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Abstract

In combinatorics on words, a word w over an alphabet Σ is said to avoid a
pattern p over an alphabet ∆ of variables if there is no factor f of w such that
f = h(p) where h : ∆∗ → Σ∗ is a non-erasing morphism. A pattern p is said to be
k-avoidable if there exists an infinite word over a k-letter alphabet that avoids p.
We consider the patterns such that at most two variables appear at least twice, or
equivalently, the formulas with at most two variables. For each such formula, we
determine whether it is 2-avoidable, and if it is 2-avoidable, we determine whether
it is avoided by exponentially many binary words. 1
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1 Introduction

A pattern p is a non-empty finite word over an alphabet ∆ = {A,B,C, . . .} of capital
letters called variables. An occurrence of p in a word w is a non-erasing morphism h :
∆∗ → Σ∗ such that h(p) is a factor of w. Let Σk = {0, 1, . . . , k − 1} denote the k-letter
alphabet. The avoidability index λ(p) of a pattern p is the size of the smallest integer
k such that there exists an infinite word in Σ∗k containing no occurrence of p. Bean,
Ehrenfeucht, and McNulty [3] and Zimin [15] characterized unavoidable patterns, i.e.,
such that λ(p) = ∞. We say that a pattern p is t-avoidable if λ(p) 6 t. For more
informations on pattern avoidability, we refer to Chapter 3 of Lothaire’s book [9].

A variable that appears only once in a pattern is said to be isolated. Following Cas-
saigne [5], we associate to a pattern p the formula f obtained by replacing every isolated
variable in p by a dot. The factors between the dots are called fragments.

An occurrence of f in a word w is a non-erasing morphism h : ∆∗ → Σ∗ such that the
h-image of every fragment of f is a factor of w. As for patterns, the avoidability index
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λ(f) of a formula f is the size of the smallest alphabet allowing an infinite word containing
no occurrence of f . Clearly, every word avoiding f also avoids p, so λ(p) 6 λ(f). Recall
that an infinite word is recurrent if every finite factor appears infinitely many times. If
there exists an infinite word over Σ avoiding p, then there exists an infinite recurrent word
over Σ avoiding p. This recurrent word also avoids f , so that λ(p) = λ(f). Without loss
of generality, a formula is such that no variable is isolated and no fragment is a factor of
another fragment.

Cassaigne [5] began and Ochem [10] finished the determination of the avoidability
index of every pattern with at most 3 variables. A doubled pattern contains every variable
at least twice. Thus, a doubled pattern is a formula with exactly one fragment. Every
doubled pattern is 3-avoidable [12]. A formula is said to be binary if it has at most 2
variables. In this paper, we determine the avoidability index of every binary formula.

We say that a formula f is divisible by a formula f ′ if f does not avoid f ′, that is,
there is a non-erasing morphism h such that the image of any fragment of f ′ by h is a
factor of a fragment of f . If f is divisible by f ′, then every word avoiding f ′ also avoids
f and thus λ(f) 6 λ(f ′). Moreover, the reverse fR of a formula f satisfies λ(fR) =
λ(f). For example, the fact that ABA.AABB is 2-avoidable implies that ABAABB
and BAB.AABB are 2-avoidable. See Cassaigne [5] and Clark [6] for more information
on formulas and divisibility. For convenience, we say that an avoidable formula f is
exponential (resp. polynomial) if the number of words of length n avoiding f over λ(f)
letters is exponential (resp. polynomial) in n.

First, we check that every avoidable binary formula is 3-avoidable. Since λ(AA) = 3,
every formula containing a square is 3-avoidable. Then, the only square-free avoidable
binary formula is ABA.BAB with avoidability index 3 [5, 7]. Thus, we have to distinguish
between avoidable binary formulas with avoidability index 2 and 3. A binary formula is
minimally 2-avoidable if it is 2-avoidable and is not divisible by any other 2-avoidable
binary formula. A binary formula f is maximally 2-unavoidable if it is 2-unavoidable and
every other binary formula that is divisible by f is 2-avoidable.

Theorem 1. Up to symmetry, the maximally 2-unavoidable binary formulas are:

• AAB.ABA.ABB.BBA.BAB.BAA

• AAB.ABBA

• AAB.BBAB

• AAB.BBAA

• AAB.BABB

• AAB.BABAA

• ABA.ABBA

• AABA.BAAB

Up to symmetry, the minimally 2-avoidable binary formulas are:
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• AA.ABA.ABBA (polynomial)

• ABA.AABB (polynomial)

• AABA.ABB.BBA (polynomial)

• AA.ABA.BABB (exponential)

• AA.ABB.BBAB (exponential)

• AA.ABAB.BB (exponential)

• AA.ABBA.BAB (exponential)

• AAB.ABB.BBAA (exponential)

• AAB.ABBA.BAA (exponential)

• AABB.ABBA (exponential)

• ABAB.BABA (exponential)

• AABA.BABA (exponential)

• AAA (exponential)

• ABA.BAAB.BAB (exponential)

• AABA.ABAA.BAB (exponential)

• AABA.ABAA.BAAB (exponential)

• ABAAB (exponential)

Given a binary formula f , we can use Theorem 1 to find λ(f). Now, we also consider
the problem whether an avoidable binary formula is polynomial or exponential. If λ(f) =
3, then either f contains a square and is thus exponential, or f = ABA.BAB. We will
see in Section 5 that ABA.BAB is exponential too. Thus, we consider only the case
λ(f) = 2. If f is divisible by an exponential 2-avoidable formula given in Theorem 1,
then f is known to be exponential. This leaves open the case such that f is only divisible
by polynomial 2-avoidable formulas. The next result settles every open case.

Theorem 2.
The following formulas are polynomial:

• BBA.ABA.AABB

• AABA.AABB

The following formulas are exponential:

• BAB.ABA.AABB
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• AAB.ABA.ABBA

• BAA.ABA.AABB

• BBA.AABA.AABB

1.1 Structure of the proofs

First, we check by computer that Theorem 1 is exhaustive, that is, for every avoidable
binary formula f , either f or fR divides at least one formula in the first list and thus f is
2-unavoidable, or f or fR is divisible by at least one formula in the second list and thus
f is 2-avoidable. Every binary pattern of length 6 (or its reverse) is divisible by at least
one formula in the second list. So we only need to consider formulas such that the length
of every fragment is at most 5.

Then, to obtain the 2-unavoidability of the formulas in the first part of Theorem 1, we
use a standard backtracking algorithm. Figure 1 gives the maximal length and number
of binary words avoiding each maximally 2-unavoidable formula.

Maximal length of a Number of binary
Formula binary word avoiding words avoiding

this formula this formula

AAB.BBAA 22 1428

AAB.ABA.ABB.BBA.BAB.BAA 23 810

AAB.BBAB 23 1662

AABA.BAAB 26 2124

AAB.ABBA 30 1684

AAB.BABAA 42 71002

AAB.BABB 69 9252

ABA.ABBA 90 31572

Figure 1: The number and maximal length of binary words avoiding the maximally 2-
unavoidable formulas.

There remain to show that the formulas in the second part of Theorem 1 are 2-
avoidable. These formulas, together with the formulas in Theorem 2, characterize the
frontier between polynomial and exponential 2-avoidable binary formulas.

The proof for polynomial formulas is in Section 3. It uses a technical lemma given in
Section 2. The proof for exponential formulas is in Section 4.

Similarly, a computer check shows that for every 2-avoidable binary formula f , either
f or fR corresponds to one of the 5 polynomial formulas in Lemma 5, or f or fR is
divisible by at least one exponential formula appearing in Section 4.

2 The useful lemma

Let us define the following words:
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• b2 is the fixed point of 0 7→ 01, 1 7→ 10.

• b3 is the fixed point of 0 7→ 012, 1 7→ 02, 2 7→ 1.

• b4 is the fixed point of 0 7→ 01, 1 7→ 03, 2 7→ 21, 3 7→ 23.

• b5 is the fixed point of 0 7→ 01, 1 7→ 23, 2 7→ 4, 3 7→ 21, 4 7→ 0.

Let w and w′ be infinite (right infinite or bi-infinite) words. We say that w and w′ are
equivalent if they have the same set of finite factors. We write w ∼ w′ if w and w′ are
equivalent. Given an alphabet Σ and a set S of forbidden structures, we say that a finite
set W of infinite words over Σ essentially avoids S if every word in W avoids S and every
bi-infinite word over Σ avoiding S is equivalent to one of the words in W . If W contains
only one word w, we denote the set W by w instead of {w}. A famous result of Thue can
then be stated as follows:

Theorem 3 ([4, 14]). b3 essentially avoids 010, 212, and squares.

The results in the next section involve b3. We have tried without success to prove
them by using Theorem 3. We need the following stronger property of b3:

Lemma 4. b3 essentially avoids 010, 212, XX with 1 6 |X| 6 3, and 2Y Y with |Y | > 4.

Proof. We start by checking by computer that b3 has the same set of factors of length
exactly 100 as every bi-infinite ternary word avoiding 010, 212, XX with 1 6 |X| 6 3, and
2Y Y with |Y | > 4. We will use the set F = {00, 11, 22, 010, 212, 0202, 2020, 1021, 1201}
of ternary words of length at most 4 that are not factors of b3.

To finish the proof, we use Theorem 3 and we suppose for contradiction that w is a
bi-infinite ternary word that contains a large square MM and avoids both F and large
factors of the form 2Y Y .

• Case M = 0N . Then w contains MM = 0N0N . Since 00 ∈ F and 2Y Y is
forbidden, w contains 10N0N . Since {11, 010} ⊂ F , w contains 210N0N . If
N = P1, then w contains 210P10P1, which contains 2Y Y with Y = 10P . So N =
P2 and w contains 210P20P2. If P = Q1, then w contains 210Q120Q12. Since
{11, 212} ⊂ F , the factor Q12 implies that Q = R0 and w contains 210R0120R012.
Moreover, since {00, 1201} ⊂ F , the factor 120R implies that R = 2T and w
contains 2102T01202T012. Then there is no possible prefix letter for S: 0 gives
2020, 1 gives 1021, and 2 gives 22. This rules out the case P = Q1. So P = Q0
and w contains 210Q020Q02. The factor Q020Q implies that Q = 1R1, so that
w contains 2101R10201R102. Since {11, 010} ⊂ F , the factor 01R implies that
R = 2T , so that w contains 21012T102012T102. The only possible right extension
with respect to F of 102 is 102012. So w contains 21012T102012T102012, which
contains 2Y Y with Y = T102012.
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• Case M = 1N . Then w contains MM = 1N1N . In order to avoid 11 and 2Y Y , w
must contain 01N1N . If N = P0, then w contains 01P01P0. So w contains the
large square 01P01P and this case is covered by the previous case. So N = P2 and
w contains 01P21P2. Then there is no possible prefix letter for P : 0 gives 010, 1
gives 11, and 2 gives 212.

• Case M = 2N . Then w contains MM = 2N2N . If N = P1, then w contains
2P12P1. This factor cannot extend to 2P12P12, since this is 2Y Y with Y = P12.
So w contains 2P12P10. Then there is no possible suffix letter for P : 0 gives 010,
1 gives 11, and 2 gives 212. This rules out the case N = P1. So N = P0 and w
contains 2P02P0. This factor cannot extend to 02P02P0, since this contains the
large square 02P02P and this case is covered by the first case. Thus w contains
12P02P0. If P = Q1, then w contains 12Q102Q10. Since {22, 1021} ⊂ F , the
factor 102Q implies that Q = 0R, so that w contains 120R1020R10. Then there
is no possible prefix letter for R: 0 gives 00, 1 gives 1201, and 2 gives 0202. This
rules out the case P = Q1. So P = Q2 and w contains 12Q202Q20. The factor
Q202 implies that Q = R1 and w contains 12R1202R120. Since {00, 1201} ⊂ F ,
w contains 12R1202R1202, which contains 2Y Y with Y = R1202.

3 Polynomial formulas

Let us detail the binary words avoiding the polynomial formulas in Theorems 1 and 2.
Lemma 5 will show that they are images of b3 by the morphisms gx, gy, gz, and gt defined
as follows.

gx(0) = 01110,
gx(1) = 0110,
gx(2) = 0.

gy(0) = 0111,
gy(1) = 01,
gy(2) = 00.

gz(0) = 0001,
gz(1) = 001,
gz(2) = 11.

gt(0) = 01011011010,
gt(1) = 01011010,
gt(2) = 010.

Let w denote the word obtained from the binary word w by exchanging 0 and 1.
Obviously, if w avoids a given formula, then so does w. An infinite or b-infinite binary
word w is self-complementary if w ∼ w. The words gx(b3), gy(b3), and gt(b3) are self-
complementary. Since the frequency of 0 in gz(b3) is 5

9
, gz(b3) is not self-complementary.

Then gz is obtained from gz by exchanging 0 and 1, so that gz(b3) = gz(b3).
The aim of this section is to prove the following result.

Lemma 5.

• {gx(b3), gy(b3), gz(b3), gz(b3)} essentially avoids AA.ABA.ABBA.

• gx(b3) essentially avoids AABA.ABB.BBA.

• Let f be either ABA.AABB, BBA.ABA.AABB, or AABA.AABB.
Then {gx(b3), gt(b3)} essentially avoids f .

Let us first state interesting properties of the morphisms and the formulas in Lemma 5.

the electronic journal of combinatorics 24(4) (2017), #P4.30 6



Lemma 6. For every p, s ∈ Σ3, Y ∈ Σ∗3 with |Y | > 4, and g ∈ {gx, gy, gz, gz, gt}, the word
g(p2Y Y s) contains an occurrence of AABA.AABBA.

Proof.

• Since 0 is a prefix and a suffix of the gx-image of every letter, gx(p2Y Y s) =
V 000U00U00W contains an occurrence of AABA.AABBA with A = 0 and B =
0U0.

• Since 0 is a prefix of the gy-image of every letter, gy(2Y Y s) = 000U0U0V contains
an occurrence of AABA.AABBA with A = 0 and B = 0U .

• Since 1 is a suffix of the gz-image of every letter, gz(p2Y Y ) = V 111U1U1 contains
an occurrence of AABA.AABBA with A = 1 and B = 1U .

• Since gz(p2Y Y ) = gz(p2Y Y ), gz(p2Y Y ) contains an occurrence of AABA.AABBA.

• Since 010 is a prefix and a suffix of the gt-image of every letter, gt(p2Y Y s) =
V 010010010U010010U010010W contains an occurrence of AABA.AABBA with
A = 010 and B = 010U010.

The following observation explains why AABA.AABBA is considered in Lemma 6.

Observation 7. AABA.AABBA is divisible by every formula in Lemma 5.

We are now ready to prove Lemma 5. To prove the avoidability, we have implemented
Cassaigne’s algorithm that decides, under mild assumptions, whether a morphic word
avoids a formula [5]. We have to explain how the long enough binary words avoiding a
formula can be split into 4 or 2 distinct incompatible types. A similar phenomenon has
been described for AABB.ABBA [11].

First, consider any infinite binary word w avoiding AA.ABA.ABBA. A computer
check shows by backtracking that w must contain the factor 01110001110. In particular,
w contains 00. Thus, w cannot contain both 010 and 0110, since it would produce an
occurrence of AA.ABA.ABBA. Moreover, a computer check shows by backtracking that
w cannot avoid both 010 and 0110. So, w must contain either 010 or 0110 (this is an
exclusive or). By symmetry, w must contain either 101 or 1001. There are thus at most
4 possibilities for w, depending on which subset of {010, 0110, 101, 1001} appears among
the factors of w, see Figure 2.

Also, consider any infinite binary word w avoiding f , where f is either ABA.AABB,
BBA.ABA.AABB, or AABA.AABB. Notice that the formulas BBA.ABA.AABB and
AABA.AABB are divisible by ABA.AABB. We check by backtracking that w cannot
avoid both 0010 and 00110. A word containing both 0010 and 00110 contains an occur-
rence of AABA.AABBA, and by Observation 7, it also contains an occurrence of f . So w
does not contain both 0010 and 00110. Thus, there are two possibilities for w depending
on whether it contains 0010 or 00110.
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gy(b3) gx(b3)

010

101 1001

gz(b3)

gz(b3)

0110

Figure 2: The four infinite binary words avoiding AA.ABA.ABBA.

Now our tasks of the form “prove that a set of morphic words essentially avoids one
formula” are reduced to (more) tasks of the form “prove that one morphic word essentially
avoids one formula and a finite set of factors”.

Since all the proofs of such reduced tasks are very similar, we only detail the proof
that gy(b3) essentially avoids AA.ABA.ABBA, 0110, and 1001. We check that the set
of prolongable binary words of length 100 avoiding AA.ABA.ABBA, 0110, and 1001

is exactly the set of factors of length 100 of gy(b3). Using Cassaigne’s notion of circular
morphism [5], this is sufficient to prove that every bi-infinite binary word of this type is the
gy-image of some bi-infinite ternary word w3. It also ensures that w3 and b3 have the same
set of small factors. Suppose for contradiction that w3 6∼ b3. By Lemma 4, w3 contains
a factor 2Y Y with |Y | > 4. Since w3 is bi-infinite, w3 even contains a factor p2Y Y s
with p, s ∈ Σ3. By Lemma 6, gy(w3) contains an occurrence of AABA.AABBA. Then
by Observation 7, gy(w3) contains an occurrence of AA.ABA.ABBA. This contradiction
shows that w3 ∼ b3. So gy(b3) essentially avoids AA.ABA.ABBA, 0110, and 1001.

4 Exponential formulas

Given a morphism g : Σ∗3 → Σ∗2, an sqf-g-image is the image by g of a (finite or infinite)
ternary square-free word. With an abuse of language, we say that g avoids a set of formulas
if every sqf-g-image avoids every formula in the set. For every 2-avoidable exponential
formula f in Theorems 1 and 2, we give below a uniform morphism g that avoids f .
If possible, we simultaneously avoid the reverse formula fR of f . We also avoid large
squares. Let SQt denote the pattern corresponding to squares of period at least t, that is,
SQ1 = AA, SQ2 = ABAB, SQ3 = ABCABC, and so on. The morphism g avoids SQt

with t as small as possible. Since λ(SQ2) = 3, a binary word avoiding SQ3 is necessarily
best possible in terms of length of avoided squares.

• f = AA.ABA.BABB. This 22-uniform morphism avoids
{
f, fR, SQ6

}
:

0 7→ 0001101101110011100011

1 7→ 0001101101110001100011

2 7→ 0001101101100011100111
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This 44-uniform morphism avoids {f, SQ5}:

0 7→ 00010010011000111001001100010011100100100111

1 7→ 00010010011000100111001001100011100100100111

2 7→ 00010010011000100111001001001100011100100111

Notice that
{
f, fR, SQ5

}
is 2-unavoidable and {f, SQ4} is 2-unavoidable.

• f = AA.ABB.BBAB. This 60-uniform morphism avoids
{
f, fR, SQ11

}
:

0 7→ 000110011100011001110011000111000110011100011100110001110011

1 7→ 000110011100011001110001110011000111000110011100110001110011

2 7→ 000110011100011001110001100111000111001100011100110001110011

Notice that {f, SQ10} is 2-unavoidable.

• f = AA.ABAB.BB is self-reverse. This 11-uniform morphism avoids {f, SQ4}:

0 7→ 00100110111

1 7→ 00100110001

2 7→ 00100011011

Notice that {f, SQ3} is 2-unavoidable.

• f = AA.ABBA.BAB is self-reverse. This 30-uniform morphism avoids {f, SQ6}:

0 7→ 000110001110011000110011100111

1 7→ 000110001100111001100011100111

2 7→ 000110001100011001110011100111

Notice that {f, SQ5} is 2-unavoidable.

• f = AAB.ABB.BBAA is self-reverse. This 30-uniform morphism avoids {f, SQ5}:

0 7→ 000100101110100010110111011101

1 7→ 000100101101110100010111011101

2 7→ 000100010001011101110111010001

Notice that {f, SQ4} is 2-unavoidable.

• f = AAB.ABBA.BAA is self-reverse. This 38-uniform morphism avoids {f, SQ5}:

0 7→ 00010001000101110111010001011100011101

1 7→ 00010001000101110100011100010111011101

2 7→ 00010001000101110001110100010111011101

Notice that {f, SQ4} is 2-unavoidable.
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• f = AABB.ABBA. This 193-uniform morphism avoids {f, SQ16}:

0 7→ 0001000101101110110001011011100010110111011100010

1100010001011011101100010110111011100010110111011

0001011011100010110111011100010110001000101101110

0010110111011100010110111011000101101110001011

1 7→ 0001000101101110110001011011100010110111011100010

1100010001011011100010110111011100010110111011000

1011011100010110111011100010110001000101101110110

0010110111011100010110111011000101101110001011

2 7→ 0001000101101110001011011101110001011000100010110

1110110001011011101110001011011101100010110111000

1011011101110001011000100010110111011000101101110

0010110111011100010110111011000101101110001011

Notice that
{
f, fR

}
is 2-unavoidable and {f, SQ15} is 2-unavoidable. Previous

papers [10, 11] have considered a 102-uniform morphism to avoid {f, SQ27}.

• f = ABAB.BABA is self-reverse. This 50-uniform morphism avoids {f, SQ3},
see [10]:

0 7→ 00011001011000111001011001110001011100101100010111

1 7→ 00011001011000101110010110011100010110001110010111

2 7→ 00011001011000101110010110001110010111000101100111

Notice that a binary word avoiding {f, SQ3} contains only the squares 00, 11, and
0101 (or 00, 11, and 1010).

• f = AABA.BABA: A case analysis of the small factors shows that a recurrent
binary word avoids

{
f, fR, SQ3

}
if and only if it contains only the squares 00, 11,

and 0101 (or 00, 11, and 1010). Thus, the previous 50-uniform morphism that
avoids {ABAB.BABA, SQ3} also avoids

{
f, fR, SQ3

}
.

• f = AAA is self-reverse. This 32-uniform morphism avoids {f, SQ4}:

0 7→ 00101001101101001011001001101011

1 7→ 00101001101100101101001001101011

2 7→ 00100101101001001101101001011011

Notice that {f, SQ3} is 2-unavoidable.

• f = ABA.BAAB.BAB is self-reverse. This 10-uniform morphism avoids {f, SQ3}:

0 7→ 0001110101

1 7→ 0001011101

2 7→ 0001010111
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• f = AABA.ABAA.BAB is self-reverse. This 57-uniform morphism avoids {f, SQ6}:

0 7→ 000101011100010110010101100010111001011000101011100101011

1 7→ 000101011100010110010101100010101110010110001011100101011

2 7→ 000101011100010110010101100010101110010101100010111001011

Notice that {f, SQ5} is 2-unavoidable.

• f = AABA.ABAA.BAAB is self-reverse. This 30-uniform morphism avoids {f, SQ3}:

0 7→ 000101110001110101000101011101

1 7→ 000101110001110100010101110101

2 7→ 000101110001010111010100011101

• f = ABAAB. This 10-uniform morphism avoids
{
f, fR, SQ3

}
, see [10]:

0 7→ 0001110101

1 7→ 0000111101

2 7→ 0000101111

• f = BAB.ABA.AABB is self-reverse. This 16-uniform morphism avoids {f, SQ5}:

0 7→ 0101110111011101

1 7→ 0100010111010001

2 7→ 0001010111010100

Notice that {f, SQ4} is 2-unavoidable.

• f = AAB.ABA.ABBA is avoided with its reverse. This 84-uniform morphism
avoids

{
f, fR, SQ5

}
:

0 7→ 000100010111000111010001000101110111010001

011100011101000101110111010001110001011101

1 7→ 000100010111000111010001000101110100011100

010111011101000101110001110100010111011101

2 7→ 000100010111000111010001000101110100011100

010111010001000101110001110100010111011101

Notice that {f, SQ4} is 2-unavoidable.
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• f = BAA.ABA.AABB. This 304-uniform morphism avoids {f, SQ7}:

0 7→ 0001100011001110001110011000110011100111001100011000110011100

1100011100011001110011100110001100111000111001100011000110011

1001100011100011001110011100110001100011001110001110011000110

0111001110011000111000110011100110001100011001110011100110001

100111000111001100011000110011100111001100011100011001110011

1 7→ 0001100011001110001110011000110011100111001100011000110011100

1100011100011001110011100110001100111000111001100011000110011

1001100011100011001110011100110001100011001110001110011000110

0111001110011000110001100111001100011100011001110011100110001

100111000111001100011000110011100111001100011100011001110011

2 7→ 0001100011001110001110011000110011100111001100011000110011100

1100011100011001110011100110001100011001110001110011000110011

1001110011000111000110011100110001100011001110011100110001100

1110001110011000110001100111001100011100011001110011100110001

100011001110001110011000110011100111001100011100011001110011

Using the morphism gw below and the technique in [1], we can show that gw(b3)
essentially avoids {f, SQ6}:

gw(0) = 011100111001110001100111001100011000110

gw(1) = 011100111001100011000110

gw(2) = 001110011000110

Notice that
{
f, fR

}
is 2-unavoidable and {f, SQ5} is 2-unavoidable.

• f = BBA.AABA.AABB. This 160-uniform morphism avoids
{
f, fR, SQ21

}
:

0 7→ 000101100101110001011100101100010111000101100101110010

110001011100101100010110010111001011000101110001011001

0111000101110010110001011001011100101100010111001011

1 7→ 000101100101110001011100101100010111000101100101110010

110001011100101100010110010111000101100101110010110001

0111000101110010110001011001011100101100010111001011

2 7→ 000101100101110001011001011100101100010111000101100101

110001011100101100010110010111001011000101110001011100

1011000101100101110001011001011100101100010111001011
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This 202-uniform morphism avoids {f, SQ5}:

0 7→ 000110100111011010001101010001110110100110110101000

111011010001101010001110110101000110100111011010011

011010100011010011101101010001110110100011010100011

1011010100011010011101101010001110110100110110101

1 7→ 000110100111011010001101010001110110100110110101000

110100111011010100011101101000110101000111011010100

011010011101101010001110110100110110101000110100111

0110100110110101000111011010001101010001110110101

2 7→ 000110100111011010001101010001110110100110110101000

110100111011010100011101101000110101000111011010100

011010011101101001101101010001110110100011010100011

1011010100011010011101101010001110110100110110101

Notice that
{
f, fR, SQ20

}
is 2-unavoidable and {f, SQ4} is 2-unavoidable.

We start by checking that every morphism is synchronizing, that is, for every letters
a, b, c ∈ Σ3, the factor g(a) only appears as a prefix or a suffix in g(bc).

For every q-uniform morphism g, the sqf-g-images are claimed to avoid SQt with
2t < q. Let us prove that SQt is avoided. We check exhaustively that the sqf-g-images
contain no square uu such that t 6 |u| 6 2q − 2. Now suppose for contradiction that an
sqf-g-image contains a square uu with |u| > 2q − 1. The condition |u| > 2q − 1 implies
that u contains a factor g(a) with a ∈ Σ3. This factor g(a) only appears as the g-image
of the letter a because g is synchronizing. Thus the distance between any two factors u
in an sqf-g-image is a multiple of q. Since uu is a factor of an sqf-g-image, we have q | |u|.
Also, the center of the square uu cannot lie between the g-images of two consecutive
letters, since otherwise there would be a square in the pre-image. The only remaining
possibility is that the ternary square-free word contains a factor aXbXc with a, b, c ∈ Σ3

and X ∈ Σ+
3 such that g(aXbXc) = bsY psY pe contains the square uu = sY psY p, where

g(X) = Y , g(a) = bs, g(b) = ps, g(c) = pe. Then, we also have a 6= b and b 6= c since
aXbXc is square-free. Then abc is square-free and g(abc) = bspspe contains a square with
period |s| + |p| = |g(a)| = q. This is a contradiction since the sqf-g-images contain no
square with period q.

Let us show that for every formula f above and corresponding morphism g, g avoids f .
Notice that f is not square-free, since the only avoidable square-free binary formula is
ABA.BAB, which is not 2-avoidable. We distinguish two kinds of formula.

A formula is easy if every appearing variable is contained in at least one square. Every
potential occurrence of an easy formula then satisfies |A| < t and |B| < t since SQt is
avoided. The longest fragment of every easy formula has length 4. So, to check that g
avoids an easy formula, it is sufficient to consider the set of factors of the sqf-g-images
with length at most 4(t− 1).

A formula is tough if one of the variables is not contained in any square. The
tough formulas have been named so that this variable is B. The tough formulas are
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ABA.BAAB.BAB, ABAAB, AABA.ABAA.BAAB, and AABA.ABAA.BAB. As be-
fore, every potential occurrence of a tough formula satisfies |A| < t since SQt is avoided.
Suppose for contradiction that |B| > 2q − 1. By previous discussion, the distance
between any two occurrences of B in an sqf-g-image is a multiple of q. The case of
ABA.BAAB.BAB can be settled as follows. The factor BAAB implies that q divides
|BAA| and the factor BAB implies that q divides |BA|. This implies that q divides
|A|, which contradicts |A| < t. For the other tough formulas, only one fragment con-
tains B twice. This fragment is said to be important. Since |A| < t, the important
fragment is a repetition which is “almost” a square. The important fragment is BAB
for AABA.ABAA.BAB, BAAB for AABA.ABAA.BAAB, and ABAAB for ABAAB.
Informally, this almost square implies a factor aXbXc in the ternary pre-image, such that
|a| = |c| = 1 and 1 6 |b| 6 2. If |X| is small, then |B| is small and we check exhaustively
that there exists no small occurrence of f . If |X| is large, there would exist a ternary
square-free factor aY bY c with |Y | small, such that g(aY bY c) contains the important frag-
ment of an occurrence of f if and only if g(aXbXc) contains the important fragment of a
smaller occurrence of f .

5 ABA.BAB is exponential

We know that λ(ABA.BAB) = 3. Cassaigne [5] shows that the image of b4 by 0 7→ 01,
1 7→ 02, 2 7→ 12, 3 7→ 21 avoids ABA.BAB. Gamard et al. [7] show that the image of b4
by 0 7→ 0010, 1 7→ 1122, 2 7→ 0200, 3 7→ 1212 avoids ABA.BAB.

By the results in the last two sections, we know the status (polynomial or exponential)
of every 2-avoidable binary formula. As already mentioned, every binary formula f such
that λ(f) = 3 either contains a square and is thus exponential, or is ABA.BAB. To
finish the determination of the status of every binary formula, we show that ABA.BAB
is exponential.

Recall that a word is (α+, `)-free if it contains no repetition with period at least ` and
exponent strictly greater than α. Using the general method described in [10], we check
that the image of every (7/4+)-free word over Σ4 by the following 26-uniform morphism
is (3/2+, 2)-free and (113/78+, 3)-free.

0 7→ 00121102200112021100220121

1 7→ 00112200211001202210122021

2 7→ 00112022110012200210120221

3 7→ 00112002110012202101200221

By the (113/78+, 3)-freeness, we only have to check that these binary words contain
no occurrence h of ABA.BAB such that |h(A)| = |h(B)| = 1. These binary words are
interesting with respect to generalized repetition thresholds [8]. Since they are (3/2+, 2)-
free, they provide an alternative proof that R(3, 2) = 3

2
.
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6 Concluding remarks

From our results, every minimally 2-avoidable binary formula, and thus every 2-avoidable
binary formula, is avoided by some morphic image of b3. Let us summarize the known
types of structure to forbid to have a set of essentially avoiding words.

• one pattern and two factors:

– b3 essentially avoids AA, 010, and 212 [14].

– A morphic image of b5 essentially avoids AA, 010, and 020 [1, 14].

– A morphic image of b5 essentially avoids AA, 121, and 212 [1, 14].

– b2 essentially avoids ABABA, 000, and 111 [14].

• two patterns: b2 essentially avoids ABABA and AAA [14].

• one formula over three variables:

– b3 and two words obtained from b3 by letter permutation essentially avoid
ABCAB.ABCBA [13].

– b4 and two words obtained from b4 by letter permutation essentially avoid
AB.AC.BA.BC.CA [2].

• one formula over two variables (see Lemma 5):

– gx(b3) essentially avoids AAB.BAA.BBAB.

– {gx(b3), gt(b3)} essentially avoids ABA.AABB.

– {gx(b3), gy(b3), gz(b3), gz(b3)} essentially avoids AA.ABA.ABBA.

• one pattern over three variables: ABACAABB (same as ABA.AABB).

Notice that every binary formula that admits only polynomially many avoiding words
has a set of essentially avoiding words. We show that this is not the case for the ternary
formula ABACA.ABCA [13].
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