,a on a square. Some of our results are
therefore extensions of those in [3]. In particular, one may ask for which Z the equality
γ(Z) = γ(Ra,b) holds for some Ra,b ⊆ Z. We discuss this in Section 2.5.

Extremal problems play a prominent role in growth models: they feature in the es-
timation of the nucleation probability, but they are also interesting in their own right.
For bootstrap percolation, the size of the smallest spanning subset for [n]d when θ = 2 is
known to be bd(n − 1)/2c + 1 for all n and d [5]; the clever argument that the smallest
spanning set for classic bootstrap percolation on [n]2 has size n is a folk classic. The
problem is much more difficult for larger θ: see [8, 5] for a review of results and conjec-
tures for lattices [n]d; some conjectures for hypercubes [2]n were recently resolved in [19],
where it is shown that the smallest spanning set has size bn(n+ 3)/6c+ 1 for θ = 3 and
all n, and size θ−1

(
n
θ−1

)
(1 + o(1)) for general θ and large n. The smallest spanning sets

have also been studied for bootstrap percolation on trees [22] and certain hypergraphs [6].
However, the closest parallel to the analysis of γ in the present paper is the large neigh-
borhood setting for the threshold growth model on Z2 from [14]. Several related extremal
questions, which are not considered in this paper, are also of interest. For example, one
may ask for the largest size of the inclusion-minimal set that spans ([18] addresses this for
the classic bootstrap percolation, [21] for hypercubes with θ = 2, and [22] for trees), or
for the longest time that a spanning set may take to span (this is the subject of a recent
paper [9] on the classic bootstrap percolation).

We now proceed to our main results, beginning with a theorem that gives basic infor-
mation on the size of γ. The upper bound we give cannot be improved, as it is achieved
by the line growth. We do not know whether the 1/4 in the lower bound can be replaced
by a larger number.

Theorem 1. For all zero sets Z,

1

4
|Z| 6 γ(Z) 6 |Z|.

Assume that the initially occupied set is restricted to a rectangle RN,M , which is large
enough to include the entire Z (which is then, of course, finite). Then, as it is easy to
see, the dynamics spans Z2

+ if and only if it internally spans RN,M . As all our rectangles
will satisfy this assumption, we will not distinguish between spanning and their internal
spanning. Now, one may ask if a configuration restricted to the interior of such a rectangle
requires more sites to span than an unrestricted configuration. Our next result answers
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this question in the negative, establishing a property of obvious importance for a computer
search for smallest spanning sets.

Theorem 2. Assume that a0, b0 ∈ N are such that Z ⊆ Ra0,b0. Then

γ(Z) = min{|A| : A ∈ A and A ⊆ Ra0,b0}.

Next we consider spanning by random subsets of rectangles RN,M . Assume that the
initial configuration is restricted to RN,M , where it is chosen according to a product
measure with a small density p > 0. The possibly unequal sizes N and M need to
increase as p→ 0, and, given that in all known cases spanning probabilities on Hamming
graphs obey power laws [15, 3], it is natural to suppose that they scale as powers of p.
Thus we fix α, β > 0 and assume that, as p→ 0, N,M →∞ and

logN ∼ −α log p, logM ∼ −β log p.

We will denote by Span the event that the so defined initial set spans, and turn our
attention to the question of the resulting power-law scaling for Pp (Span). The answer
will involve finding the optimal energy-entropy balance, so there is a conceptual connec-
tion with large deviation theory, despite the fact that the probabilities involved are not
exponential. Thus we call the quantity

I(α, β) = I(α, β,Z) = lim
p→0

logPp (Span)

log p

the large deviation rate for the event Span, provided it exists.
The rate I is given as the minimum, over the spanning sets, of the functional ρ that

we now define. For a finite set A ⊆ Z2
+, let πx(A) and πy(A) be projections of A on the

x-axis and y-axis, respectively. Then let

ρ(α, β,A) = max
B⊆A

(|B| − α|πx(B)| − β|πy(B)|) .

The term |B| represents the energy of the subset B and the linear combination of sizes of
the two projections the entropy of B. In the next theorem, we use the following notation
for the outside boundary of a Young diagram Y :

∂oY = {(u, v) ∈ Z2
+ \ Y : (u− 1, v) ∈ Y or (u, v − 1) ∈ Y }.

Also, we use the notation a ∨ b = max(a, b) and a ∧ b = min(a, b) for real numbers a, b.

Theorem 3. For any finite zero-set Z, the large deviation rate I(α, β,Z) exists. More-
over, there exists a finite set A0 ⊆ A, independent of α and β, so that

I(α, β,Z) = inf{ρ(α, β,A) : A ∈ A} = min{ρ(α, β,A) : A ∈ A0}. (1.1)

The rate I(α, β,Z) as a function of (α, β) is continuous, piecewise linear, nonincreasing
in both arguments, concave when α + β 6 1, and I(0, 0,Z) = γ(Z) > I(α, β,Z) unless
α = β = 0.
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Moreover, the support of I is given by

supp I(·, ·,Z) =
⋂

(u,v)∈∂oZ

{
(α, β) ∈ [0, 1]2 : [u(1− α)− β] ∨ [v(1− β)− α] > 0

}
. (1.2)

Furthermore, if α, β ∈ [0, 1]2 \ supp I(·, ·,Z), then Pp (Span)→ 1.

We give explicit formulae for I(α, β,Ra,b) and I(α, α, Tθ) in Sections 5.2 and 5.3. In
general, determining an explicit analytical formula for this rate even for a moderately
large Z appears to be quite challenging. Figure 1.2a depicts the support of I(·, ·, Tθ) for
several values of θ, and Figure 1.2b shows the function I(α, β,R9,4).

(a) Boundaries of the supports of I(·, ·, Tθ)
for θ = 2, . . . , 20 (from bottom to top; re-
gions between successive boundaries shaded
in alternating colors for visual guidance).

(b) The function I(α, β,R9,4). Lighter
shades correspond to steeper gradients.

Figure 1.2: Examples of I(·, ·,Z).

It is clear that both γ and I increase if Z is enlarged, so it is natural to ask how they
behave for large Z. Theorem 1 suggests that γ(Z)/|Z| might converge, and this is indeed
true with the proper definition of convergence of Z, which we now formulate.

A Euclidean rectangle is denoted by R̃a,b = [0, a]× [0, b] ⊆ R2
+. We define a Euclidean

zero-set , or a continuous Young diagram, Z̃ to be a closed subset of R2
+ such that (a, b) ∈ Z̃

implies R̃a,b ⊆ Z̃, and such that Z̃ is the closure of Z̃ ∩ (0,∞)2. For Euclidean zero-sets

Z̃n and Z̃, we say that the sequence Z̃n E-converges to Z̃, Z̃n E−→ Z̃, if

(C1) for any R > 0, Z̃n ∩ [0, R]2 → Z̃ ∩ [0, R]2 in Hausdorff metric; and

(C2) area(Z̃n)→ area(Z̃).
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For A ⊆ Z2
+, define its square representation by square(A) = ∪x∈A(x + [0, 1]2) ⊆ R2.

Observe that, for a (discrete) zero-set Z, square(Z) is a Euclidean zero-set. Convergence

of a sequence Zn of zero-sets will mean convergence to some limit Z̃ of their properly
scaled square representations. We note that we do not assume that Z̃ is bounded; in
fact, unbounded continuous Young diagrams with finite area arise as a limit of a random
selection of discrete ones; see Section 8.

Next, we state our main convergence theorem, which provides the properly scaled
limits for γ, I, and another extremal quantity that we now introduce. Call a set A ⊆ Z2

+

thin if every point x ∈ A has no other points of A either on the vertical line through x or
on the horizontal line through x. We denote by γthin(Z) the cardinality of the smallest
thin spanning set for Z.

Theorem 4. There exist functions Ĩ(α, β, Z̃), γ̃(Z̃) = Ĩ(0, 0, Z̃), and γ̃thin(Z̃) defined on

Euclidean zero-sets Z̃ and (α, β) ∈ [0, 1]2 so that the following holds.
Assume that Zn is a sequence of discrete zero-sets and δn > 0 is a sequence of numbers

such that δn → 0 and δnsquare(Zn)
E−→ Z̃. Then

δ2nI(α, β,Zn)→ Ĩ(α, β, Z̃), (1.3)

δ2nγ(Zn)→ γ̃(Z̃). (1.4)

and
δ2nγthin(Zn)→ γ̃thin(Z̃). (1.5)

If area(Z̃) =∞, then Ĩ(·, ·, Z̃) ≡ ∞ on [0, 1)2 and γ̃thin(Z̃) =∞. If area(Z̃) <∞, then

the following holds: Ĩ(·, ·, Z̃) is finite, concave and continuous on [0, 1]2; γ̃thin(Z̃) < ∞;

convergence in (1.3) is uniform for (α, β) ∈ [0, 1]2; and, if Z̃n is a sequence of Euclidean

zero-sets and Z̃n E−→ Z̃, then Ĩ(·, ·, Z̃n)→ Ĩ(·, ·, Z̃) uniformly on [0, 1]2.

The function γ̃ can be defined through a natural Euclidean counterpart of the growth
dynamics, replacing cardinality of two-dimensional discrete sets with area and cardinality
of one-dimensional ones with length. However, if we attempt such a naive definition for
Ĩ, we get zero unless α = β = 0 because Euclidean sets can have projection lengths much
larger than their areas. In fact, to properly define Ĩ, we need to understand the design
of optimal sets for large Z. Roughly, such sets are unions of two parts: a thick “core”
that contributes very little to the entropy, and thin high-entropy tentacles. The resulting
variational characterization of Ĩ when Z̃ is bounded is given by the formula (6.3). We

proceed to give more information on Ĩ, starting with the general bounds.

Theorem 5. For a Euclidean zero-set Z̃ with finite area, and (α, β) ∈ [0, 1]2,

Ĩ(α, β, Z̃) > (1−max(α, β)) γ̃(Z̃) (1.6)

and

Ĩ(α, β, Z̃) 6 min((1−max(α, β)) area(Z̃), 2(1−min(α, β)) γ̃(Z̃), γ̃(Z̃)). (1.7)
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The lower bound (1.6) is sharp: it is attained for all α and β if and only if Z̃ = R̃a,b

for some a, b > 0 (Corollary 56). The upper bound (1.7) is almost certainly not sharp as

it equals the trivial bound γ̃(Z̃) on a large portion of [0, 1]2. To what extent it can be
improved is an interesting open problem, which we clarify, to some extent, by investigating
the behavior of Ĩ near the corners of the unit square.

Theorem 6. For any Euclidean zero-set Z̃ with finite area,

lim
α→1−

1

1− αĨ(α, 0, Z̃) = area(Z̃) (1.8)

and

lim
α→1−

1

1− αĨ(α, α, Z̃) = γ̃thin(Z̃). (1.9)

Moreover, the following holds for the supremum over Euclidean zero-sets Z̃ with finite
area:

sup
Z̃

Ĩ(α, α, Z̃)

γ̃(Z̃)
=

{
1 + o(α) as α→ 0+,

2(1− α) + o(1− α) as α→ 1−.
(1.10)

Note that (1.10) says that the slopes of the supremum are 0 at α = 0 and −2 at α = 1.
These match the slopes of the two expessions involving γ̃ in the upper bound (1.7), while
the expression involving area has the correct slope at (1, 0) due to (1.8). Therefore no
linear improvement of (1.7) is possible near the corners on the square. We obtain (1.10),

which in particular implies that γ̃(Z̃) and γ̃thin(Z̃) are not always equal, by analyzing
L-shaped zero-sets with long arms. The proof of all parts of Theorem 6 again relies on
providing a lot of information about the design of the optimal spanning sets, which turn
out to be very thick near (0, 0) and very thin near (1, 0) and (1, 1).

We conclude with a brief outline of the rest of the paper. In Section 2, we prove some
preliminary results and discuss lower bounds on γ for small Z and for small perturbations
of large Z. In Sections 3.1 and 3.2 we analyze smallest spanning sets, providing proofs of
Theorems 1 and 2. In Section 4.1 we prove (1.1), and in Section 4.2 we prove general upper
and lower bounds on the large deviation rate; we then complete the proof of Theorem 3 in
Section 5.1. In Sections 5.2 and 5.3 we provide derivations for the two cases for which the
large deviation rate I is known exactly. In Section 6 we introduce Hamming neighborhood
growth on the continuous plane and prove Theorem 4, which is completed in Section 6.5.
Sections 7.1–7.4 contain proofs of Theorem 5 (completed in Section 7.1) and Theorem 6
(completed in Section 7.4) and give some related results on I for large Z. We conclude
with an application of limiting shape results for randomly selected Young diagrams in
Section 8, and with a selection of open problems in Section 9.

2 Preliminaries

2.1 The pattern-inclusion growth

The neighborhood growth rules defined in Section 1 are part of a much larger class of
pattern-inclusion dynamics, which we define in this section. Our reason to do so is not

the electronic journal of combinatorics 24(4) (2017), #P4.29 8



an attempt to develop a comprehensive theory in this general setting, but rather because
we need Theorem 8 in the proof of Theorem 3.

Any process that takes advantage of the connectivity of the Hamming plane will have
a long range of interaction, so locality, as in cellular automata growth dynamics [12], is
out of the question, but we retain some of its flavor by the property (G4) below. Again,
we assume that the growth takes place on the vertex set Z2

+.

A growth transformation is a map T : 2Z2
+ → 2Z2

+ with the following properties:

(G1) solidification: if A ⊆ Z2
+, A ⊆ T (A);

(G2) monotonicity : if A1 ⊆ A2 ⊆ Z2
+, then T (A1) ⊆ T (A2);

(G3) permutation invariance: T commutes with any permutation of rows and any
permutation of columns of Z2

+; and

(G4) finite inducement : there exists a number K, so that for any A ⊆ Z2
+ and

x ∈ T (A) there exists a set A′ ⊆ A, such that |A′| 6 K and x ∈ T (A′).

A growth dynamics starting from the initially occupied set A is defined as in Section 1
by At = T t(A), with A∞ = T ∞(A) the set of all eventually occupied points. We say that
A ⊆ Z2

+ is inert if T (A) = A. It follows from (G4) that A∞ is always inert. As for the
neighborhood growth, we say that A spans if T ∞(A) = Z2

+. This notion leads to another
property of T :

(G5) voracity : there exists a finite set A ⊆ Z2
+ that spans.

Example 7. If T is the neighborhood growth with Z consisting of the nonnegative x-
and y-axis, then

T (A) = {x : Lh(x) ∩ A 6= ∅ and Lv(x) ∩ A 6= ∅},

and T fails voracity as no A with an empty (horizontal or vertical) line spans.

A pattern is a finite subset of Z2
+. Two patterns are equivalent if the rows and columns

of Z2
+ can be permuted to transform one into the other, and 0-equivalent if they could

be so permuted while keeping the 0th row and 0th column fixed. We say that A ⊆ Z2
+

contains a pattern P if there exist permutations σh and σv of rows and columns of Z2
+ to

obtain a set A′ such that that P ⊆ A′. Moreover, we say that a pattern is observed by
the origin 0 = (0, 0) in A if there exist such permutations σh and σv, which also fix 0.

There is a bijection between growth transformations T and finite sets of patterns P
with the following properties:

(P1) {0} ∈ P ; and

(P2) no pattern in P is 0-equivalent to a subset of another pattern in P .
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We consider sets P1 and P2 of patterns equivalent if they have the same elements up to
0-equivalence.

For a set of patterns P that satisfies (P1–2), we call the transformation T = TP which
commutes with any transposition of rows and any transposition of columns and satisfies

0 ∈ T (A) if and only if there exists a pattern P ∈ P , observed by 0 in A, (2.1)

a pattern-inclusion transformation. Observe that TP is uniquely defined by the equivalence
class of P .

Theorem 8. A composition of two growth transformations is a growth transformation.
Moreover, any map T : 2Z2

+ → 2Z2
+ is a growth transformation if and only if it is a pattern

inclusion transformation.

Proof. The first statement is easy to check by (G1–4). To prove the second statement
assume first that T is a growth transformation. Then gather all inclusion-minimal sets A
that result in 0 ∈ T (A); there are finitely many 0-equivalence classes of them by (G4), and
so we can collect one pattern per 0-equivalence class to form P . The converse statement
is again easy to check by definition.

We now formally state the connection to the neighborhood growth.

Proposition 9. A neighborhood growth transformation is characterized by a set P of
patterns that are included in the two lines through 0. It is voracious if and only if its
zero-set Z is finite.

We omit the simple proof of this proposition. From now on, we will assume that all
zero-sets are finite.

We end this section with an example that show that (G4) is indeed a necessary as-
sumption if we want the set P to be finite (which is in turn a crucial property for our
application).

Example 10. We give an example of a dynamics given by (2.1) with an infinite set P
of finite patterns that satisfies (G1)–(G3) and (G5), but not (G4). Define P to comprise
{0} and the following patterns

0 × ,
× × ×
×
0

,

× × ×
× ×
×
0

,

× × ×
× ×

× ×
×
0

, . . .

(Here, we denote by × a point in the pattern.) No pattern above is 0-equivalent to a
subset of another, and a 2 by 1 rectangle of occupied sites spans.
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2.2 Perturbations of Z

In this section, we prove some results on the effects that small perturbations to a zero-set
Z have on the spanning sets. We start with some notation.

Fix a zero-set Z and an integer k > 1. We define the following two Young diagrams,
obtained by deleting the k largest (bottom) rows (resp., columns) of Z,

Z↓k = {(u, v − k) : (u, v) ∈ Z, v > k},
Z←k = {(u− k, v) : (u, v) ∈ Z, u > k}.

Then we let
Z↙k = (Z↓k)←k

and
Zxk = Z \ ((k, k) + Z↙k),

which is the set comprised of the k longest rows and columns of Z. Suppose A ⊆ Z2
+, and

let
A>k = {x ∈ A : row(x,A) > k or col(x,A) > k}

denote the set of points in A that lie in either a row or a column with at least k other
points of A. For example, A>1 is the set of non-isolated points in A. The next two lemmas
let us identify low-entropy spanning sets for perturbations of Z.

Lemma 11. If A spans for Z, then A>k spans for Z↙k.

Proof. For each x ∈ Z2
+,

row(x,A>k) > (row(x,A)− k) ∨ 0 and col(x,A>k) > (col(w,A)− k) ∨ 0,

since the vertices removed from A to form A>k are on both horizontal and vertical lines
with at most k vertices of A. Therefore, if T and Tk are the respective growth transfor-
mations corresponding to Z and Z↙k, then x ∈ T (A)\A implies that x ∈ Tk(A>k)\A>k.
By induction, T t(A) \A ⊆ T tk (A>k) \A>k for all t > 1. Since A spans for Z and A \A>k
has at most k sites in each line, for every x ∈ Z2

+, row(x, T tk (A>k)) → ∞ as t → ∞, so
A>k spans for Z↙k.

Lemma 12. Let A ⊆ Z2
+ and k be a nonnegative integer. Then

|πx(A>k)|+ |πy(A>k)| 6
(

1 +
1

k + 1

)
|A>k|.

Proof. Each point in A>k shares a line with at least k other points in A>k, and we use
this fact to subdivide A>k into three disjoint sets. Let

Ah = {x ∈ A>k : row(x,A>k) > k}.

Thus every point of Ah shares a row with at least k other points of A>k, and therefore
with at least k other points of Ah. Moreover, let A0 be the set of points that are not in
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Ah but share a column with at least one point in Ah. Lastly, let Av = A>k \ (Ah ∪ A0).
Each point x ∈ Av is in a column with at least k other points of Av. Indeed, x shares a
column with at least k other points of A>k, but none of the points in this column can be
in Ah (as otherwise x would be in A0) or in A0 (as every point that shares a column with
a point in A0 is itself in A0).

Each nonempty row in Ah contains at least k+ 1 points of Ah, so |πy(Ah)| 6 1
k+1
|Ah|.

Similarly, |πx(Av)| 6 1
k+1
|Av|. Furthermore, πx(Ah ∪ A0) = πx(Ah). Trivially, we have

|πx(Ah)| 6 |Ah|, |πy(Av)| 6 |Av| and |πy(A0)| 6 |A0|. Then,

|πx(A>k)|+ |πy(A>k)| = |πx(Av ∪ Ah ∪ A0)|+ |πy(Av ∪ Ah ∪ A0)|
6 |πx(Av)|+ |πx(Ah ∪ A0)|+ |πy(Av)|+ |πy(Ah)|+ |πy(A0)|

6
1

k + 1
|Av|+ |Ah|+ |Av|+

1

k + 1
|Ah|+ |A0|

6

(
1 +

1

k + 1

)
(|Av|+ |Ah|+ |A0|)

=

(
1 +

1

k + 1

)
|A>k|.

This completes the proof.

Next, we give a perturbation result that addresses removal of the shortest lines from
Z. In particular, we conclude that this operation cannot decrease γ by more than the
number of removed sites. To put the result in perspective, we note that it is not true that γ
decreases by at most k if we remove any k sites. For the simplest counterexample, observe
that γ(R2,2) = 4 (use Proposition 15 below or note that, with 3 initially occupied points,
no point is added after time 1) but γ(R2,2 \ {(1, 1)}) = 2 (as any pair of non-collinear
points spans).

Theorem 13. Let Z be any zero-set. Suppose A′ spans for Z ∩ Ra,b, then there exists
A ⊇ A′, which spans for Z and is such that

|A| = |A′|+ |Z \Ra,b| .
Furthermore, if A′ is thin, then A can be made thin as well. Therefore, for any Z and
a, b ∈ [1,∞],

γ(Z ∩Ra,b) > γ(Z)− |Z \Ra,b|,
γthin(Z ∩Ra,b) > γthin(Z)− |Z \Ra,b|.

Proof. We may assume that a =∞ and that Z\R∞,b consists of a single row, the topmost
(shortest) row of Z, of cardinality k; we then iterate to obtain the general result. Let A′

be a spanning set for the dynamics T ′ with zero-set Z ′ = Z ∩ R∞,b. We will construct a
set A ⊇ A′ of cardinality |A′|+ k that spans for Z.

Order Z2
+ in an arbitrary fashion. Slow down the T ′-dynamics by occupying a single

site at each time step, the first site in the order that can be occupied, with one excep-
tion: when a vertical line contains enough sites to become completely occupied under the
standard synchronous rule, make it completely occupied at the next time step.
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Mark vertices that are made occupied one-at-a-time according to the ordering on Z2
+

in red, and vertices that are made occupied by completing a vertical line in black. Let
L1, . . . , Lk be the first k vertical lines in the slowed-down dynamics for T ′ that become
occupied; say that Lk becomes occupied at time t. Choose k black sites, one on each of
the k lines, and adjoin them to A′ to form the set A (if A′ is thin, choose these black
points so that no two share a row with each other or with any points of A′, then A is also
thin). Define the slowed-down version of T started from A so that it only tries to occupy
the site, or sites, occupied by the T ′-dynamics. We claim that, up to t, such dynamics
occupies every site that T ′ does from A′. Indeed, the only possible problem arises when a
line in T ′-dynamics from A′ contains b occupied sites and fills in the next step, and then
the T -dynamics from A does the same by construction. After time t, k vertical lines are
occupied and thus the horizontal count of any site is at least k and the two dynamics
agree.

2.3 The enhanced neighborhood growth

We will need another useful generalization of the neighborhood growth, which will play a
key role in the proof of Theorem 4. In this section we only give its definition, as it will
be encountered in the proof of Theorem 14. We postpone a more detailed study until
Section 6.1.

The enhancements ~f = (f0, f1, . . .) ∈ Z∞+ and ~g = (g0, g1, . . .) ∈ Z∞+ are sequences
of positive integers. These increase horizontal and vertical counts, respectively, by fixed
amounts. The enhanced neighborhood growth is then given by the triple (Z, ~f ,~g), which
determines the transformation T as follows:

T (A) = A ∪ {(u, v) ∈ Z2
+ : (row((u, v), A) + fv, col((u, v), A) + gu) /∈ Z}.

The usual neighborhood growth given by Z is the same as its enhancement given by
(Z,~0,~0), and we will not distinguish between the two.

2.4 Completion time

Started from any finite set, the neighborhood growth clearly reaches its final state in a
finite number of steps. We will now show that in fact this is true for any initial set, and
that the number of steps depends only on Z.

Theorem 14. There exists a time Tmax = Tmax(Z) so that for any set A ⊆ Z2
+, not

necessarily finite,
T Tmax+1(A) = T Tmax(A).

Proof. We will prove the theorem for the more general enhanced neighborhood growth
dynamics given by (Z,~h,~0), for some horizontal enhancement ~h = (h0, h1, . . .) ∈ Z∞+ , also

proving that Tmax does not depend on ~h.
We prove this by induction on the number of lines in Z. If Z = ∅, then clearly the

dynamics is done in a single step.
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Now take an arbitrary Z whose longest row contains a sites and fix an ~h. First
suppose the initial set A has a row count of at least a on some horizontal line (the x-
axis, say). (We emphasize that all counts include the numbers from the enhancement
sequence.) Then in one step, all points on the x-axis become occupied. If we let A′ be
the set formed by running the dynamics for one step, and let A′′ = A′ \ {(x, 0) : x ∈ Z+},
then the dynamics given by (Z,~h,~0) started from A′ coincides with the dynamics given
by (Z↓1, (0, h1, h2, . . .),~0) started from A′′ (except on the x-axis, which no longer has
any effect on the running time). By the induction hypothesis, in this case the original
dynamics started from A therefore terminates in at most Tmax(Z↓1) + 1 steps.

Fix an integer k < a, and assume now that the initial set A has a row count of k on
some horizontal line, and every horizontal line has a row count of at most k. Let t0 be
the first time at which there is a horizontal line with (at least) k + 1 occupied sites. (Let
t0 =∞ if there is no such time.)

Let L be any horizontal line with k occupied sites at time 0. Assume without loss
of generality that L is the x-axis and that [0, k − 1 − h0] × {0} are the sites occupied
on L at time 0. No site above [k − h0,∞) × {0} becomes occupied before time t0; if it
did, the site below it on the x-axis would become occupied at the same time. Thus the
dynamics above [0, k − 1− h0]× {0} behaves like the dynamics with zero-set Z↓1, and a

different horizontal enhancement sequence ~f , which takes into account the contributions
of occupied sites outside of [0, k − 1 − h0] × [1,∞) to the row counts. By the induction
hypothesis, these dynamics terminate by some time dependent only on Z↓1. Therefore,
either t0 6 Tmax(Z↓1) + 1 or t0 = ∞. In the latter case, the original (Z,~h,~0)-dynamics
terminate by time Tmax(Z↓1), so we can assume t0 6 Tmax(Z↓1) + 1.

Assume that a = a0 > a1 > . . . ak > 0 are the rows of Z. The arguments above imply
that Tmax(Z) 6 (a+ 1)(Tmax(Z↓1) + 1). This, together with Tmax(∅) = 1, gives

Tmax(Z) 6 (k + 2)(a0 + 1)(a1 + 1) · · · (ak + 1),

which ends the proof.

2.5 The line growth bound

The first result on the smallest spanning sets on the Hamming plane was this simple
formula about line growth from [3].

Proposition 15. For a, b > 0, γ(Ra,b) = ab.

Proof. See Section 1 of [3] for a simple inductive proof, or Theorem 29.

Corollary 16. For any zero set Z, γ(Z) > max{ab : Ra,b ⊆ Z}.

Proof. This follows from Proposition 15, and the fact that Z ′ ⊆ Z implies γ(Z ′) 6
γ(Z).

We call the bound in Corollary 16 the line growth bound . It is somewhat surprising
that the inequality is, in fact, in many cases equality. For example, it is equality for
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bootstrap percolation with arbitrary θ (which follows from Proposition 34) and when the
Z is a union of two rectangles (a special case of a more general result from [10]). On the
other hand, it easily follows from Theorem 1 that the line growth bound can be, in general,
very far from equality when Z is large. In this section we give a general lower bound on
γ that tends to work better for small Z; in particular, it proves that in general equality
does not hold when Z is a symmetric zero set which is the union of three rectangles.

Theorem 17. For any choice of a comparison rectangle Ra,b ⊆ Z and a Young diagram
Y ⊆ Ra−1,b−1,

γ(Z) >
1

2
min

(k,`)∈∂oY

(
kb+ `a− k`+ γ(Z↓`) + γ(Z←k)

)
.

Proof. Order the lines of Z2
+ in an arbitrary fashion. Assume A is a finite spanning set

for Z. We will construct a finite sequence ~S of lines (dependent on A), by a recursive

specification of sequences ~Si of i lines.
Consider the line growth T ′ with zero-set Ra,b. Note that A spans for the growth

dynamics T ′; we now consider a slowed-down version. Let A′0 = A and ~S0 the empty

sequence. Given the sequence ~Si, i > 0, A′i is the union of A and all lines in ~Si. Assume
~Si consists of k vertical and ` horizontal lines, with k + ` = i.

If (k, `) ∈ Y , examine lines of Z2
+ in order until a line L is found on which T ′(A′i) adds

a point and thus immediately makes it fully occupied (since T ′ is a line growth). Adjoin

L to the end of the sequnce ~Si to obtain ~Si+1. If L is horizontal (resp. vertical), define its
mass to be a − k > 0 (resp. b − ` > 0). The mass of L is a lower bound on the number
of points in A ∩ L that are not on any of the preceding lines in the sequence.

If (k, `) /∈ Y , the sequence stops, that is, ~S = ~Si. As we add only one line to
the sequence each time, the final counts k and ` of vertical and horizontal lines satisfy
(k, `) ∈ ∂oY . Let mh and mv be the respective final masses of the horizontal and vertical
lines.

The key step in this proof is the observation that total mass mh+mv only depends on
k and ` and not on the positions of vertical and horizontal lines in the sequence. Indeed,
if L is followed by L′ in ~S, and the two lines are of different type, and a new sequence is
formed by swapping L and L′, the mass of L′ increases by 1, while the mass of L decreases
by 1. Thus the total mass can be obtained by starting with all vertical lines:

mh +mv = kb+ `(a− k) = kb+ `a− `k. (2.2)

For a possible sequence ~S of lines, let γ~S be the minimal size of a set that spans (for

Z) and generates the sequence ~S. Then, simultaneously,

γ~S > mh + γ(Z↓`),
γ~S > mv + γ(Z←k).

(2.3)

Now we add the two inequalities of (2.3) and use (2.2) to get

2γ~S > kb+ `a− k`+ γ(Z↓`) + γ(Z←k).
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Finally, we observe that

γ(Z) = min{γ~S : ~S a possible sequence}
to end the proof.

Corollary 18. Let Z = Rb,c ∪Rc,b ∪Ra+b,a+b, with a+ b < c. Then

γ(Z) >

{
bc+ 1

2
a2 a 6 b

bc+ 1
8
(a+ b)(3a− b) a > b.

Note that, if bc > (a+ b)2, the line growth bound is γ(Z) > bc.

Proof. We use the comparison square Ra+b,a+b, and Y = {(k, `) : k + ` 6 i− 1}, for some
i 6 a + b to be chosen later. Then k + ` = i when (k, `) ∈ ∂oY . Further, we use the
bounds γ(Z↓`) > γ(Rb,c−`) and γ(Z←k) > γ(Rc−k,b) in Theorem 17 to get

γ(Z) > 1
2

min
06k6i

(i(a+ b)− k(i− k) + b(c− `) + b(c− k))

= bc+ 1
2
ai− 1

2
max
06k6i

k(i− k)

> bc+ 1
2
ai− 1

8
i2.

We are free to choose i; if a 6 b, then the optimal choice is i = 2a, otherwise it is i = a+b,
which gives the desired inequality.

3 Smallest spanning sets

3.1 Proof of Theorem 1

The steps in the proof of Theorem 1 are given in the next three lemmas. The first one
demonstrates that when the initial set A0 is itself a Young diagram, the growth dynamics
are very simple.

Lemma 19. Assume A0 is a Young diagram. Then A0 spans if and only if Z ⊆ A0.

Proof. It is easy to see that T preserves the property of being a Young diagram. Assume
first that A0 = Z. Take z = (x, y) ∈ ∂o(A0). Then row(z, A0) = x and col(z, A0) = y,
and (x, y) /∈ Z, so z ∈ A1. Let e1 = (1, 0) and e2 = (0, 1). It follows the translation
A0 + e1 is included in A1, and therefore A0 + [0, n]e1 ⊆ An; similarly, A0 + [0, n]e2 ⊆ An.
To conclude that A0 spans, observe that (Z + [0,∞)e1)∪ (Z + [0,∞)e1) spans in a single
step.

If Z 6⊆ A0, there exists z ∈ Z ∩ ∂o(A0). Then z /∈ A1 and therefore no point in z+Z2
+

is in A1. By induction z /∈ An for all n.

To prove the lower bound in Theorem 1 we consider the case where the initial set is a
union of two translated Young diagrams. To be more precise, we say that A0 ⊆ Z2

+ is a
two-Y set if A0 = (y1 +Y1)∪ (y2 +Y2), where Y1 and Y2 are Young diagrams, y1, y2 ∈ Z2

+,
and no line intersects both (y1 + Y1) and (y2 + Y2).
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Lemma 20. Assume A0 is a two-Y set. If A0 spans, then |A0| > 1
2
|Z|.

Proof. Our proof will be by induction on the number of horizontal lines that intersect Z.
If this number is 0, the claim is trivial. Otherwise, let a0 > 0 be the number of sites on
the largest (i.e., bottom) line of Z. Observe that the initial set consiting of a0−1 vertical
lines is inert.

Further, let h0 and k0 be the respective numbers of sites on bottom lines for Y1 and Y2.
Then h0 + k0 > a0, as otherwise A0 would be covered by a0 − 1 vertical lines. Therefore
either h0 > 1

2
a0 or k0 > 1

2
a0; without loss of generality we assume the latter. Let Y ′2 = Y ↓12 ,

A′0 = (y1 + Y1) ∪ (y2 + Y ′2), and Z ′ = Z↓1. By making the horizontal line that contains
k0 sites of y2 + Y2 occupied in the original configuration A0, we see that A′0 spans for the
dynamics with zero-set Z ′. By the induction hypothesis, |A′0| > 1

2
|Z ′|, and then

|A0| = |A′0|+ k0 >
1

2
|Z ′|+ 1

2
a0 =

1

2
|Z|.

Lemma 21. Assume A0 spans. Then there exists a two-Y set A′0, which spans and has
|A′0| = 2|A0|.
Remark 22. A similar proof to the one below also shows that there exists a thin set A′′0,
which spans and has |A′′0| = 2|A0|.
Proof. Assume A0 ⊆ R for some rectangle R = [0, a − 1] × [0, b − 1]. Let R′ = [0, 2a −
1]× [0, b− 1] be the horizontal double of R. Note that R′ \R spans.

Permute the columns of A0 so that the column counts are in nonincreasing order,
then permute the rows of A0 so that the row counts are in nonincreasing order; in the
sequel we refer to this set as A0, as it clearly spans if and only if the original set spans.
Fix a vertical line L intersecting R′, containing k > 0 sites of A0. Create a contiguous
interval of k occupied sites on L just above L∩R′ (in particular, outside R′). Perform this
operation for all vertical lines, and note that the resulting set forms a Young diagram.
Also perform an analogous operation for the horizontal lines, adding sites just to the right
of R′. Finally, erase all the sites inside R′ to define A′0. Clearly, |A′0| = 2|A0|, and A′0 is a
two-Y set. Figure 3.1 illustrates the construction of A′0 from A0.

To see that A′0 spans, it is enough to show that it eventually occupies every point in
R′ \ A0 ⊇ R′ \R.

Assume, in this paragraph, that the initial set is A0 ⊆ R′. We claim that, if a point
x /∈ R′ gets occupied at any time t, then any line through x that intersects R′ is fully
occupied. This is proved by induction on t. The claim is trivially true at t = 0, and assume
it holds at time t − 1 > 0. Suppose x /∈ R′ gets occupied at time t. If its neighborhood
does not intersect R′, then T t(A0) = Z2

+. Assume now that Lh(x)∩R′ 6= ∅. Then, by the
induction hypothesis, any y ∈ Lh(x) has vertical and horizontal counts at time t at least
as large as those of x and thus also becomes occupied. An analogous statement holds if
Lv(x) ∩ R′ 6= ∅. This proves the claim, which implies that no site outside R′ ever helps
in occupying a site in R′.

Due to the argument in the previous paragraph, we may only allow the dynamics from
both A0 and A′0 to occupy sites within the rectangle R′.
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⇒

⇓

⇐

1

Figure 3.1: Construction of a two-Y set from A0. Clockwise from top left: the set A0;
columns sorted by descending counts; rows sorted by descending counts; the two-Y set
A′0. Thick lines indicate the rectangle R′, and the half of R′ to the left of the dotted line
is R.

We now claim, and will again show by induction on time t > 0, that every site in
R′ \A0 occupied at time t starting from A0 is also occupied starting from A′0. This claim
is trivially true at t = 0. Assume the claim at time t− 1. Fix any point z ∈ R′. Let L be
the horizontal line through z. By the induction hypothesis,

L ∩ (T t−1(A0) \ A0) ⊆ L ∩ T t−1(A′0),

and by construction
|L ∩ A0| = |L ∩ A′0|,

therefore
|L ∩ T t−1(A′0)| > |L ∩ T t−1(A0)|. (3.1)

By an analogous argument, the same inequality holds if L is a vertical line. If z ∈
T t(A0) \ A0, then

(row(z, T t−1(A0)), col(z, T t−1(A0))) /∈ Z.
Therefore, by (3.1),

(row(z, T t−1(A′0)), col(z, T t−1(A′0))) /∈ Z,

which implies z ∈ T t(A′0). This establishes the induction step and ends the proof.

the electronic journal of combinatorics 24(4) (2017), #P4.29 18



Proof of Theorem 1. The upper bound is an obvious consequence of Lemma 19, while the
lower bound follows from Lemmas 20 and 21.

3.2 Proof of Theorem 2

Theorem 2 is an immediate consequence of the following result.

Theorem 23. Assume Z ⊆ Ra,b. Assume that A ⊆ Z2
+ spans. Then there exists a set

B ⊆ Ra,b that spans and has |B| 6 |A|.

Proof of Theorem 23. Assume that A ⊆ RM,N is a finite set that spans and M > a,
N > b. We claim that there is a set B ⊆ RM−1,N that also spans and |B| 6 |A|. Without
loss of generality, we will restrict our dynamics to the rectangle RM,N throughout the
proof.

We may assume that all row and column occupancy counts satisfy |Lh(0, i) ∩ A| 6 a,
0 6 i < N and |Lv(i, 0) ∩ A| 6 b, 0 6 i < M . Let

k = min{|Lv(i, 0) ∩ A| : 0 6 i < M} ∈ [0, b]

be the smallest of the column counts. We prove our claim by induction on k. If k = 0,
the claim is trivial.

We now prove the induction step. Assume k > 0 and that the rightmost column in
RM,N contains exactly k occupied points, that is, |Lv(M−1, 0)∩A| = k, and |Lv(i, 0)∩A| >
k for i < M − 1. We define the time T to be the first time in the dynamics at which a
point, (M−1, j0) say, on the last column becomes occupied and there exists an unoccupied
point (i0, j0) in the row Lh(M − 1, j0).

First consider the case T =∞. Then every time a point x in the column Lv(M − 1, 0)
becomes occupied, the entire row Lh(x) ∩ RM−1,N also becomes occupied. Therefore,
apart from the initially occupied points in Lv(M − 1, 0), this column plays no role in
the dynamics within RM−1,N . Thus, each initially occupied point z ∈ Lv(M − 1, 0) can
be moved to an initially unoccupied location on the same row Lh(z) ∩ RM−1,N . Such
unoccupied locations exist since we assumed M > a and all row occupancy counts are at
most a. Furthermore, the resulting initial configuration eventually fills the box RM−1,N ,
which spans.

Now consider the case T <∞, and consider the configuration X = T T−1(A). Let J be
the collection of row indices j for which the jth row is fully occupied in X (|Lh(0, j)∩X| =
M), and (M−1, j) /∈ A. We will now build a new initially occupied set A1 (see Figure 3.2
for guidance on this construction). First, consider the points in the ith0 column that are
occupied in A, but not on any of the rows with indices in J . Populate the last column
(M−1) of A1 with these points, keeping their rows the same. Next, consider the points on
the last column of A, and populate the ith0 column of A1 with these points, again keeping
their rows the same, in addition to the points in the ith0 column of A that lie on the rows
indexed by J ({(i0, j) ∈ A : j ∈ J}). Finally, let A1 agree with A outside of the columns
i0 and M − 1.
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Figure 3.2: On the left is the configuration T T (A). Circles represent points in A, and
only points in columns M − 1 and i0 are shown. In this example k = 2. Dashed lines
are rows fully occupied by time T − 1 (with indices in J). The starred vertex becomes
occupied at time T , while the x remains unoccupied, which is made possible by the last
column having more points in A off of the dashed lines. On the right is the configuration
A′ – only points in columns i0 and M−1 are shown, and the dashed lines are for reference
only; the configuration off of these columns is the same as A.

Note that A1 has strictly fewer than k occupied points on the last column, M−1. This
is because, in the configuration X, the column i0 has strictly fewer occupied points than
the last column. This also implies that T > 2 and J 6= ∅, since the column i0 started
with at least as many occupied points in A as the last column. The induction step will
be completed, provided we show that A1 spans.

Through time T − 1, every point in the smaller box RM−1,N that becomes occupied
by the dynamics from initial set A, also becomes occupied by the dynamics from initial
set A1. That is,

X ∩RM−1,N \ A ⊆ T T−1(A1).

This is because first, the row occupancy counts are the same in A1 and A, and the column
occupancy counts in RM−1,N are larger for A1 than for A, and second, by the definition of
T , the points that become occupied in the last column M−1 do not affect either dynamics
(from A or A1) within RM−1,N through time T−1. Therefore, the configuration T T−1(A1)
contains all points on rows with indices in J inside the box RM−1,N . Since M − 1 > a,
T T (A1) contains all points on the rows indexed by J . As a result, T T (A1) contains the
configuration obtained by swapping the columns i0 and M − 1 of A, so A1 spans. This
completes the induction step and the proof.
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4 Large deviation rate: existence and bounds

4.1 Existence of the large deviation rate

Throughout this section α > 0 and β > 0 are fixed parameters. We also fix a finite
zero-set Z. We remark that the large deviation setting makes sense for arbitrary growth
transformation, not just for neighborhood growth. However, the key step in the proof of
existence, Theorem 14, is not available for the more general dynamics.

We recall the setting and notation before the statement of Theorem 3. We will establish
parts of this theorem in this and the next section.

Theorem 24. The large deviation rate I(α, β) = I(α, β,Z) exists. Moreover,

I(α, β) = inf{ρ(α, β,A) : A ∈ A} = min{ρ(α, β,A) : A ∈ A0},

for a finite set A0 ⊆ A that only depends on Z.

First we will prove the following lemma for large deviations of the containment of
specific patterns, which follows the methods for containment of small subgraphs in Erdős–
Rényi random graphs, as presented in [17]. Throughout the rest the paper, ω0 will denote
the initial configuration obtained by occupying every point in RN,M independently with
probability p.

Lemma 25. For any finite pattern A,

lim
p→0

logPp (ω0 contains A)

log p
= ρ(α, β,A). (4.1)

Proof. For any subpattern B ⊆ A, the probability that ω0 contains B is at most

Pp (ω0 contains B) 6 CB

(
N

πx(B)

)(
M

πy(B)

)
p|B|,

6 CBN
πx(B)Mπy(B)p|B|

= CBp
|B|−απx(B)−βπy(B)+o(1),

(4.2)

where CB is a constant that accounts for the number of ways to reorder the rows and
columns of B. This gives the lower bound

lim inf
p→0

logPp (ω0 contains A)

log p
> ρ(α, β,A). (4.3)

For every subset X ⊆ Z2
+ that is equivalent to A (in the sense of a pattern) let IX be

the indicator of the event that X ⊆ ω0, and let X ' A denote the equivalence of X and
A. Below, X, Y, Z will denote subsets of Z2

+. Define

λ =
∑
X'A

Ep (IX) = CA

(
N

πx(A)

)(
M

πy(A)

)
p|A|.
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Also, define

Λ =
∑
X'A

∑
Y'A

X∩Y 6=∅

Ep (IXIY ) .

Theorem 2.18 of [17] states that

Pp (ω0 does not contain A) 6 exp

[
−λ

2

Λ

]
.

Observe that
Λ =

∑
B⊆A
B 6=∅

∑
Z'B

∑
X'A

∑
Y'A

X∩Y=Z

p2|A|−|B|

6 Cλ2
∑
B⊆A
B 6=∅

p−|B|N−πx(B)M−πy(B)

= Cλ2
∑
B⊆A
B 6=∅

p−(|B|−απx(B)−βπy(B))+o(1)

6 Cλ2p−ρ(α,β,A)+o(1).

(4.4)

This gives the upper bound,

lim sup
p→0

logPp (ω0 contains A)

log p
6 ρ(α, β,A). (4.5)

Proof of Theorem 24. Lemma 25 directly implies that

lim sup
p→0

logPp (Span)

log p
6 inf

A∈A
ρ(α, β,A). (4.6)

Assume now that Span happens. Let T ′ = T Tmax , where Tmax is defined in Theorem 14.
By Theorem 8, T ′ is a pattern-inclusion transformation given by a set of patterns P . Let
A0 be the set of patterns in P that contain no site in the neighborhood of the origin 0.
Observe that every set in A0 spans, that is, A0 ⊆ A. Note also that A0 6= ∅, which
simply follows from the fact that there exists a finite set that spans.

Let G be the event that there exists an x ∈ RN,M whose entire neighborhood is
unoccupied in ω0, that is Lv(x)∪Lh(x) ⊆ ωc0. Now, Span ⊆ {T ′(ω0) = Z2

+} and therefore

Span ∩G ⊆ {ω0 contains a member of A0}. (4.7)

Assume without loss of generality that M 6 N , which implies β 6 α. Assume first
that α < 1. Then

Pp (Gc) 6 (pN)M + (pM)N 6 exp(−p−β/2), (4.8)
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for small enough p. Together, (4.7) and (4.8) imply

Pp (Span) 6 Pp (ω0 contains a member of A0) + Pp (Gc)

6 |A0|max
A∈A0

Pp (ω0 contains A) + exp(−p−β/2). (4.9)

Now, Lemma 25 and (4.9) imply

lim inf
p→0

logPp (Span)

log p
> min

A∈A0

ρ(α, β,A). (4.10)

We now consider the case α > 1. For a k > 1, let Ak be the pattern

×× . . .×
. . .

×× . . .×
×× . . .×

The number of rows is k, and each interval of occupied sites has length k. For any fixed
k and ε > 0,

Pp (ω0 includes Ak) > pε. (4.11)

Clearly, if k is large enough, Ak spans (in two time steps). Add Ak to A0. Then, by
Lemma 25 and (4.11),

min
A∈A0

ρ(α, β,A) = 0. (4.12)

Thus, when α > 1, (4.12) trivially implies (4.10). The inequality (4.10) is therefore always
valid, and, together with (4.6), gives the desired equalities.

4.2 General bounds on the large deviations rate

Having established the existence of I(α, β,Z), we now give three general bounds. These

will be used to establish continuity of Ĩ(α, β, Z̃) in Section 6.5, and are the key components
for the proof of Theorem 5 in Section 7.1. Assume throughout this section that (α, β) ∈
[0, 1]2.

Proposition 26. For any zero-set Z and nonnegative integer k,

I(α, β,Z) > γ(Z↙k)
(

1−max(α, β)

(
1 +

1

k + 1

))
. (4.13)

Proof. Let A be a spanning set for Z. Then, by Lemma 12,

|A>k| − α|πx(A>k)| − β|πy(A>k)| > |A>k|
(

1−max(α, β)

(
1 +

1

k + 1

))
.

By Lemma 11, A>k spans for Z↙k, thus |A>k| > γ(Z↙k). Therefore,

ρ(α, β,A>k) > γ(Z↙k)
(

1−max(α, β)

(
1 +

1

k + 1

))
.
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Moreover, A>k is a subset of A, so

I(α, β,Z) > ρ(α, β,A) > ρ(α, β,A>k),

and the desired inequality follows.

Proposition 27. For any discrete zero-set Z,

I(α, β,Z) 6 (1−max(α, β))|Z|. (4.14)

Proof. For a set A ⊆ Z2
+ of occupied points, let Ar ⊆ Z2

+ be a set such that each row in
Ar contains the same number of occupied sites as the row in A, but the columns of Ar
contain at most one occupied site. Define Ac analogously. These sets satisfy

|A| = |Ar| = |Ac| = |πx(Ar)| = |πy(Ac)|.
For a Young diagram Z both Zr and Zc span: the longest row of Zr immediately occupies
its entire horizontal line, then the next longest does the same, and so on. Moreover, for
any subset B ⊆ Zr, |B| = |πx(B)| and hence

ρ(α, β,Zr) 6 |Zr|(1− α).

Similarly
ρ(α, β,Zc) 6 |Zc|(1− β).

The desired inequality (4.14) follows.

Proposition 28. For any discrete zero-set Z,

I(α, β,Z) 6 2(1−min(α, β))γ(Z). (4.15)

Proof. Suppose the set A spans for Z, has size |A| = γ(Z), and A ⊆ Ra,b for some a, b.
Recall the definition of Ar and Ac from the previous proof. The key step in proving the
upper bound (4.15) is to show that the set As defined by

As = {(2a, 0) + Ar} ∪ {(0, 2b) + Ac}
spans for Z as well. The proof of this is similar to the proof of Lemma 21, so we only
provide a brief sketch. Restrict the dynamics to the larger rectangle R2a,2b. Then prove
by induction that, for every site x ∈ R2a,2b \ A and every t > 0, the number of occupied
sites in T t(As), in both the row and the column containing x, will be at least as large as
the number of occupied sites in the same row and column in T t(A). Therefore, for some
t > 0, (a, b) +Ra,b will be contained in T t(As). As Ra,b spans, therefore so does As.

Since As spans, an upper bound on ρ(α, β,As) will also provide an upper bound on
I(α, β,Z). For B ⊆ As, let Br = B ∩ Ar and Bc = B ∩ Ac. Then |πx(Br)| = |Br| and
|πy(Bc)| = |Bc|. Then

|B| − α|πx(B)| − β|πy(B)| = |Br|+ |Bc| − α(|Br|+ |πx(Bc)|)− β(|Bc|+ |πy(Br)|)
6 |Br|+ |Bc| − α|Br| − β|Bc|
6 |Br|+ |Bc| −min(α, β)(|Br|+ |Bc|)
= |B|(1−min(α, β)).
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Therefore ρ(α, β,As) 6 |As|(1−min(α, β)) and

I(α, β,Z) 6 |As|(1−min(α, β)) = 2γ(Z)(1−min(α, β)),

as |As| = 2|A| = 2γ(Z).

5 Exact results for the large deviation rate

5.1 Support

In this section, we conclude the proof of our main large deviations theorem; the most
substantial remaining step is an argument for the support formula (1.2) for a general
zero-set Z.

Proof of Theorem 3. The existence of I and its variational characterization (1.1) follow
from Theorem 24. Then, for every A, ρ(·, ·, A) is continuous and piecewise linear, so by
(1.1) the same is true for I(·, ·,Z). Monotonicity in α and in β follows from the definition.

If (α, β) 6= (0, 0), then I(α, β,Z) < γ(Z), since ρ(α, β,A) < |A| whenever A is
nonempty. Furthermore, if α + β < 1, then

ρ(α, β,A) = |A| − α |πx(A)| − β |πy(A)| ,

so I is the minimum of linear functions, thus concave.
It remains to prove the claims about the support of I. By continuity of I(·, ·,Z), we

can assume (α, β) ∈ (0, 1]2. Suppose (α, β) are such that [u(1−α)−β]∨ [v(1−β)−α] > 0
for all (u, v) ∈ ∂oZ, and let

ε = min
(u,v)∈∂oZ

[u(1− α)− β] ∨ [v(1− β)− α] > 0.

The event Span implies that for some (u, v) ∈ ∂oZ there exists a vertex x ∈ V such that
row(x, ω0) > u and col(x, ω0) > v, and the probability of this event (for a given (u, v)) is
bounded above by the minimum of the expected number of rows with u initially occupied
vertices and the expected number of columns with v initially occupied vertices. Therefore,

Pp (Span) 6
∑

(u,v)∈∂oZ

M(Np)u ∧N(Mp)v 6 |∂oZ| pε−o(1), (5.1)

so I(α, β,Z) > ε, and (α, β) ∈ supp I(·, ·,Z).
Now suppose (α, β) ∈ (0, 1]2 are such that there exists (u0, v0) ∈ ∂oZ such that

[u0(1− α)− β]∨ [v0(1− β)− α] < 0. Let K = max{u, v : (u, v) ∈ ∂oZ}, let E denote the
event that there are at least K rows with at least u0 initially occupied vertices, and let
F denote the event that there are at least K columns with at least v0 initially occupied
vertices. Observe that E ∩ F ⊆ Span. We will show Pp (E) ∧ Pp (F )→ 1, so

Pp (Span) > Pp (E ∩ F )→ 1,
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and I(α, β,Z) = 0.
We will show Pp (E) → 1, and the argument for F is similar. If α > 1, then the

probability that a fixed row has at least u0 initially occupied vertices is at least po(1),
so the expected number of rows with at least u0 initially occupied vertices is at least
p−β+o(1) → ∞. If α < 1 and u0(1 − α) − β < 0, then the expected number of rows with
at least u0 initially occupied vertices is at least

M

(
N

u0

)
pu0(1− p)N >M

(
Np

3u0

)u0
(1− o(1)) > pu0(1−α)−β+o(1) →∞.

In either case, since rows are independent, this implies Pp (E)→ 1.

5.2 Large deviations for line growth

In the next theorem, we explicitly give the large deviation rate for line growth with
Z = Ra,b, where a, b > 0. When α = β and a = b, the rate is given in [3] by a different
method. For α, β ∈ [0, 1), we let

∆a =

⌊
β

1− α

⌋
, ∆b =

⌊
α

1− β

⌋
.

Theorem 29. Fix α, β ∈ [0, 1). If either b 6 ∆b or a 6 ∆a, then I(α, β,Ra,b) = 0.
Assume b > ∆b and a > ∆a for the rest of this statement. If β 6 α and⌊

α

1− β

⌋
(1− β) 6 β. (5.2)

holds, then

I(α, β,Ra,b) = (1− α)ab+ ((α− β)∆b− β)a− βb− (1− β)∆a∆b+ β∆a+ β∆b+ β

−max{(1− β)∆b, (1− α)∆a}.
(5.3)

If β 6 α and (5.2) does not hold,

I(α, β,Ra,b) = (1− α)ab+ α∆b · a− βb+ β∆b

+ min{−β(∆b+ 1)a− (1− β)∆a∆b+ β∆a+ β − (1− α)∆a,−∆b · a}.
(5.4)

If β > α, the rate is determined by the equation I(α, β,Ra,b) = I(β, α,Rb,a).

Theorem 29 implies the asymptotic result below. As we will see in Section 7.1, (5.5)
implies that the line growth achieves the lower bound (1.6), thus is in this sense the most
efficient neighborhood growth dynamics.

Corollary 30. If α, β ∈ [0, 1] are fixed and min{a, b} → ∞,

I(α, β,Ra,b) ∼ γ(Ra,b)(1−max{α, β}). (5.5)
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Proof of Corollary 30. This follows from (5.3) and (5.4), which show that the difference
between the two sides of (5.5) is an affine function of a and b.

We shorten I(a, b) = I(α, β,Ra,b) for the rest of this section. We begin the proof of
Theorem 29 with a recursive formula for I(a, b).

Lemma 31. For a, b > 0 and (α, β) ∈ [0, 1)2,

I(a, b) = min {[0 ∨ (−α + b(1− β))] + I(a− 1, b), [0 ∨ (−β + a(1− α))] + I(a, b− 1)} .

Furthermore, I(a, 0) = I(0, b) = 0.

Proof. Let Ha be the event that there is a row with at least a initially occupied points,
and Vb be the event that there is a column with at least b initially occupied points. Also,
let Spanx,y be the event that ω0 spans for Z = Rx,y. Then,

Spana,b =
[
Vb ◦ Spana−1,b

]
∪
[
Ha ◦ Spana,b−1

]
,

where ◦ denotes disjoint occurrence. By the BK inequality and Markov’s inequality,

Pp
(
Spana,b

)
6 Pp (Vb)Pp

(
Spana−1,b

)
+ Pp (Ha)Pp

(
Spana,b−1

)
6 2 max

{
([N(Mp)b] ∧ 1)Pp

(
Spana−1,b

)
, ([M(Np)a] ∧ 1)Pp

(
Spana,b−1

)}
,

which implies the lower bound on I(a, b). For the upper bound, observe that the density
p initial set ω0 dominates the union of two independent initial sets, ω1

0, ω
2
0, each with

density p/2. Also, note that the probability of a fixed column being empty (and so not
participating in the event Spana−1,b) in the initial configuration ω2

0 is at least 1−Mp/2 >
1/2 for small p (likewise for rows). Furthermore, for small enough p

Pp/2 (V c
b ) 6

(
1− 1

2

(
M

b

)
(p/2)b

)N
6 exp

[
−N(Mp/3b)b

]
6

{
1− (1/2)N(Mp/3b)b N(Mp/3b)b < 1/2

e−1/2 N(Mp/3b)b > 1/2,

and likewise for Ha. Therefore, for small enough p,

Pp
(
Spana,b

)
>

1

2
max

{
Pp/2 (Vb)Pp/2

(
Spana−1,b

)
,Pp/2 (Ha)Pp/2

(
Spana,b−1

)}
>

1

4
max

{
([N(Mp/3b)b] ∧ (1/2))Pp/2

(
Spana−1,b

)
,

([M(Np/3a)a] ∧ (1/2))Pp/2
(
Spana,b−1

)}
.

This gives the upper bound on I(a, b).
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Let

h0 =

⌈(
b− α

1− β

)
∨ 0

⌉
= (b−∆b) ∨ 0,

v0 =

⌈(
a− β

1− α

)
∨ 0

⌉
= (a−∆a) ∨ 0.

Thus, h0 is the smallest number of fully occupied rows that make the probability of
spanning of a fixed column at least po(1) (as p→ 0), and v0 is the analogous quantity for
column occupation.

We now define a set S of finite sequences, denoted by ~S = (S1, S2, . . . , SK). By
convention, we let S consist only of the empty sequence when either h0 = 0 or v0 = 0.
Otherwise, S consists of sequences ~S of length K 6 h0 + v0 − 1, with each coordinate
Si ∈ {H,V }, and the following property. Let hi = hi(~S) and vi = vi(~S) be the respective
numbers of Hs and V s in (S1, . . . , Si−1); if SK = H, then hK = h0 − 1 and vK 6 v0 − 1,
while if SK = V , then hK 6 h0 − 1 and vK = v0 − 1. Every sequence represents a way to
build a spanning configuration for the line growth with Z = Ra,b. We define the weight

of ~S ∈ S as

w(~S) =
∑
i:Si=H

(−β + (1− α)a− (1− α)vi) +
∑
i:Si=V

(−α + (1− β)b− (1− β)hi). (5.6)

Lemma 32. For all a, b > 0,

I(a, b) = min{w(~S) : ~S ∈ S}.

Proof. It is clear that the statement holds if either a = 0 or b = 0, where S consists only of
the empty sequence and I(a, b) = 0. It is also straightforward to check by induction that
the right-hand side satisfies the same recursion as the one for I(a, b) given in Lemma 31.

Next, we look at the effect of a single transposition of H and T to the weight of ~S.
Fix an i 6 K − 2 so that Si = H, Si+1 = V , and denote ~SHV = ~S. Let ~SV H be the
sequence obtained from ~S by transposing H and V at i and i+ 1. Note that ~SV H ∈ S by
the restriction on i. The following lemma is a simple observation.

Lemma 33. For any i 6 K − 2, w(~SV H)− w(~SHV ) = α− β.

It is an immediate consequence of Lemma 33 that we only need to look for minimizers
among sequences Hh0−1V v′H, V v′Hh0 , V v0−1Hh′V , Hh′V v0 , where 0 6 h′ 6 h0 − 1 and
0 6 v′ 6 v0− 1. It is also clear from (5.6) that the weight is in each case a linear function
of v′ or h′ and thus the minimum is achieved at an endpoint. This already gives the
formula for I as a minimum of 8 expressions, which we simplify in the proof below.

Proof of Theorem 29. We will assume h0 > 1 and v0 > 1. We will also assume that
α > β, as otherwise we obtain the result by exchanging α and β and a and b. Therefore,
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by Lemma 33, the minimizing sequence in Lemma 32 must be have one of two forms:
Hh0−1V v′H or Hh′V v0 , with 0 6 h′ 6 h0 − 1 and 0 6 v′ 6 v0 − 1. We have

w(Hh0−1V v′H)

= (−β + (1− α)a)(h0 − 1) + (−α + (1− β)(b− h0 + 1))v′ + (−β + (1− α)(a− v′))
= ((1− β)(b− h0)− β)v′ + (−β + (1− α)a)h0,

w(Hh′V v0)

= (−β + (1− α)a)h′ + (−α + (1− β)(b− h′))v0
= (−β + (1− α)a− (1− β)v0)h

′ + (−α + (1− β)b)v0.

The coefficient in front of h′ in w(Hh′V v0) equals

−β − (α− β)a+ (1− β)(a− v0) 6 −(α− β)a− β(α− β)

1− α 6 0,

as we assumed β 6 α. Therefore, we take h′ = h0 − 1 to minimize w(Hh′V v0). Further-
more, the coefficient in front of v′ in w(Hh0−1V v′H) is nonpositive when (5.2) holds, in
which case we take v′ = v0 − 1 to minimize w(Hh0−1V v′H); v′ = 0 is the optimal choice
when (5.2) does not hold. This, after some algebra, gives (5.3) and (5.4).

5.3 Large deviations for bootstrap percolation

As a second special case, we compute the large deviation rate for bootstrap percolation
when α = β.

Proposition 34. Suppose α = β ∈ [0, 1), N = p−α and Tθ is the Young diagram corre-
sponding to threshold θ bootstrap percolation. Let

k = min
(u,v)∈∂o(Tθ)

max{u, v} = dθ/2e .

If m =
⌊

1
1−α

⌋
6 k, then for even θ,

I(α, α, Tθ) = (k +m)(k −m+ 1)− α(k +m+ 2)(k −m+ 1), (5.7)

and for odd θ,

I(α, α, Tθ) = [(k +m− 1)(k −m) + k]− α · [(k +m+ 1)(k −m) + k + 1]. (5.8)

In both cases, I(α, α, Tθ) = 0 for α > k/(k + 1).

A consequence of Proposition 34 is that bootstrap percolation also achieves the lower
bound (1.6), at least along the diagonal α = β.

Corollary 35. As θ →∞, for every fixed α ∈ [0, 1]

I(α, α, Tθ) ∼
θ2

4
(1− α) ∼ γ(Tθ)(1− α).
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Proof. For fixed α ∈ [0, 1) and large enough θ, m =
⌊

1
1−α

⌋
, so equations (5.7) and (5.8)

can be written

I(α, α, Tθ) =
θ2

4
(1− α) +O(θ).

The fact γ(Tθ) ∼ θ2/4 is implied by sending α→ 0 in (5.7) and (5.8) and observing that
m = 1 for small α. The case α = 1 follows since I(1, 1, Tθ) = 0 for all θ.

Proof of Proposition 34. Suppose α = β ∈ (0, 1), N = p−α and Tθ is the Young diagram
corresponding to threshold θ bootstrap percolation. Observe that I(α, α, Tθ) = 0 for
α > k/(k + 1).

First suppose that θ = 2k and α < m/(m + 1) where m ∈ {1, . . . , k}. Denote by Aj
the event that there exists a vertex, x, such that row(x, ω0) + col(x, ω0) > j, and denote
by Spanj the event that ω0 spans for threshold j bootstrap percolation. Then by the BK
inequality

Pp (Spanθ) 6 Pp
(
Aθ ◦ Spanθ−2

)
6 Pp (Aθ)Pp

(
Spanθ−2

)
. (5.9)

Iterating (5.9) gives

Pp (Spanθ) 6
k−m∏
j=0

Pp (Aθ−2j) 6
k−m∏
j=0

N2(2Np)2(k−j) 6 C
k−m∏
j=0

p2(k−j)−2α(k−j+1). (5.10)

Observe that in the last expression above, the assumption α < m/(m+1) guarantees that
each factor is o(1). Therefore,

lim inf
p→0

logPp (Spanθ)

log p
> (k +m)(k −m+ 1)− α(k +m+ 2)(k −m+ 1)

whenever 0 6 m−1
m

6 α < m
m+1

6 k
k+1

.
Suppose now that θ = 2k − 1, m ∈ {1, . . . , k} and α < m

m+1
. Let Bj denote the event

that there exists a vertex x such that row(x, ω0) > j or col(x, ω0) > j. Then by the BK
inequality and inequality (5.10),

Pp (Spanθ) 6 Pp
(
Bk ◦ Span2(k−1)

)
6 CNk+1pk

k−m∏
j=1

N2(Np)2(k−j)

= Cpk−α(k+1)

k−m∏
j=1

p2(k−j)−2α(k−j+1).

(5.11)

Therefore,

lim inf
p→0

logPp (Spanθ)

log p
> [(k +m− 1)(k −m) + k]− α · [(k +m+ 1)(k −m) + k + 1]

whenever 0 6 m−1
m

6 α < m
m+1

6 k
k+1

. Equation (5.1) in [15] provides corresponding

upper bounds on lim supp→0
log Pp(Spanθ)

log p
.
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6 Euclidean limit of neighborhood growth

The main aim of this section is the proof of Theorem 4, which we complete in Section 6.5.
As remarked in the introduction, we need substantial information on the design of optimal
spanning sets for I(α, β,Z) when Z is large. This is given in Section 6.1, where we show
that for large Z, I(α, β,Z) is well approximated by another extremal quantity that has a
much more transparent continuum limit. This limiting quantity is defined in Section 6.2,
and the convergence is proved in Section 6.3. An analogous treatment for γthin is sketched
in Section 6.4. The proof of Theorem 4 is concluded in Section 6.5.

6.1 The enhancement rate

Recall, from Section 2.3, the enhanced neighborhood growth given by a zero-set Z and the
enhancements ~f = (f0, f1, . . .) and ~g = (g0, g1, . . .). From now on, we assume that ~f and
~g are nondecreasing sequences with finite support. It will also be convenient (especially

in Section 6.2) to represent ~f and ~g as Young diagrams F and G, whereby fi is the ith
row count in the digram F , and gi is the ith column count in the diagram G.

Let I be the set of triples (A, ~f,~g), with ~f and ~g as above and A a finite set that spans

for (Z, ~f ,~g). We define the enhancement rate I by

I(α, β,Z) = min{|A|+ (1− α)
∑

~f + (1− β)
∑

~g : (A, ~f,~g) ∈ I}.

Observe that the elements of the above set are linear combinations of three nonnegative
integers, with fixed nonnegative coefficients 1, 1−α, 1−β, so its minimum indeed exists.

We start with two preliminary results on I that hold for arbitrary Z.

Lemma 36. For any zero-set Z, I(0, 0,Z) = γ(Z) and I(α, 1,Z) = I(1, β,Z) = 0 for
α, β ∈ [0, 1].

Proof. Clearly, I(0, 0,Z) 6 γ(Z), as γ is obtained as a minimum over a smaller set (with
zero enhancements). On the other hand, assume that A is a finite set that spans for

(Z, ~f ,~g), with I(0, 0,Z) = |A| +∑ ~f +
∑
~g. Then we can form a set A′ = A ∪ Y1 ∪ Y2,

such that Y1 and Y2 are, respectively, horizontal and vertical translates of corresponding
Young diagrams F and G so that no horizontal line intersects both F ∪A and G, and no
vertical line intersects both G ∪ A and F . Using a similar argument as in the proof of
Lemma 21, A′ spans for Z and so γ(Z) 6 |A′| = I(0, 0,Z).

For the last claim, assume that, say, β = 1 and observe that ∅ spans for (Z,~0, ~g) for
a suitably chosen ~g.

For the rest of this subsection, we fix α, β ∈ [0, 1) and suppress the dependency on α
and β from the notation.

Lemma 37. For any fixed Z, α and β,

I(Z) 6 I(Z).
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Proof. Pick A, ~f and ~g so that A spans for (Z, ~f ,~g) and |A|+(1−α)
∑ ~f+(1−β)

∑
~g =

I(Z). Create a set A0 = A∪Ah∪Av so that the union is disjoint, for every integer v > 0,
Lh(0, v) contains exactly fv sites of Ah, that every vertical line contains at most one site
of Ah, and that analogous conditions hold for Av. Moreover, make sure that no horizontal
line intersects both A ∪ Ah and Av, and no vertical line intersects both A ∪ Av and Ah.
Then A0 spans for Z. Moreover, |Av| =

∑
~g, |Ah| =

∑ ~f . We now find an upper bound
for ρ(A0). By dividing any subset of A0 into three pieces, we get, with the maximum
below taken over all sets B ⊆ A, Bh ⊆ Ah and Bv ⊆ Av,

ρ(A0) = max{|B|+ |Bh|+ |Bv| − α|πx(B ∪Bh ∪Bv)| − β|πy(B ∪Bh ∪Bv)|}
6 max{|B|+ |Bh|+ |Bv| − α|πx(Bh)| − β|πy(Bv)|}
= max{|B|+ |Bh|+ |Bv| − α|Bh| − β|Bv|}
= max{|B|+ (1− α)|Bh|+ (1− β)|Bv|}
= |A|+ (1− α)|Ah|+ (1− β)|Av|.

Therefore,

I(Z) = |A|+ (1− α)
∑

~f + (1− β)
∑

~g

= |A0| − α|Ah| − β|Av|
> ρ(A0)

> I(Z),

as desired.

Finally, we show that, for large Z, I and I are close throughout [0, 1]2. The next
lemma is, by far, the most substantial step in our convergence argument.

Lemma 38. Fix a bounded Euclidean zero-set Z̃. Assume that δ > 0 and discrete zero-
sets Z depend on n (a dependence we suppress from the notation), and that

δ square(Z)
E−→ Z̃.

Write ` = 1/δ.
Assume that positive integers m and k satisfy ` � m � `2, 1 � k � `. Then for

some C that depends on Z̃, α, and β,

I(Z↙1+2k+bC`2/mc) 6 I(Z) + 2m+ C
`2

k
.

Proof. Pick a set A that spans for Z, and is such that ρ(A) = I(Z).
Step 1 . Let A′ = A>k. Then A′ spans for Z↙k, and there exists a constant C, which
depends on Z, α and β, so that |A′| 6 C`2.

The spanning claim follows from Lemma 11. Moreover, by Lemma 12 (as in the proof
of Corollary 26), ρ(A′) > |A′|(1−max{α, β}

(
1 + 1

k

)
). As ρ(A′) 6 ρ(A) = I(Z) 6 γ(Z),

the upper bound on |A′| follows.

Step 2 . There exists a set Â = Ad ∪ Ah ∪ Av such that
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(1) Ad ⊆ A′;

(2) |Â| = |A′|;

(3) for every horizontal (resp. vertical) line L, |L ∩ (Ad ∪ Ah)| (resp. |L ∩ (Ad ∪ Av)|)
equals |L ∩ A′|;

(4) Ah has at most one point in each column and Av has at most one point in each row;

(5) no horizontal line intersects both Ad ∪ Ah and Av, and no vertical line intersects
both Ad ∪ Av and Ah;

(6) Â spans for Z↙k+bC`2/mc; and

(7) |πx(Ad)| 6 m, |πy(Ad)| 6 m.

We will inductively construct a finite sequence of sets Aid, A
i
h, A

i
v, Â

i = Aid ∪Aih ∪Aiv, so

that, for each i, these sets satisfy (1)–(5), with superscript i on Ad, Ah, Av, Â, and

(6i) Âi spans for Z↙k+i.

We begin with A0
d = A′, A0

h = ∅, A0
v = ∅.

Assume we have a construction for some i. If |πx(Aid)| 6 m and |πy(Aid)| 6 m, then
the sequence is terminated. Otherwise, create a set B ⊆ Aid by starting from B = Aid
and successively removing points that have both horizontal and vertical neighbors in B
until no such points remain. Then no point in B has both a horizontal and a vertical
neighbor in B, and πx(B) = πx(A

i
d) and πy(B) = πy(A

i
d). Divide B into a disjoint union

B = Bh ∪ Bv so that points in Bh have no vertical neighbor in B and points in Bv have
no horizontal neighbor in B. (Allocate points that satisfy both conditions arbitrarily.)
Let Ai+1

d = Aid \ B. Adjoin a horizontal translation of Bh to Aih to get Ai+1
h , and vertical

translation of Bv to Aiv to get Ai+1
v , so that the conditions (3)–(5) are satisfied. For

any line L, |L ∩ Âi+1| > |L ∩ Âi| − 1, so, by the induction hypothesis, Ai+1 spans for
(Z↙k+i)↙1=Z↙k+i+1.

Note that |Aid \ Ai+1
d | > m, therefore the final i satisfies mi 6 |A′|, which, together

with Step 1, gives (6).

Step 3 . For Â constructed in Step 2, ρ(Â) 6 ρ(A′).

Let φ : A′ → Â be the bijection that is identity on Ad, and an appropriate horizontal
or vertical translation otherwise (corresponding to the construction of Â from A′ in Step

2). Pick a B ⊆ Â so that |B| − α|πx(B)| − β|πy(B)| = ρ(Â). Let B′ = φ−1(B). Then
|πx(B)| > |πx(B′)| because if φ(x) and φ(y) share a column, then so must x and y (by (4)
and (5)). Similarly, |πy(B)| > |πy(B′)|. Therefore

ρ(Â) = |B| − α|πx(B)| − β|πy(B)| 6 |B′| − α|πx(B′)| − β|πy(B′)| 6 ρ(A′).

Step 4 . Let A′h = (Ah)>k and A′v = (Av)>k. The set A0 = Ad ∪ A′h ∪ A′v ⊂ Â spans for
Z↙2k+bC`2/mc.
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This follows by the same argument as in the proof of Lemma 11.
Define fv = |A′h ∩Lh(0, v)| and gu = |A′v ∩Lv(u, 0)|. We may assume, by a rearrange-

ment of rows and columns of A0, that these are nonincreasing sequences.
Step 5 . For so defined ~f and ~g, Ad spans for (Z↙1+2k+bC`2/mc, ~f ,~g). Moreover,

|Ad|+ (1− α)
∑

~f + (1− β)
∑

~g 6 |A0| − α|πx(A0)| − β|πy(A0)|+ 2m+
1

k
C`2.

Spanning follows from the fact that A′h has at most one point on any vertical line
(which follows from (4)), and the analogous fact about A′v. To show the inequality, note

that |πx(Ad)| 6 m, |πy(Ad)| 6 m (by (6)), |πy(A′v)| = |A′v| =
∑
~g, |πx(A′h)| = |A′h| =

∑ ~f
(by (4)), |πx(A′v)| 6 1

k
|A′v|, and |πy(A′h)| 6 1

k
|A′h|, so

|A0| − α|πx(A0)| − β|πy(A0)|
> |Ad|+

∑
~f +

∑
~g

− α(|πx(Ad)|+ |πx(A′h)|+ |πx(A′v)|)− β(|πy(Ad)|+ |πy(A′h)|+ |πy(A′v)|)
> |Ad|+ (1− α)

∑
~f + (1− β)

∑
~g

− (|πx(Ad)|+ |πy(Ad)|)−
1

k
(|A′h|+ |A′v|)

> |Ad|+ (1− α)
∑

~f + (1− β)
∑

~g

− 2m− 1

k
C`2,

as |A′h|+ |A′v| 6 |A0| 6 |A′| 6 C`2.
Step 6 . End of the proof of Lemma 38.

I(Z) = ρ(A)

> ρ(A′) (as A′ ⊆ A)

> ρ(Â) (by Step 2)

> ρ(A0) (as A0 ⊆ Â)

> |A0| − α|πx(A0)| − β|πy(A0)|

> |Ad|+ (1− α)
∑

~f + (1− β)
∑

~g − 2m− 1

k
C`2 (by Step 5)

> I(Z↙1+2k+bC`2/mc)− 2m− 1

k
C`2 (by Step 5),

as desired.

6.2 Definitions of limiting objects and their basic properies

We will assume throughout this section that Z̃ is a bounded Euclidean zero-set. Pick
two left-continuous nonincreasing functions f, g : [0,∞)→ R with compact support. The
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enhanced Euclidean neighborhood growth transformation T̃ is determined by the triple
(Z̃, f, g) and is defined on Borel subsets A of the plane as follows. For a Borel set A ⊆ R2

+,

and x ∈ R2
+, let r̃ow(x,A) = length(Lh(x)∩A) and c̃ol(x,A) = length(Lv(x)∩A). Then

let

T̃ (A) = A ∪ {(u, v) ∈ R2
+ : (r̃ow((u, v), A) + f(v), c̃ol((u, v), A) + g(u)) /∈ Z̃}. (6.1)

Similar to the discrete case, the functions f and g may be represented by continuous Young
diagrams F̃ and G̃, so that f(v) = length(Lh(0, v)∩ F̃ ) and g(u) = length(Lv(u, 0)∩G̃).

Also as in discrete case, the non-enhanced transformation is given by (Z̃, 0, 0) and we

assume this version whenever we refer only to Z̃.
Note T̃ (A) is also Borel for any Borel set A, thus T̃ can be iterated. Also, as Z̃ is a

continuous Young diagram, T̃ (A) is well-defined even if A is unbounded and one or both

of the lengths are infinite. We say that a Borel set A E-spans if T̃ ∞(A) = ∪nT̃ n(A) = R2
+,

and we call A E-inert if T̃ (A) = A.
The connection between discrete and continuous transformations is give by the follow-

ing simple but useful lemma, which says that T̃ is an extension of T in the sense that T
and T̃ are conjugate on square representations of discrete sets.

Lemma 39. Assume A ⊆ Z2
+, and assume T is given by a discrete zero set Z and

enhancing Young diagrams F and G. Let Z̃ = square(Z) be the corresponding Euclidean

zero-set and F̃ = square(F ), G̃ = square(G) the corresponding enhancements. Then

T̃ (square(A)) = square(T (A)).

Proof. This is straightforward to check.

The Euclidean counterpart of γ has a straightforward definition through the non-
enhanced dynamics

γ̃(Z̃) = inf{area(A) : A is a compact subset of R2 that E-spans for Z̃}. (6.2)

To define the counterparts of I and γthin, let Ĩ be the set of triples (A, f, g), where f and
g are, as in (6.1), left-continuous nonincreasing functions and A ⊂ R2

+ is a compact set

that spans for (Z̃, f, g). Then let

Ĩ(α, β, Z̃) = inf{area(A) + (1− α)

∫ ∞
0

f + (1− β)

∫ ∞
0

g : (A, f, g) ∈ Ĩ}. (6.3)

and

γ̃thin(Z̃) = inf{
∫ ∞
0

f +

∫ ∞
0

g : (∅, f, g) ∈ Ĩ}. (6.4)

Lemma 40. Fix an a > 0. Then for any α, β ∈ [0, 1]2,

Ĩ(α, β, aZ̃) = a2Ĩ(α, β, Z̃).

Moreover, γ̃(aZ̃) = a2γ̃(Z̃) and γ̃thin(aZ̃) = a2γ̃thin(Z̃).
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Proof. A set A ⊂ R2
+ spans for (Z̃, F̃ , G̃) if and only if aA spans for (aZ̃, aF̃ , aG̃).

Next are three lemmas on non-enhanced growth.

Lemma 41. Assume T̃ is given by a Euclidean zero-set Z̃. Suppose An ⊆ R2
+ is an

increasing sequence of Borel sets and A = ∪nAn. Then T̃ (A) = ∪nT̃ (An). Consequently,

T̃ ∞(A) is E-inert for any Borel set A ⊆ R2
+.

Proof. Assume x /∈ ∪nT̃ (An). Then (r̃ow(x,An), c̃ol(x,An)) ∈ Z̃ for all n. As

r̃ow(x,An)→ r̃ow(x,A), c̃ol(x,An)→ c̃ol(x,A)

and Z̃ is closed, (r̃ow(x,A), c̃ol(x,A)) ∈ Z̃ and therefore x /∈ T̃ (A). This proves the first
claim, which implies, for any Borel set A,

T̃ (T̃ ∞(A)) = T̃ (∪nT̃ n(A)) = ∪nT̃ (T̃ n(A)) = ∪nT̃ n+1(A) = T̃ ∞(A),

as desired.

Lemma 42. A map T̃ , given by a Euclidean zero-set Z̃, maps open sets to open sets.

Proof. Assume A ⊂ R2
+ is open. To prove that T̃ (A) is open we may, by Lemma 41,

assume that A is bounded. Pick an x ∈ T̃ (A). If x ∈ A, then there exists δ > 0 such

that Bδ(x) ⊂ A ⊂ T̃ (A). Suppose now that x /∈ A. Then (r̃ow(x,A), c̃ol(x,A)) /∈ Z̃.

As Z̃ is closed, (r̃ow(x,A) − ε, c̃ol(x,A) − ε) /∈ Z̃, for some ε > 0. Find a compact
subset K ⊆ Lh(x) ∩ A, with length(K) > r̃ow(x,A) − ε. Let δ > 0 be the distance
between K and Ac. Then every point y ∈ Bδ(x) has a translate of K on Lh(y) ∩ A (in
particular, y+K ⊆ A) and so r̃ow(y, A) > r̃ow(x,A)−ε. Similarly, by choosing a possibly
smaller δ > 0, c̃ol(y, A) > c̃ol(x,A) − ε for all y ∈ Bδ(x). Thus, for any y ∈ Bδ(x),

(r̃ow(y, A), c̃ol(y, A)) /∈ Z̃, thus Bδ(x) ⊆ T̃ (A), and consequently T̃ (A) is open.

Lemma 43. Assume T̃ is given by a Euclidean zero-set Z̃ and A is a Borel set that
includes Z̃ in its interior. Then A E-spans.

Proof. Let A & R2
+ be an open set that includes Z̃. We claim that A cannot be E-inert.

To see this, assume that a vertical line L includes a point not in A. Take the lowest
closed horizontal line segment bounded by the vertical axis and L that includes a point
not in A, then let x = (u, v) be the leftmost point outside A on this segment. Clearly

(r̃ow(x,A), c̃ol(x,A)) = (u, v) /∈ Z̃ and therefore x ∈ T̃ (A). Thus A is not E-inert. The
proof is concluded by Lemmas 41 and 42.

The final two lemmas of this section connect Ĩ, γ̃, and area(Z̃).

Lemma 44. For any Euclidean zero-set Z̃, Ĩ(0, 0, Z̃) = γ̃(Z̃).
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Proof. By definition, we may assume that Z̃ is bounded. Then the inequality Ĩ(0, 0, Z̃) 6
γ̃(Z̃) is obvious as γ̃ is obtained as an infimum over a smaller set (with f = g = 0). The
reverse inequality can be obtained by replacing the two Young diagram enhancements
with the corresponding two initially occupied Young diagrams. We leave out the details,
which are very similar to the proof in the discrete case (Lemma 36).

Corollary 45. For any Euclidean zero-set Z̃, γ̃(Z̃) 6 area(Z̃). Moreover, if area(Z̃) <

∞, then Ĩ(α, β, Z̃) 6 γ̃(Z̃) <∞ for all (α, β) ∈ [0, 1]2.

Proof. The first claim follows from the definition of γ̃(Z̃) and Lemma 43. The second
claim follows from Lemma 44 and monotonicity in α and β.

6.3 Euclidean limit for the enhanced growth

In this subsection, we establish the limit for the enhanced rate I.

Lemma 46. Assume Z̃ is a bounded Euclidean zero-set. Suppose that Euclidean zero-sets

Zn and δn → 0 are such that δnsquare(Zn)
E−→ Z̃ as n→∞. Then

δ2nI(Zn)→ Ĩ(Z̃).

Proof. Let ε ∈ (0, 1). Define the Euclidean zero-set Z̃n = δnsquare(Zn). For large enough
n > N1 = N1(ε), by (C1),

(1− ε)Z̃ ⊆ Z̃n ⊆ (1 + ε)Z̃. (6.5)

Pick a compact set K ⊆ R2
+, and two continuous Young diagrams F̃ and G̃ so that K

E-spans for (Z̃, F̃ , G̃) and with

area(K) + (1− α)area(F̃ ) + (1− β)area(G̃) < Ĩ(Z̃) + ε.

Define A ⊆ Z2
+ and discrete Young diagrams F and G by

A = {x ∈ Z2
+ : (x+ [0, 1]2) ∩ (δ−1n (1 + ε)K) 6= ∅},

F = {x ∈ Z2
+ : (x+ [0, 1]2) ∩ (δ−1n (1 + ε)F̃ ) 6= ∅},

G = {x ∈ Z2
+ : (x+ [0, 1]2) ∩ (δ−1n (1 + ε)G̃) 6= ∅}.

Then δnsquare(A) ⊇ (1+ε)K E-spans for ((1+ε)Z̃, (1+ε)F̃ , (1+ε)G̃), thus by (6.5) also

for (Z̃n, (1+ε)F̃ , (1+ε)G̃), and then also for (Z̃n, δnsquare(F ), δnsquare(G)). Therefore,
by Lemma 39, A spans for (Zn, F,G), and so

I(Zn) 6 |A|+ (1− α)|F |+ (1− β)|G|
= δ−2n (area(δnsquare(A)) + (1− α)area(δnsquare(F ))+

(1− β)area(δnsquare(G)))

6 δ−2n

(
(1 + ε)2(area(K) + (1− α)area(F̃ ) + (1− β)area(G̃)) + ε

)
,
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if n is large enough. Thus

I(Zn) 6 δ−2n ((1 + ε)2Ĩ(Z̃) + 5ε) 6 δ−2n (1 + ε)2(Ĩ(Z̃) + 5ε). (6.6)

To get an inequality in the opposite direction, assume that n > N1 and pick a finite
set A ⊂ Z2

+ and Young diagrams F and G, such that A spans for (Zn, F,G). Then
δnsquare(A) is a compact set that, by Lemma 39, spans for

(Z̃n, δnsquare(F ), δnsquare(G)),

and then by (6.5) it also spans for (1− ε)Z̃. Therefore,

Ĩ((1− ε)Z̃)

6 area(δnsquare(A)) + (1− α)area(δnsquare(F )) + (1− β)area(δnsquare(G))

= δ2n (|A|+ (1− α)|F |+ (1− β)|G|)

By taking infimum over all triples (A,F,G), we get

(1− ε)2Ĩ(Z̃) = Ĩ((1− ε)Z̃) 6 δ2nI(Zn). (6.7)

The two inequalities (6.6) and (6.7) end the proof.

6.4 The smallest thin sets

Fix a zero-set Z. To prove (1.5), we need a comparison quantity, analogous to I. To this

end, we define γthin(Z) to be the minimum of
∑ ~f +

∑
~g over all sequences ~f,~g such that

∅ spans for (Z, ~f ,~g). We first sketch proofs of a couple of simple comparison lemmas.

Lemma 47. For any zero-set Z, γ(Z) 6 γthin(Z) 6 2γ(Z).

Proof. The lower bound is clear as γthin is the minimum over a smaller set than γ. The
upper bound is a simple construction (similar to the one in the proof of Lemma 21): one
may replace any spanning set A by a thin spanning set consisting of two pieces, one with
the row counts the same as those of A, and the other with the column counts the same
as those of A.

Lemma 48. For any zero-set Z, γthin(Z↙1) 6 γthin(Z) 6 γthin(Z).

Proof. This is again a simple construction argument as in Lemma 21. If ∅ spans for
(Z, ~f ,~g), then the thin set A constructed by populating row i with fi occupied points and
column

∑
i fi + 1 + j with gj occupied points has

|A| =
∑
i

fi +
∑
j

gj, (6.8)

and spans for Z. Conversely, if a thin set A spans for Z, then the row and column counts
of A can be gathered into ~f and ~g (once sorted), so that (6.8) holds and ∅ spans for

(Z↙1, ~f ,~g).

the electronic journal of combinatorics 24(4) (2017), #P4.29 38



Recall the definition of γ̃thin from Section 6.2. We will omit the proof of the following
convergence result, which can be obtained by adapting the argument for enhancement
rates.

Lemma 49. Assume Z̃ is a bounded Euclidean zero-set. Then γ̃thin(Z̃) 6 area(Z̃).

Moreover, suppose discrete zero-sets Zn and δn > 0 satisfy δn → 0 and δnsquare(Zn)
E−→

Z̃. Then δ2nγthin(Zn)→ γ̃thin(Z̃).

6.5 Proof of the main convergence theorem

We begin with an extension of Theorem 13 that is needed to reduce our argument to
bounded Euclidean zero-sets.

Lemma 50. Let Z be any zero-set, (α, β) ∈ [0, 1]2, and R > 0 an integer. Then

I(α, β,Z ∩ [0, R]2) 6 I(α, β,Z) 6 I(α, β,Z ∩ [0, R]2) + |Z \ [0, R]2|.
Proof. Pick a set A that spans for Z ∩ [0, R]2, such that ρ(A) = I(α, β,Z ∩ [0, R]2). By
Theorem 13, there exists a set A1 with |A1| 6 |Z \ [0, R]2|, such that A∪A1 spans for Z.
Therefore, with supremum below over all sets B ⊆ A and B1 ⊆ A1,

I(α, β,Z) 6 ρ(A ∪ A1)

= sup
B,B1

|B ∪B1| − α|πx(B ∪B1)| − β|πy(B ∪B1)|

6 sup
B
|B|+ |A1| − α|πx(B)| − β|πy(B)|

= ρ(A) + |A1|
6 I(α, β,Z ∩ [0, R]2) + |Z \ [0, R]2|,

as desired.

Recall the definition of E-convergence from Section 1. We omit the routine proof of
the following lemma.

Lemma 51. Assume that (C1) holds, area(Z̃) <∞, and area(Z̃n) <∞ for all n. Then
(C2) is equivalent to

lim
R→∞

area(Z̃n \ [0, R]2) = 0

uniformly in n.

We are now ready to prove our main convergence result, Theorem 4. Before we proceed,
we need to extend the definitions of Ĩ and γ̃thin to unbounded Euclidean zero-sets. For an
arbitrary Z̃, we define

Ĩ(α, β, Z̃) = lim
R→∞

Ĩ(α, β, Z̃ ∩ [0, R]2) (6.9)

and
γ̃thin(Z̃) = lim

R→∞
γ̃thin(Z̃ ∩ [0, R]2). (6.10)

Observe that, if area(Z̃) <∞, Ĩ(Z̃) 6 γ̃(Z̃) 6 area(Z̃) <∞, and likewise γ̃thin(Z̃) <∞.
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Lemma 52. Assume Z̃ is an arbitrary Euclidean zero-set. Suppose that discrete zero-sets

Zn and δn → 0 are such that δnsquare(Zn)
E−→ Z̃ as n → ∞. Then δ2nI(α, β,Zn) →

Ĩ(α, β, Z̃). If area(Z̃) < ∞ this convergence is uniform for (α, β) ∈ [0, 1]2 and the limit

is concave and continuous on [0, 1]2. If area(Z̃) =∞, the limit is infinite on [0, 1)2.

Proof. We first prove (1.3) for fixed (α, β) ∈ [0, 1)2, which we suppress from the notation.

If area(Z̃) =∞, then δ2nI(Zn)→∞ by Lemma 39, Proposition 26, (C2) and Theorem 1.

We assume area(Z̃) <∞ for the remainder of the proof.
Fix an ε ∈ (0, 1). By definition, we can choose R large enough so that

Ĩ(Z̃ ∩ [0, R]2) > Ĩ(Z̃)− ε. (6.11)

It follows by Lemma 51 that, if R is large enough, δ2n|Zn \ [0, δ−1n R]2| < ε, for all n. Then,
by Lemma 50,

I(Zn ∩ [0, δ−1n R]2) 6 I(Zn) 6 I(Zn ∩ [0, δ−1n R]2) + εδ−2n , (6.12)

for every n.

For every R > 0, δnsquare(Zn ∩ [0, δ−1n R]2)
E−→ Z̃ ∩ [0, R]2, and therefore, by

Lemma 46,
δ2nI(Zn ∩ [0, δ−1n R]2)→ Ĩ(Z̃ ∩ [0, R]2),

and then, by Lemmas 38 and 37,

δ2nI(Zn ∩ [0, δ−1n R]2)→ Ĩ(Z̃ ∩ [0, R]2).

By (6.11) and (6.12), it follows that

Ĩ(Z̃)− ε 6 Ĩ(Z̃ ∩ [0, R]2) 6 lim inf δ2nI(Zn)

6 lim sup δ2nI(Zn) 6 Ĩ(Z̃ ∩ [0, R]2) + ε 6 Ĩ(Z̃) + ε,

which ends the proof of the convergence claim.
By Proposition 27 and the established convergence,

Ĩ(α, β, Z̃) 6 (1−max{α, β})area(Z̃), (6.13)

for any (α, β) ∈ [0, 1]2 and any Euclidean zero-set Z̃ with finite area.

If Z̃ is bounded, the function Ĩ(·, ·, Z̃) is concave on [0, 1]2 because it is an infimum

of linear functions. By passing to the limit (6.9), this holds for arbitrary Z̃. Clearly,

Ĩ(α, β, Z̃) is nonincreasing in α and β, so by concavity and (6.13), Ĩ(·, ·, Z̃) is continuous
on [0, 1]2. The functions δ2nI(·, ·,Zn) are also nonincreasing in each argument for every n,
so pointwise convergence implies uniform convergence.

Corollary 53. For any Euclidean zero-set Z̃ with area(Z̃) < ∞, any (α, β) ∈ [0, 1]2,
and any R > 0,

Ĩ(α, β, Z̃) 6 Ĩ(α, β, Z̃ ∩ [0, R]2) + area(Z̃ \ [0, R]2).
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Proof. Define Zn to be the inclusion-maximal subset of Z2
+ such that 1

n
square(Zn) ⊆ Z̃.

Then 1
n
square(Zn)

E−→ Z̃, ( 1
n
square(Zn)) ∩ [0, R]2

E−→ Z̃ ∩ [0, R]2 and

1
n2 |Zn \ [0, nR]2| = area(( 1

n
square(Zn)) \ [0, R]2) +O( 1

n
)→ area(Z̃ \ [0, R]2). (6.14)

By Lemma 50, we have

I(α, β,Zn) 6 I(α, β,Zn ∩ [0, nR]2) + |Zn \ [0, nR]2|. (6.15)

Upon dividing (6.15) by n2 and sending n → ∞, Lemma 52 and (6.14) give the desired
inequality.

Corollary 54. For any Euclidean zero-set Z̃, γ̃(Z̃) > 1
4
area(Z̃).

Proof. If area(Z̃) <∞ then the argument is similar to the one in the preceding corollary.

If area(Z̃) =∞, then for any R > 0, γ̃(Z̃) > γ̃(Z̃ ∩ [0, R]2) > 1
4
area(Z̃ ∩ [0, R]2), and so

γ̃(Z̃) =∞.

Corollary 55. Assume area(Z̃) < ∞. If Z̃n E−→ Z̃, then Ĩ(·, ·, Z̃n) → Ĩ(·, ·, Z̃), uni-
formly on [0, 1]2.

Proof. If area(Z̃) < ∞ we may assume all areas are finite. By Lemma 51 and Corol-

llary 53, we may also assume that all Z̃n and Z̃ are subsets of [0, R]2, for some R. In

this case, for any ε > 0, (1 − ε)Z̃ ⊆ Z̃n ⊆ (1 + ε)Z̃, when n is large enough. Thus, by

Lemma 40, (1− ε)2Ĩ(Z̃) 6 Ĩ(Z̃n) 6 (1 + ε)2Ĩ(Z̃), which clearly suffices.

Proof of Theorem 4. All statements on large deviation rates follow from Lemma 52 and
Corollary 55, and imply (1.4). We omit the similar proof of (1.5).

7 Bounds on large deviations rates for large zero-sets

In Sections 7.1–7.4 we address bounds on Ĩ(α, β, Z̃). In Section 7.1, we complete the

proof of Theorem 5. In Sections 7.2, 7.3 and 7.4, we prove lower bounds on Ĩ near the
corners of [0, 1]2, either for general Euclidean zero-sets or an L-shaped Euclidean zero-set,

which establish Theorem 6 and show that each of the three upper bounds on Ĩ(α, β, Z̃)
is, in a sense, impossible to improve near one of the corners.

7.1 General bounds on Ĩ

We assume that (α, β) ∈ [0, 1]2. Having established the existence of Ĩ, we now recall the
three propositions in Section 4.2 and complete the proof of Theorem 5.

Proof of Theorem 5. Pick a sequence of zero-sets Zn, such that δnsquare(Zn)
E−→ Z̃

for some sequence of positive numbers δn → 0. To prove the lower bound, we use the
Proposition 26 with any numbers k = kn that satisfy 1 � k � 1/δn, so that also
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δnsquare(Z↙kn )
E−→ Z̃. To prove the upper bound (1.7), we use the inequalities (4.14),

(4.15), and the inequality I(α, β,Zn) 6 γ(Zn) (see Theorem 3). We multiply these four

inequalities by δ2n, take the limit as n→∞, and use δ2n|Zn| → area(Z̃) (by definition of
E-convergence) and Theorem 4 to obtain (1.6) and (1.7).

A continuous version of Theorem 29 follows.

Corollary 56. For any Euclidean rectangle R̃a,b,

Ĩ(α, β, R̃a,b) = (1−max(α, β))ab.

Proof. It follows from Theorems 15 and 4 that γ̃(R̃a,b) = area(R̃a,b) = ab, so the upper

and lower bounds on Ĩ(α, β, R̃a,b) given in Theorem 5 agree. (Alternatively, one may use
Corollary 30.)

7.2 The (1, 0) corner

Theorem 57. Fix a continuous zero-set Z̃ with finite area. Then

lim inf
α→1−

1

1− αĨ(α, 0, Z̃) > area(Z̃). (7.1)

A consequence of this theorem is a characterization of Euclidean zero-sets which attain
the lower bound (1.6).

Corollary 58. Assume Z̃ is a Euclidean zero-set with area(Z̃) <∞. Then Ĩ(α, β, Z̃) =

(1−max{α, β})γ̃(Z̃) for all (α, β) ∈ [0, 1]2 if and only if γ̃(Z̃) = area(Z̃), which in turn

holds if and only if Z̃ = R̃a,b for some a, b > 0.

Proof. By Corollary 56 and Theorem 57, we only need to show that the second statement
implies the third. Suppose there do not exist a, b > 0 such that Z̃ = R̃a,b. Since 0 <

area(Z̃) < ∞, we may choose a, b > 0 such that for some ε > 0 the boundary of Z̃
intersects R̃a,b in intervals of length at least ε > 0 and such that (a− ε, b− ε) + [0, ε]2 ⊂
R̃a,b \ Z̃. If T̃ ′ is the growth transformation for the dynamics given by Z̃ ∩ R̃a,b, then it

follows that T̃ ′((Z̃ ∩ R̃a,b) \ [0, ε]2) ⊇ Z̃ ∩ R̃a,b, so γ̃(Z̃ ∩ R̃a,b) 6 area(Z̃ ∩ R̃a,b)− ε2. By
Corollary 53,

γ̃(Z̃) 6 γ̃(Z̃ ∩ R̃a,b) + area(Z̃ \ R̃a,b) 6 area(Z̃)− ε2,

which ends the proof.

Proof of Theorem 57. We first argue that it is enough to prove (7.1) when Z̃ is bounded.

Indeed, once we achieve that, the lim inf in (7.1) is, for any Z̃ and any R > 0, at least

area(Z̃ ∩ [0, R]2). The general result then follows by sending R → ∞. We assume that

Z̃ is bounded for the rest of the proof.
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We fix an α ∈ [0, 1). We also fix ε, δ > 0, to be chosen to depend on α (and go
to 0 as α → 1) later. We assume the discrete zero-sets Z are large, depend on n, and
1
n
square(Z)

E−→ Z̃, but for readability we will drop the dependence on n from the
notation.

In addition, we fix an integer k > 2 that will also depend on α and increase to infinity
as α→ 1. We say that a zero-set Z satisfies the slope condition if there is no contiguous
horizontal or vertical interval of k sites in ∂oZ. Let a0 and b0 be the longest row and
column lengths of Z.

We claim that for any Z there exists a zero-set Z ′ ⊇ Z↙ba0/kc+bb0/kc that satisfies the
slope condition. To see why this holds, assume there is a leftmost horizontal interval of k
sites in ∂oZ, ending at site (u0, v0). Replace Z by the zero set obtained by moving down
points on the line Rv(u0, v0) and to its right, that is, by

{(u, v) ∈ Z2
+ : (u < u0 and (u, v) ∈ Z) or (u > u0 and (u, v + 1) ∈ Z)}.

Observe that, first, the resulting set includes Z↓1; second, if ∂oZ does not have a contigu-
ous vertical interval of k sites, this operation does not produce one; and, third, after at
most ba0/kc iterations we obtain a zero-set whose boundary has no contiguous horizontal
interval of k sites. Thus we can produce a zero-set that satisfies the slope condition after
at most ba0/kc steps for horizontal intervals, followed by at most bb0/kc steps for vertical
ones, which proves the claim. The resulting Z ′ satisfies

|Z ′| > |Z| − |Zxba0/kc+bb0/kc| > |Z| − 1

k
(a0 + b0)

2. (7.2)

Assume that A spans for Z, therefore also for Z ′, and that |A| 6 |Z ′|. If |πx(A)| 6
(1− δ)|A|, then

ρ(α, 0, A) > δ|A| > δγ(Z) >
1

4
δ|Z|. (7.3)

We now concentrate on the case when |πx(A)| > (1 − δ)|A|. Define the narrow region
of Z2

+ to be the union of vertical lines that contain exactly one point of A, and the wide
region to be the union of vertical lines that contain at least two points of A. Let Anarrow

be the subset of A that lies in the narrow region, and Awide be the remaining points of A.
We claim that |Awide| 6 2δ|A|. To see this, observe that

2|πx(Awide)|+ |πx(Anarrow)| 6 |A|,

so
|πx(Awide)| 6 |A| − |πx(A)| 6 δ|A|

and then

|Awide| = |A| − |Anarrow| = |A| − |πx(Anarrow)| = |A| − |πx(A)|+ |πx(Awide)| 6 2δ|A|.

We will successively paint whole lines of Z2
+, including points in A, red and blue,

transforming the zero-set Z ′ in the process. The resulting (finitely many) zero-sets Z ′i,
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i = 0, 1, . . ., will satisfy the slope condition, and will span with initial set A from which
the points painted by that time have been removed. The painted points will dominate
the set of points that become occupied in a slowed-down version of neighborhood growth
with zero-set Z ′. Initially, no point is painted and we let Z ′0 = Z ′, with a′0 and b′0 its
largest row and column counts.

Assume that i > 0 and we have a zero-set Z ′i, with a′i its largest row count. If a′i < εa′0,
the procedure stops with this final i. Otherwise, choose an unpainted point x /∈ A that
gets occupied by the growth given by Z ′i, applied to A without the painted points. The
first possibility is that at least (1− ε)a′i unpainted points of A are on Lh(x). Then paint
blue all points on Lh(x) that have not yet been painted, and let Z ′i+1 = Z ′↓1i . The second
possibility is that fewer than (1− ε)a′i unpainted points of A are on Lh(x). Then x is in
the wide region and there must be at least 1

2
εa′i/k > 1

2
ε2a′0/k points of A on Lv(x), due to

the slope condition. Paint all unpainted points in the entire neighborhood of x red, and
let Z ′i+1 = Z ′↙1

i .
If ` is the number of times the red points are added, then

` 6 4kε−2δ|A|/a′0 6 4kε−2δ|Z ′|/a′0 6 4kε−2δb′0.

Observe that |Z ′x`| 6 `(a′0 + b′0). Moreover, the number of points in Z ′ in rows of length
at most εa′0 is at most k(εa′0)

2, by the slope condition. Therefore, the points of A colored
blue at the final step have cardinality at least

(1− ε)|Z ′| − k(εa′0)
2 − `(a′0 + b′0).

Choose δ = ε3 to get
|A| > (1− ε)|Z ′| − 4kε(a′0 + b′0)

2. (7.4)

Clearly, (7.4) holds if |A| > |Z ′| as well. Therefore, (7.2) and (7.4) imply

|A| > (1− ε)|Z| − 4kε(a0 + b0)
2 − 1

k
(a0 + b0)

2. (7.5)

We now choose k = 1/
√
ε. Moreover, we observe that there exists a constant C > 1 that

depends on the limiting shape Z̃ such that (a0+b0)
2 6 C|Z| for all sufficiently large n. (It

is here we use the assumption that Z̃ is bounded, so a0/n and b0/n converge.) Therefore,
when |πx(A)| > (1− δ)|A|, (7.5) implies

ρ(α, 0, A) > (1− 6C
√
ε)(1− α) |Z| . (7.6)

Then (7.3) and (7.6) together imply

lim inf
n

I(α, 0,Z)/|Z| > min{(1− 6C
√
ε)(1− α),

1

4
ε3}. (7.7)

Finally, we pick ε = 2(1− α)1/3 to get from (7.7) that

Ĩ(α, 0, Z̃) > area(Z̃) ·
(
(1− α)− 12C(1− α)7/6

)
, (7.8)

which implies (7.1).
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7.3 The (0, 0) corner for the L-shapes

As the lower bound (1.6) can be attained, we know that infZ̃ Ĩ(α, β, Z̃)/γ(Z̃) is a piecewise
linear function that is nonzero on [0, 1)2. It is natural to inquire to what extent the upper

bound (1.7) on supZ̃ Ĩ(α, β, Z̃)/γ(Z̃) can be improved. One might ask, for example, for
a piecewise linear bound which is, unlike (1.7), strictly less than 1 on (0, 1]2. We will now
demonstrate by an example that such an improvement is impossible.

Our example is the limit of L-shaped zero-sets consisting of (2a − 1) symmetrically
placed n×n squares. For simplicity, we will assume that a > 3 is an integer. (A variation
of the argument can be made for any real number a > 2.) We will only consider the
diagonal α = β, which suffices for the purposes discussed above.

Theorem 59. For the Euclidean zero set Z̃ = Ra,1 ∪R1,a we have, for all α ∈ (0, 1),

a− 2α− 9aα3/2 6 Ĩ(α, α, Z̃) 6 a− 2α.

Proof of Theorem 59. For the sequence of zero-sets Zn = Ran,n ∪Rn,an, we clearly have

square(Zn)/n
E−→ Ra,1 ∪R1,a = Z̃.

We will show that

a− 2α− 9aα3/2 6 lim inf
1

n2
I(α, α,Zn) 6 lim sup

1

n2
I(α, α,Zn) 6 a− 2α. (7.9)

This will show that γ̃(Z̃) = a and prove the desired bounds.
To prove the upper bound, we build a spanning set A by a suitable placement of a

patterns. Of these, a− 2 are full n×n squares, one consist of n diagonally adjacent 1×n
intervals, and the final one consist of n diagonally adjacent n × 1 intervals. To obtain
A, place these a patterns so that any horizontal or vertical line intersects at most one of
them. It is easy to check that A spans. Now any B ⊆ A has

πx(B) + πy(B) > |B| − (a− 2)n2

and so
ρ(A) 6 sup

B
(1− α)|B|+ α(a− 2)n2

= (1− α)an2 + α(a− 2)n2

= (a− 2α)n2,

which proves the upper bound in (7.9).
To prove the lower bound, assume that A is any set that spans for Z. By Lemma 11,

we may replace A with another set, that we still denote by A, that spans for Z↙k and
whose every point has k other points in A on some line of its neighborhood. We assume
that 1� k � n.

Fix an ε > 0, to be chosen later to be dependent on α. Assume first that |A| >
(1 + ε) · an2. Then, by Lemma 12,

ρ(A) > (1 + ε)(1− (1 + 1/k)α) · an2. (7.10)
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Now assume that |A| 6 (1 + ε) ·an2. Fix numbers s > n and r > 0, to be chosen later.
If there exist r horizontal lines, each with at least s sites of A on it, then r(s−n+k) sites
of A are wasted for the Rn−k,an−k line growth, with γ(Rn−k,an−k) = (n− k)(an− k), so

r(s− n+ k) + (an− k)(n− k) 6 (1 + ε) · an2.

It follows that, if we assume

r(s− n)− (a+ 1)nk > ε · an2, (7.11)

then at most r horizontal lines and at most r vertical lines contain s or more sites of A.
Now, A is a spanning set for both line growths with zero-sets Ran−k,n−k and Rn−k,an−k.
Using the slowed-down version of line growth in which a single line is occupied each time
step, we see that there exist some an−k− s vertical lines, and some an−k− s horizontal
lines, each with at least n− k− r sites of A. Let A1 and A2 be the respective sets formed
by occupied points on these vertical lines and horizontal lines and Adense = A1∩A2. Then

2(an− k − s)(n− k − r)− |Adense| 6 |A1 ∪ A2| 6 (1 + ε) · an2,

and so
|Adense| > (a− 2)n2 − 2(s− n)n− 2(ar + (a+ 1)k)n− ε · an2. (7.12)

We now need a variant of the argument in the proof of Lemma 12 for an upper bound
on the entropy of A. Let A′h be the set of points of A that are not in Adense but lie on
a horizontal line of a point in Adense. Let Ah be the set of points of A that are not in
Adense∪A′h but lie on a horizontal line with at least k other points of A (and therefore with
at least k other points of Ah). Let A′v be the set of points that are not in Adense∪Ah∪A′h
but lie on a vertical line of a point in this union. Let Av = A \ (Adense ∪Ah ∪A′h), so that
any points of Av shares a vertical line with at least k other points of Av. Then

|πx(A)| 6 |πx(Adense)|+ |πx(Av)|+ |πx(Ah)|+ |πx(A′h)|

6
1

n− r − k |Adense|+
1

k
|Av|+ |Ah|+ |A′h|

and
|πy(A)| 6 |πy(Adense)|+ |πy(Ah)|+ |πx(Av)|+ |πx(A′v)|

6
1

n− r − k |Adense|+
1

k
|Ah|+ |Av|+ |A′v|

and so

|πx(A)|+ |πy(A)| 6 2

n− r − k |Adense|+
(

1 +
1

k

)
(|Ah|+ |Av|) + |A′h|+ |A′v|

6
2

n− r − k |Adense|+
(

1 +
1

k

)
(|A| − |Adense|)

(7.13)
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By (7.13), the fact that γ(Z↙k) > (an−k)(n−k) (which follows from Proposition 16),
and (7.12)

ρ(A) > |A| − α(|πx(A)|+ |πy(A)|)

> |A|
(

1−
(

1 +
1

k

)
α

)
+ α

(
1 +

1

k
− 2

n− r − k

)
|Adense|

> (an− k)(n− k)

(
1−

(
1 +

1

k

)
α

)
+ α

(
1 +

1

k
− 2

n− r − k

)
((a− 2)n2 − 2(s− n)n− 2(ar + (a+ 1)k)n− ε · an2).

(7.14)
To guarantee (7.11) for large n, we choose s − n = a

√
εn and r = 3

2

√
εn. We know

that for any spanning set A, either (7.10) or (7.14) holds, so that

lim inf
1

n2
I(α, α,Zn) > min{a(1 + ε)(1− α), a− 2α− 5aα

√
ε− aαε}.

To assure that the second quantity inside the min is the smaller one, we need that

(a− 2)α 6 aε+ 5α
√
ε,

which is assured for all α ∈ (0, 1) with ε = a−2
a
α. This finally gives

lim inf
1

n2
I(α, α,Zn) > a− 2α− 5a

√
a

a− 2
α3/2 − (a− 2)α2

> a− 2α− 9aα3/2,

(7.15)

ending the proof of the lower bound in (7.9).

7.4 The (1, 1) corner

The upper bound (1.7) provides a lower bound of −2 for the slope of supZ̃ Ĩ(α, α, Z̃)/γ(Z̃)
at α = 1−. Continuing with the theme from the previous section, we show that this
bound cannot be improved either. To achieve this, we again show that the L-shapes
asymptotically attain this bound, a fact that easily follows from our next theorem.

Theorem 60. Assume the Euclidean zero set Z̃ = R̃a,1 ∪ R̃1,a for some a > 2. Then,

2(a− 1)
(
(1− α)− 2(1− α)2

)
6 Ĩ(α, α, Z̃) 6 2(a− 1)(1− α),

for all α ∈ [0, 1].

We note that for Z̃ as in the above theorem, γ̃(Z̃) = a, and therefore the L-shape
with a = 2 provides another case (apart from the line and bootstrap growths) for which
the lower bound (1.6) is attained on the entire diagonal α = β.

The proof of Theorem 60 proceeds in two main steps. In the first step, which holds
for general Z̃, we show that in the relevant circumstances an arbitrary spanning set A
can be replaced by a thin spanning set of a similar size, and use this to prove (1.9). The
second step is a lower bound on γthin(Z) for the L-shaped zero-sets Z.
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Lemma 61. Fix a δ ∈ (0, 1) and a positive integer k. Let A be a set that satisfies both
|πx(A)| + |πy(A)| > (1 − δ)|A| and A = A>k. Then there exists a thin set A′ ⊆ A such
that

|πx(A′)|+ |πy(A′)| = |πx(A)|+ |πy(A)|
and

|A \ A′| 6
(
δ +

2

k

)
|A|.

Proof. Partition A into three disjoint sets Ah, Av, and A0 as in the proof of Lemma 12.
Points in Ah lie in a row with at least k other points of Ah, points in Av lie in a column
with at least k other points of Av, and points of A0 lie in a column with at least k other
points of A.

Choose any point in A that shares both a row and a column with other points in A,
then remove it. Repeat until no point can be removed. Let A′ be the so obtained final set.
Observe that A′ is thin and that, as the removed points do not affect either projection,

|πx(A′)|+ |πy(A′)| = |πx(A)|+ |πy(A)|.

Let A′h = Ah ∩ A′, A′v = Av ∩ A′, and A′0 = A0 ∩ A′. Then,

|πx(A′)|+ |πy(A′)| 6 |πx(A′0 ∪ A′v ∪ A′h)|+ |πy(A′0 ∪ A′v ∪ A′h)|
6 |πx(A′h)|+ |πy(A′0 ∪ A′v)|+ |πx(A′v)|+ |πy(A′h)|+ |πx(A′0)|

6 |A′|+ 1

k
(|Av|+ |Ah|+ |A|)

6 |A′|+ 2

k
|A|.

(7.16)

Moreover,
(1− δ)|A| 6 |πx(A)|+ |πy(A)| = |πx(A′)|+ |πy(A′)|. (7.17)

Combining (7.16) and (7.17) gives
(
1− δ − 2

k

)
|A| 6 |A′| and hence |A\A′| 6

(
δ + 2

k

)
|A|.

Lemma 62. Assume δ, k and A satisfy conditions in Lemma 61, and suppose in addition
that A spans for some zero-set Z. Then there exists a thin set B that spans for Z, such
that

|B| 6
(

1 + δ +
2

k

)
|A|.

Proof. Let A′ ⊆ A be the thin set guaranteed by Lemma 61. Let Br be a set with the
same row counts as A \ A′ but with no two points in the same column, and let Bc be a
set with the same column counts as A\A′ with no two points in the same row. Assuming
A ⊆ Ra,b, let Bs = ((a, 0) +Br) ∪ ((0, b) +Bc) . The set B = A′ ∪ Bs is a thin set that
spans (see the proof of Lemma 21), and satisfies |B| 6 (1 + δ + 2

k
)|A|.

Lemma 63. For any discrete zero-set Z, and α ∈ [0, 1], I(α, α,Z) 6 (1− α)γthin(Z).
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Proof. Take a thin set A that spans for Z, with |A| = γthin(Z). For any B ⊂ A, |πx(B)|+
|πy(B)| > |B|, therefore

ρ(A) = sup
B⊆A
|B| − α(|πx(B)|+ |πy(B)|)

6 sup
B⊆A

(1− α)|B| = (1− α)|A| = (1− α)γthin(Z),

and consequently I(α, α,Z) 6 (1− α)γthin(Z).

Theorem 64. Suppose Z̃ is a Euclidean zero-set with finite area. Then

γ̃thin(Z̃) ·
(
(1− α)− 2(1− α)2

)
6 Ĩ(α, α, Z̃) 6 γ̃thin(Z̃) · (1− α). (7.18)

Furthermore, Ĩ(α, α, Z̃) = (1− α)γ(Z̃) for all α ∈ [0, 1] if and only if γ̃thin(Z̃) = γ̃(Z̃).

Proof. Pick discrete zero-sets Zn so that n−2square(Zn)→ Z̃. Assume that A spans for
Zn. Assume 1� k � n throughout. The number δ ∈ (0, 1) will eventually be chosen to
depend on α ∈ (0, 1).

By Lemma 11, A′ = A>k spans for Z↙kn . If |πx(A′)|+ |πy(A′)| 6 (1− δ)|A′|, then

ρ(A) > ρ(A′) > δ|A′| > δγ(Z↙kn ) >
1

2
δγthin(Z↙kn ), (7.19)

the last inequality following from Lemma 47. If |πx(A′)|+ |πy(A′)| > (1− δ)|A′|, then by
Lemma 62 we can find a thin set B that spans for Z↙2k

n and has

|B| 6
(

1 + δ +
2

k

)
|A′|. (7.20)

Finally, we take B′ = B>k to get a thin set that spans for Z↙3k
n . Therefore, by (7.20),

|A′| > 1

1 + δ + 2
k

· γthin(Z↙3k
n ). (7.21)

By Lemma 12,

|πx(A′)|+ |πy(A′)| 6
(

1 +
1

k

)
|A′|

and therefore, by (7.21), in this case,

ρ(A) > ρ(A′) >
1− α− α

k

1 + δ + 2
k

· γthin(Z↙3k
n ). (7.22)

Now we divide (7.19) and (7.22) by n2, send n→∞, and use Theorem 4 to conclude that

Ĩ(α, α, Z̃) > min

{
1

2
δ,

1− α
1 + δ

}
· γ̃thin(Z̃).

We choose δ so that the two quantities inside the minimum are equal, that is, δ + δ2 =
2(1− α). The observation that δ > (δ + δ2)− (δ + δ2)2 = 2(1− α)− 4(1− α)2 concludes
the proof of the lower bound.

The upper bound is a consequence of Lemma 63 and Theorem 4, and then the claimed
equivalence follows from (7.18) and (1.6).
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The key bound we need for the proof of Theorem 60 is given by the next lemma, which
implies that, for an L-shaped zero-set Z, γthin(Z) can be much larger than γ(Z).

Lemma 65. Assume an L-shaped zero-set given by Z = Ra+b,c ∪ Ra,c+d, for some
a, b, c, d > 0. Then γthin(Z) > bc+ ad− b− d.

To prove Lemma 65, we need some definitions. Consider two line growths, the hor-
izontal one with zero-set Ra+b,c and vertical one with zero-set Ra,c+d. Fix integers â, ĉ
such that a 6 â 6 a + b and c 6 ĉ 6 c + d. We say that a set A H-spans if A spans
for Ra+b,c after a thin set with c rows of â sites each is added to A so that no point in
it shares a row or a column with a point of A. We also say that a set A V-spans if A
spans for Ra,c+d after a thin set with a columns of ĉ sites each is added to A, none of
whose points share a row or column with A. We say that a set A approximately spans if
it both H-spans and V-spans. Clearly, any set that spans for Z as in Theorem 65 also
approximately spans with â = a and ĉ = c, so the next lemma proves Lemma 65.

Lemma 66. Any thin set A that approximately spans has |A| > (c− 1)(a+ b− â) + (a−
1)(c+ d− ĉ).

Proof. We emphasize that â and ĉ will stay fixed throughout the proof, while a > 1,
b > â− a, c > 1, d > ĉ− c will decrease. We will proceed by induction on a+ b+ c+ d.
The claim clearly holds if either of the four equalities hold: a = 1, c = 1, a + b = â, or
c + d = ĉ, by the formula for the line growth γ (Proposition 15). We will from now on
assume that none of these equalities hold.

Suppose A is a thin set that approximately spans for the quadruple (a, b, c, d). The
argument is divided into three cases below. We will use the slowed-down version of the
line growth whereby a single full line (horizontal or vertical) is occupied in a single time
step, which is equivalent to the removal of that line and shrinking of the rectangular
zero-set by eliminating one row or one column from it.
Case 1 . There is a horizontal line Lh with at least a+ b points of A. Eliminate all points
on Lh from A to get A′, and take a′ = a, b′ = b, c′ = c − 1, d′ = d. Clearly, A′ is thin
and V-spans for Ra′,c′+d′ = R↓1a,c+d. To see that A′ H-spans for Ra′+b′,c′ = R↓1a+b,c, we need
to check that the addition of a thin set of c− 1 rows of â sites each, added to A, actually
produces a spanning set for Ra+b,c in this case. Indeed, after Lh is made fully occupied,
at most c − 1 horizontal lines ever need to be spanned in the line-by-line slowed down
version of the line growth. By the induction hypothesis,

|A| > a+ b+ |A′| > a+ b+ (c′ − 1)(a′ + b′ − â) + (a′ − 1)(c′ + d′ − ĉ)
= (c− 1)(a+ b− â) + (a− 1)(c+ d− ĉ) + â− a+ 1

> (c− 1)(a+ b− â) + (a− 1)(c+ d− ĉ),

as â > a.
Case 2 . There is a vertical line Lv with at least c + d points of A. Using Case 1 , this
case follows by symmetry.

the electronic journal of combinatorics 24(4) (2017), #P4.29 50



Case 3 . There exists a horizontal line Lh with a0 > a points of A, and there exists a
vertical line Lv with c0 > c points of A. We assume that a0 is the smallest such number,
that is, that any horizontal line with strictly fewer than a0 points has strictly fewer than
a points, and thus strictly fewer than â points. We also assume the analogous condition
for c0. Observe that the points on Lh and Lv are disjoint, because A is thin and a, c > 2.
This is the only place where we use thinness; the necessity for disjointness is the reason
that a or c cannot be 1, leading to the factors (c− 1) and (a− 1) in the statement.

Now we let a′ = a, c′ = c, b′ = b − 1 and d′ = d − 1. We will remove a points from
Lh and c points from Lv, redistributing the remaining points on these two lines to make
a thin set A′ that approximately spans. Once we achieve that, the induction hypothesis
will imply that

|A| > a+ c+ |A′| > a+ c+ (c′ − 1)(a′ + b′ − â) + (a′ − 1)(c′ + d′ − ĉ)
= (c− 1)(a+ b− â) + (a− 1)(c+ d− ĉ) + 2

> (c− 1)(a+ b− â) + (a− 1)(c+ d− ĉ).

It remains to demonstrate the construction and approximate spanning of A′. Clearly, if
we remove the points on Lv from A, the resulting set A0 H-spans for Ra′+b′,c′ = Ra+b−1,c =
R←1
a+b,c, even without the redistribution of excess points from Lv. Now we address the

removal and redistribution of points from Lh. Let B0 be the set A0 augmented with the
set A′0 of c horizontal lines of â points, so that B0 is a thin set that spans for Ra+b−1,c.
The set B0 still contains a0 points on Lh.

Consider the line-by-line slowdown of line growth Ra+b−1,c, accompanied by the cor-
responding removal and shrinking of the zero-set (spanning of a horizontal line results in
removal of that line and of the bottom row from the zero-set; likewise for vertical lines).
If a0 6 â, then the line Lh is never used, as the lines in A′0 complete the spanning before
it could be used, that is, because lines in A′0 suffice after the shrunken zero-set has â
columns. Thus the points on Lh may be removed from B0 to form B1. Assume now
a0 > â, and recall the minimality of a0. When Lh is spanned, the shrunken zero-set has at
most a0 columns. By minimality, only vertical lines, say, L1, . . . , Lm, m 6 a0− â 6 a0−a,
are spanned before the zero-set shrinks to â columns, then lines in A′0 finish the job.
Place m points on the lines L1, . . . , Lm, one point per line, so that they share no rows
with any other points of B0, and remove all points on line Lh, forming the set B1. Then
the lines L1, . . . , Lm become occupied as before, since the extra point formerly provided
by (spanning of) the line Lh has been compensated. This brings the reduced zero-set to â
columns and leads to spanning. Therefore, B1 \A′0 is a thin set that H-spans for Ra+b−1,c.

The redistribution of at most b0− b points from Lv is obtained analogously; add those
redistributed points to B1 \ A′0 to obtain the desired set A′. This justifies the induction
step in this case and finishes the proof.

Proof of Theorem 60. Let Zn = Rdane,n ∪Rn,dane. Then Lemma 65 implies that

γthin(Zn) > 2(a− 1)n2 +O(n).
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The opposite inequality follows from the fact that a thin set with dane − n sites on each
of n horizontal and n vertical lines spans for Zn. Therefore,

γthin(Zn) = 2(a− 1)n2 +O(n).

Clearly 1
n2square(Zn)

E−→ Z̃, thus by (1.5), γ̃thin(Z̃) = 2(a − 1). Theorem 64 now con-
cludes the proof.

Proof of Theorem 6. The claimed limits (1.8) and (1.9) follow from, respectively, Theo-
rem 57 together with (1.7), and Theorem 64. To prove (1.10), first observe that (1.7)
provides an upper bound for all α, which has the slope 0 (resp. −2) when α is close to 0
(resp. 1). The matching lower bound is provided by Theorems 59 and 60 upon sending
a→∞.

8 A law of large numbers for random zero-sets

Assume that n is large and that we pick at random a Young diagram of cardinality n.
We consider the following two ways to make this random choice.

• Let Zn be a Young diagram of cardinality n chosen uniformly at random. We call
this the Vershik sample [26].

• Build Zn sequentially: start with Z0 = ∅ and, given Zk, choose Zk+1 by adding
a single site to Zk chosen at random among corners, i.e., from all sites that make
Zk+1 a Young diagram. We call this the corner growth or Rost sample [23].

See [23] for a review of the fascinating research into properties of the many possi-
ble random choices of a Young diagram. The key property of these selections are the
corresponding asymptotic shapes. Let

Z̃Vershik = {(x, y) ∈ R2 : exp
(
− π√

6
x
)

+ exp
(
− π√

6
y
)
> 1}

and
Z̃Rost = {(x, y) ∈ R2 :

√
x+
√
y 6 61/4}.

We now state the shape theorem. See [23] and [20] for concise proofs.

Theorem 67. For any ε > 0, the Rost sample Zn satisfies

P
(

(1− ε)Z̃Rost ⊆ n−1/2square(Zn) ⊆ (1 + ε)Z̃Rost

)
→ 1,

as n→∞.
For any ε > 0 and R > 0, the Vershik sample Zn satisfies

P
(

(1− ε)(Z̃Vershik ∩ [0, R]2) ⊆ (n−1/2square(Zn)) ∩ [0, R]2

⊆ (1 + ε)(Z̃Vershik ∩ [0, R]2)
)
→ 1,

as n→∞.
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As a consequence, we obtain the following law of large numbers.

Corollary 68. For either the Rost or Vershik samples

sup
(α,β)∈[0,1]2

∣∣∣∣ 1nI(α, β,Zn)− Ĩ(α, β, Z̃)

∣∣∣∣→ 0,

where Z̃ is the corresponding limit shape, and the convergence is in probability.

Proof. This follows from Theorems 4 and 67.

9 Final remarks and open problems

1. Does the completion time property given by Theorem 14 hold for a more general
class of growth dynamics than neighborhood growth?

2. What is supZ I(α, β,Z)/γ(Z)? See (4.14) and (4.15), and observe that we only have
trivial upper bound 1 for this quantity when α and β are small.

3. Is there a simple characterization of Euclidean zero-sets Z̃ for which γ̃thin(Z̃) =

γ̃(Z̃)? We know that this holds for rectangles, isosceles right triangles, and L-shapes

R̃1,a ∪ R̃a,1, for a 6 2, but not for L-shapes with a > 2 (see Section 7.4).

4. Does the slope limα→0+ α
−1(Ĩ(α, α, Z̃)− γ̃(Z̃)) have a variational characterization?

5. What is the slope of Ĩ(α, β, Z̃) as (α, β) approaches one of the corners at a different
direction from those considered in Section 7.2–7.4? What can be said about other
boundary points?

6. Fix (α, β) 6= (0, 0) and a zero-set Z. What is the minimal a such that there exists
an A ⊆ Ra,a with ρ(α, β,A) = I(α, β,Z)?

7. Can an explicit analytical formula for I(α, β, Tθ) be given for all (α, β) ∈ [0, 1]2?

8. Can existence of large deviation rates be proved for bootstrap percolation [15] or
for line growth [3] in three dimensions? A result in this direction is proved in [3],
where it is also pointed out that it is not at all clear that the completion time result
holds in higher dimensions.

9. What is the algorithmic complexity for computation of γ(Z), when Z is given as
input?
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