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Abstract

An antimagic labeling of a directed graph D with n vertices and m arcs is a
bijection from the set of arcs of D to the integers {1, . . . ,m} such that all n oriented
vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels
of all arcs entering that vertex minus the sum of labels of all arcs leaving it. An
undirected graph G is said to have an antimagic orientation if G has an orientation
which admits an antimagic labeling. Hefetz, Mütze, and Schwartz conjectured that
every connected undirected graph admits an antimagic orientation. In this paper,
we support this conjecture by proving that every biregular bipartite graph admits
an antimagic orientation.

Keywords: Labeling; Antimagic labeling; Antimagic orientation

1 Introduction

Unless otherwise stated explicitly, all graphs considered are simple and finite. A labeling
of a graph G with m edges is a bijection from E(G) to a set S of m integers, and the
vertex sum at a vertex v ∈ V (G) is the sum of labels on the edges incident to v. If there
are two vertices have same vertex sums in G, then we call them conflict. A labeling of
E(G) with no conflicting vertex is called a vertex distinguishable labeling . A labeling is
antimagic if it is vertex distinguishable and S = {1, 2, . . . ,m}. A graph is antimagic if it
has an antimagic labeling.

∗Corresponding author. Supported by the National Natural Science Foundation of China (11371355,
11471193, 11271006, 11631014), the Foundation for Distinguished Young Scholars of Shandong Province
(JQ201501), and fundamental research funding of Shandong University.
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Hartsfield and Ringel [8] introduced antimagic labelings in 1990 and conjectured that
every connected graph other than K2 is antimagic. There have been significant progresses
toward this conjecture. Let G be a graph with n vertices other than K2. In 2004, Alon,
Kaplan, Lev, Roditty, and Yuster [1] showed that there exists a constant c such that if
G has minimum degree at least c · log n, then G is antimagic. They also proved that G
is antimagic when the maximum degree of G is at least n − 2, and they proved that all
complete multipartite graphs (other than K2) are antimagic. The latter result of Alon et
al. was improved by Yilma [15] in 2013.

Apart from the above results on dense graphs, the antimagic labeling conjecture has
been also verified for regular graphs. Started with Cranston [5] showing that every bipar-
tite regular graph is antimagic, regular graphs of odd degree [6], and finally all regular
graphs [2, 3] were shown to be antimatic sequentially. For more results on the antimagic
labeling conjecture for other classes of graphs, see [7, 9, 11, 12].

Hefetz, Mütze, and Schwartz [10] introduced the variation of antimagic labelings, i.e.,
antimagic labelings on directed graphs. An antimagic labeling of a directed graph with m
arcs is a bijection from the set of arcs to the integers {1, ...,m} such that any two oriented
vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels of
all arcs entering that vertex minus the sum of labels of all arcs leaving it. A digraph is
called antimagic if it admits an antimagic labeling. For an undirected graph G, if it has
an orientation such that the orientation is antimagic, then we say G admits an antimagic
orientation. Hefetz et al. in the same paper posted the following problems.

Question 1 ([10]). Is every connected directed graph with at least 4 vertices antimagic?

Conjecture 2 ([10]). Every connected graph admits an antimagic orientation.

Parallel to the results the on antimagic labelling conjecture, Hefetz, Mütze, and
Schwartz [10] showed that every orientation of a dense graph is antimagic and almost
all regular graphs have an antimagic orientation. Particulary, they showed that every
orientation of stars (other than K1,2), wheels, and complete graphs (other than K3) is
antimagic. Recently, Li et al. [13] showed that every connected even regular graph has
an antimagic orientation. Observe that if a bipartite graph is antimagic, then it has an
antimagic orientation obtained by directing all edges from one partite set to the other.
Thus by the result of Cranston [5], regular bipartite graphs have an antimagic orientation.
A bipartite graph is biregular if vertices in each of the same partite set have the same
degree. In this paper, by supporting Conjecture 2, we obtain the result below.

Theorem 3. Every biregular bipartite graph admits an antimagic orientation.

2 Notation and Lemmas

Let G be a graph. If G is bipartite with partite sets X and Y , we denote G by G[X, Y ].
Given an orientation of G and a labeling on E(G), for a vertex v ∈ V (G) and a subgraph
H of G, we use ωH(v) to denote the oriented sum at v in H, which is the sum of labels of
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all arcs entering v minus the sum of labels of all arcs leaving it in the graph H. If v is of
degree 2 in G, we say the labels at edges incident to v the label at v and write it as a pair
in {(a, b), (−a, b), (a,−b), (−a,−b)}, where a, b are the labels on the two edges incident
to v, and −a is used if the edge with label a is leaving v and a is used otherwise; similar
situation for the value −b or b.

A trail is an alternating sequence of vertices and edges v0, e1, v1, . . . , et, vt such that
vi−1 and vi are the endvertices of ei, for each i with 1 6 i 6 t, and the edges are all
distinct (but there might be repetitions among the vertices). A trail is open if v0 6= vt.
The length of a trail is the number of edges in it. Occasionally, a trail T is also treated
as a graph whose vertex set is the set of distinct vertices in T and edge set is the set of
edges in T . We use the terminology “trail” without distinguishing if it is a sequence or a
graph, but the meaning will be clear from the context. For two integers a, b with a < b,
let [a, b] := {a, a+ 1, . . . , b}.

We need the result below which guarantees a matching in a bipartite graph. It is an
exercise to prove it by applying Hall’s Matching Theorem.

Lemma 4. Let H be a bipartite graph with partite sets X and Y . If there is no isolated
vertex in X and dH(x) > dH(y) holds for every edge xy with x ∈ X and y ∈ Y , then H
has a matching which saturates X.

For even regular graphs, Petersen proved that a 2-factor always exists.

Lemma 5 ([14]). Every regular (multi)graph with positive even degree has a 2-factor.

Also we need the following result on decomposing edges in a graph into trails.

Lemma 6 ([2]). Given a connected graph G, and let T = {v ∈ V : dG(v) is odd}. If

T 6= ∅, then E(G) can be partitioned into |T |
2

open trails.

Lemma 7. Every simple 2-regular graph G admits a vertex distinguishable labeling with
labels in [a, b], where a, b are two positive integers with b− a = |E(G)| − 1. Moreover, the
vertex sums belong to [2a+ 1, 2b− 1].

Proof. Note that G is antimagic by Corollary 3 in [5]. Assume that φ : E(G)→ [1, |E(G)|]
is an antimagic labeling of G. Define another labeling ϕ : E(G) → [a, b] based on φ as
follows.

ϕ(e) = φ(e) + a− 1, ∀ e ∈ E(G).

Since G is regular and φ is antimagic, it is clear that ϕ is a vertex distinguishable labeling
of G. Furthermore, the sums fall into the interval [2a+ 1, 2b− 1].

Lemma 8. Let T [X, Y ] be an open trail with all vertices in Y having degree 2 except
precisely two having degree 1. Suppose T has 2m edges. Let y1 and ym+1 be the two degree
1 vertices in Y such that T starts at y1 and ends at ym+1. Let a, b be two integers with
a 6 b− 2m+ 1. Then there exists a bijection from E(T ) to [a, a+m− 1] ∪ [b−m+ 1, b]
such that each of the following holds.
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(i) ωT (x) = dT (x)(a+b)
2

for any x ∈ X; and ωT (y) 6= ωT (z) for any distinct y, z ∈
Y − {y1, ym+1}.

(ii) If m ≡ 0 (mod 2), then ωT (y1) = b, ωT (ym+1) = b − m + 1, and ωT (y) is an odd
number in [2a+ 1, 2a+ 2m− 3] ∪ [2b− 2m+ 5, 2b− 3] for any y ∈ Y − {y1, ym+1}.

(iii) If m ≡ 1 (mod 2), then ωT (y1) = a, ωT (ym+1) = b − m + 1, and ωT (y) is an odd
number in [2a+ 3, 2a+ 2m− 3] ∪ [2b− 2m+ 5, 2b− 1] for any y ∈ Y − {y1, ym+1}.

Proof. Since |E(T )| = 2m, and except precisely two degree 1 vertices, all other vertices
in Y have degree 2, we conclude that |Y | = m + 1. Let Y = {y1, y2, . . . , ym+1}. Then
there are precisely m edges of T incident to vertices in Y with even indices, and m edges
of T incident to vertices in Y with odd indices. We treat T as an alternating sequence of
vertices and edges starting at y1 and ending at ym+1.

If m ≡ 0 (mod 2), following the order of the appearances of edges in T , assign edges
incident to vertices in Y of even indices with labels

a, a+ 1, . . . , a+m− 1,

and assign edges incident to vertices in Y of odd indices with labels

b, b− 1, . . . , b−m+ 1.

That is, the label at yi is (a+ i− 2, a+ i− 1) if i is even; and (b− i+ 2, b− i+ 1) if i is
odd and not equal to 1 or m+ 1.

If m ≡ 1 (mod 2), following the order of the appearances of edges in T , assign edges
incident to vertices in Y of odd indices with labels

a, a+ 1, . . . , a+m− 1,

and assign edges incident to vertices in Y of even indices with labels

b, b− 1, . . . , b−m+ 1.

That is, the label at yi is (a + i − 2, a + i − 1) if i is odd and not equal to 1; and
(b− i+ 2, b− i+ 1) if i is even and not equal to m+ 1.

If m ≡ 0 (mod 2), for each yi ∈ Y with 1 6 i 6 m+ 1, by the assignment of labels, we
have that

ωT (yi) =


b, if i = 1;
b−m+ 1, if i = m+ 1;
2a+ 2i− 3, if i is even and 2 6 i 6 m;
2b− 2i+ 3, if i is odd and 3 6 i 6 m− 1.

If m ≡ 1 (mod 2), for each yi ∈ Y with 1 6 i 6 m + 1, by the assignment of labels, we
have that

ωT (yi) =


a, if i = 1;
b−m+ 1, if i = m+ 1;
2a+ 2i− 3, if i is odd and 3 6 i 6 m;
2b− 2i+ 3, if i is even and 2 6 i 6 m− 1.
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The sum on each vertex yi with yi ∈ Y − {y1, ym+1} is expressed as either 2a+ 2i− 3 or
2b− 2i+ 3, which is an odd number. Furthermore, the sums on y2, y4, . . . , ym, starting at
2a+ 1, strictly increase to 2a+ 2m−3 if m ≡ 0 (mod 2), and the sums on y3, y5, . . . , ym−1,
starting at 2a + 3, strictly increase to 2a + 2m − 3 if m ≡ 1 (mod 2). The sums on
y3, y5, . . . , ym−1, starting at 2b − 3, strictly decrease to 2b − 2m + 5 if m ≡ 0 (mod 2),
and the sums on y2, y4, . . . , ym, starting at 2b − 1, strictly decrease to 2b − 2m + 5 if
m ≡ 1 (mod 2). So these sums are all distinct. Since a = b − 2m + 1, it holds that
2a+2m−3 < 2b−2m+5. Thus all ωT (y) are distinct for y ∈ Y with y ∈ Y −{y1, ym+1}.

Let x be a vertex in X. Suppose that one appearance of x is adjacent to yi and yi+1

in the sequence T . If m ≡ 0 (mod 2), for even i with 2 6 i 6 m, the labels on the two
edges xyi and xyi+1 contribute a value of (a+ i− 1) + (b− (i+ 1) + 2) = a+ b to ωT (x);
for odd i with 1 6 i 6 m−1, the labels on the two edges xyi and xyi+1 contribute a value
of (b − i + 1) + (a + (i + 1) − 2) = a + b to ωT (x). Since x appears dT (x)/2 times in T ,

ωT (x) = dT (x)(a+b)
2

. If m ≡ 1 (mod 2), for even i with 2 6 i 6 m, the labels on the two
edges xyi and xyi+1 contribute a value of (b− i+ 1) + (a+ (i+ 1)− 2) = a+ b to ωT (x);
for odd i with 1 6 i 6 m−1, the labels on the two edges xyi and xyi+1 contribute a value
of (a + i − 1) + (b − (i + 1) + 2) = a + b to ωT (x). Since x appears dT (x)/2 times in T ,

ωT (x) = dT (x)(a+b)
2

.

Lemma 9. Let C[X, Y ] be a cycle of length 2m with m ≡ 0 (mod 2), and let a, b be two
integers with a 6 b− 2m+ 1. Then there exists a bijection from E(C) to [a, a+m− 1]∪
[b−m+ 1, b] such that each of the following holds.

(i) ωC(x) = a+ b for any x ∈ X.

(ii) ωC(y) 6= ωC(z) for any distinct y, z ∈ Y .

(iii) ωC(y) ∈ [2a+ 1, 2a+ 2m− 3] ∪ [2b− 2m+ 5, 2b− 2] for all y ∈ Y , and the sums in
[2a+ 1, 2a+ 2m− 3] are odd.

Proof. Denote by C = x1y1x2y2 · · · xmymx1 with xi ∈ X and yi ∈ Y . Following the order
of the appearances of edges in C, assign edges incident to vertices in {y1, y3, . . . , ym−1}
with labels

a+ 1, a, a+ 2, a+ 3, . . . , a+m− 2, a+m− 1.

Note that the labels are increasing consecutive integers after exchanging the positions of
the first two; assign edges incident to vertices in {y2, y4, . . . , ym} with labels

b, b− 2, b− 3, . . . , b−m+ 2, b−m+ 1, b− 1.

Note that the labels are decreasing consecutive integers after inserting the last number
between the first two labels.

For each yi ∈ Y with 1 6 i 6 m, following the appearances of the edges in the sequence
of C, we denote the labels on the edges incident to yi by an ordered pair. Particularly,
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by the assignment of the labels, we have that

label at yi =


(a+ 1, a), if i = 1;
(b, b− 2), if i = 2;
(b−m+ 1, b− 1), if i = m;
(a+ i− 1, a+ i), if i is odd with 3 6 i 6 m− 1;
(b− i+ 1, b− i), if i is even with 4 6 i 6 m− 2.

The sums on y1, y3, . . . , ym−1 starting at 2a + 1 strictly increase to 2a + 2m − 3 and all
of them are odd; and the sums on y4, y6, . . . , ym−2 starting at 2b − 7 strictly decrease to
2b − 2m + 5 and all of them are odd; the sums on y2, ym are even numbers 2b − 2 and
2b−m, respectively. Since a = b− 2m+ 1, 2a+ 2m− 3 < 2b− 2m+ 5. Hence all ωC(y)
are distinct for y ∈ Y . This shows both (ii) and (iii).

Let xi be a vertex in X for 1 6 i 6 m. If i = 1, the labels on the two edges x1y1 and
x1ym are a+ 1 and b− 1, respectively; if i = 2, the labels on the two edges x2y1 and x2y2
are a and b, respectively. Thus ωC(xi) = a+ b if i = 1, 2. Suppose i > 3. If i is even, then
the labels on the two edges xiyi−1 and xiyi are a+ (i− 1) and b− i+ 1, respectively; if i is
odd, the labels on the two edges xyi−1 and xyi are b− (i− 1) and a+ i− 1, respectively.
Thus ωC(xi) = a+ b. This proves (i).

Lemma 10. Let G be a bipartite graph, and H[X, Y ] a subgraph of G. Suppose that
E(H) can be decomposed into edge-disjoint p + q open trails T1, . . . , Tp, Tp+1, . . . , Tp+q,
and ` cycles Cp+q+1, . . . , Cp+q+`. Suppose further that these p + q + ` subgraphs have no
common vertex in Y , and for each of the trails, its vertices in Y are all distinct and
its endvertices are contained in Y . Let 2m := |E(H)|, and c, d be two integers with
c = d − 2m + 1. If the length of T1, . . . , Tp are congruent to 2 modulo 4, and the length
of each of the remaining trails and cycles is congruent to 0 modulo 4, then there exists a
bijection from E(H) to [c, c+m−1]∪ [d−m+1, d] = [c, d] such that each of the following
holds.

(i) ωH(x) = dH(x)(c+d)
2

for any x ∈ X.

(ii) For each i with 1 6 i 6 p + q, let Ti start at y1i and end at y(mi+1)i, where
y1i, y(mi+1)i ∈ Y . Suppose that

ωG(y1i) = ωH(y1i) + (c− 2p+ i− 1), if 1 6 i 6 p,

ωG(y(mi+1)i) = ωH(y(mi+1)i) + (c− i), if 1 6 i 6 p,

ωG(y1i) = ωH(y1i) + (d+ 2q − 2(i− p− 1)), if p+ 1 6 i 6 p+ q,

ωG(y(mi+1)i) = ωH(y(mi+1)i) + (d+ 2q − 2(i− p− 1)− 1), if p+ 1 6 i 6 p+ q,

ωG(y) = ωH(y), if y 6= y1i, y(mi+1)i.

Then ωG(y) 6= ωG(z) for any distinct y, z ∈ Y , and ωG(y) ∈ [2c− 2p,max{2d+ 2q−
p∑
i=1

mi, 2d}] for all y ∈ Y .
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Proof. Since T1, . . . , Tp+q and Cp+q+1, . . . , Cp+q+` are edge-disjoint and pairwise have no
common vertex in Y , and for each of the trail, its vertices in Y are all distinct and
its endvertices are contained in Y , we conclude that in the graph H, all vertices in X
have even degree, all the endvertices of Ti are precisely the degree 1 vertices in Y , and
all other vertices in Y have degree 2. For each i with 1 6 i 6 p + q and each j with
p+ q + 1 6 j 6 p+ q + `, let

|E(Ti)| = 2mi, |E(Cj)| = 2mj.

Since V (Ti) ∩ Y contains two degree 1 vertices and |V (Ti) ∩ Y | − 2 degree 2 vertices in
Y , we conclude that |V (Ti) ∩ Y | = mi + 1.

Apply Lemma 8 on each Ti, 1 6 i 6 p+ q, with

a := ai := c+
i−1∑
j=1

mj, b := bi := d−
i−1∑
j=1

mj;

and apply Lemma 9 on each Ci, p+ q + 1 6 i 6 p+ q + `, with

a := ai := c+
i−1∑
j=1

mj, b := bi := d−
i−1∑
j=1

mj.

Note that ai + bi = c+ d, 1 6 i 6 p+ q + `. By Lemma 8 and Lemma 9, we get that

ωH(x) =
dH(x)(c+ d)

2
for any x ∈ X.

By Lemma 8, the sums at y1i, ymii, respectively, are
ωH(y1i) = c+

i−1∑
j=1

mj, ωH(y(mi+1)i) = d−
i∑

j=1

mj + 1, if 1 6 i 6 p; (1)

ωH(y1i) = d−
i−1∑
j=1

mj, ωH(y(mi+1)i) = d−
i∑

j=1

mj + 1, if p+ 1 6 i 6 p+ q; (2)

and for each i with 1 6 i 6 p + q, the sums at vertices in V (Ti) ∩ Y − {y1i, y(mi+1)i} fall
into the intervals{

[2ai + 3, 2ai + 2mi − 3] ∪ [2bi − 2mi + 5, 2bi − 1], if 1 6 i 6 p ,

[2ai + 1, 2ai + 2mi − 3] ∪ [2bi − 2mi + 5, 2bi − 3], if p+ 1 6 i 6 p+ q,

and all these sums are distinct and odd.
By Lemma 9, for each i with p+q+1 6 i 6 p+q+`, the sums at vertices in V (Ci)∩Y

are all distinct and fall into the intervals

[2ai + 1, 2ai + 2mi − 3] ∪ [2bi − 2mi + 5, 2bi − 2],
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and all the sums in [2ai + 1, 2ai + 2mi − 3] are odd.
Since for each i, j with 1 6 i < j 6 p+ q + `,{

2aj + 1 > 2ai + 2mi − 3;
2bi − 2mi + 5 > 2bj − 1,

we see that 2ap+q+` + 2mp+q+` − 3 is the largest value in the set(
p⋃
i=1

[2ai + 3, 2ai + 2mi − 3]

) ⋃ (
p+q+`⋃
i=p+1

[2ai + 1, 2ai + 2mi − 3]

)
,

and 2bp+q+` − 2mp+q+` + 5 is the smallest value in the set(
p⋃
i=1

[2bi − 2mi + 5, 2bi − 1]

) ⋃ (
p+q⋃
i=p+1

[2bi − 2mi + 5, 2bi − 3]

)
⋃ (

p+q+`⋃
i=p+q+1

[2bi − 2mi + 5, 2bi − 2]

)
.

Furthermore,

2bp+q+` − 2mp+q+` + 5− (2ap+q+` + 2mp+q+` − 3)

= 2d−
p+q+`∑
j=1

2mi + 5− (2c+
p+q+`∑
j=1

2mi − 3)

= 2(c+ 2m− 1)− 2m+ 5− (2c+ 2m− 3) (d = c+ 2m− 1 and
p+q+`∑
j=1

2mi = 2m)

= 6.

Hence, all the vertex sums at Y − {y1i, y(mi+1)i | 1 6 i 6 p+ q} are pairwise distinct. Let

k1 :=

p∑
i=1

mi, and k2 :=

p+q∑
i=p+1

mi.

By Equalities (1) and (2), and the assumptions on the parity of each mi, if 1 6 i 6 p,
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

ωG(y1i) = ωH(y1i) + (c− 2p+ i− 1),

= c+
i−1∑
j=1

mj + c− 2p+ i− 1

= 2c− 2p+
i−1∑
j=1

(mj + 1)

≡ 0 (mod 2) since each mj is odd

∈ [2c− 2p, 2c− p− 1 + k1 −mp], (3)

ωG(y(mi+1)i) = ωH(y(mi+1)i) + (c− i)

= d−
i∑

j=1

mj + 1 + c− i

= c+ 2m− 1−
i∑

j=1

mj + 1 + c− i

= 2c+ 2m−
i∑

j=1

(mj − 1) ≡ 0 (mod 2) since each mj is odd

∈ [2c+ 2m− k1 − p, 2c+ 2m−m1 − 1], (4)

and if p+ 1 6 i 6 p+ q,

ωG(y1i) = ωH(y1i) + (d+ 2q − 2(i− p− 1)) (5)

= d−
i−1∑
j=1

mj + d+ 2q − 2(i− p− 1) ≡ 0 (mod 2), since each mj is even

ωG(y(mi+1)i) = ωH(y(mi+1)i) + (d+ 2q − 2(i− p− 1)− 1) (6)

= d−
i∑

j=1

mj + 1 + d+ 2q − 2(i− p− 1)− 1

≡ 0 (mod 2), since each mj is even

By the above analysis, for each i with 1 6 i 6 p + q, both ωG(y1i) and ωG(y(mi+1)i)

are even. As all the sums at vertices in
⋃p+q
i=1 V (Ti) ∩ Y − {y1i, y(mi+1)i | 1 6 i 6 p + q}

are odd by Lemma 8, and by Lemma 9 all the sums on vertices in
⋃p+q+`
i=p+q+1 V (Ci) ∩ Y

which fall into the set
⋃p+q+`
i=p+q+1[2ai + 1, 2ai + 2mi − 3] are odd, all of them are distinct

from these 2(p + q) ωG sums on vertices in {y1i, y(mi+1)i | 1 6 i 6 p + q}. Hence, to show
that all the vertex sums at vertices in Y are distinct, we are left to check that all these
2(p+ q) ωG sums are distinct with the sums on vertices in

⋃p+q+`
i=p+q+1 V (Ci)∩ Y which fall

into the set
⋃p+q+`
i=p+q+1[2bi − 2mi + 5, 2bi − 2], and all these 2(p+ q) ωG sums at vertices in

{y1i, y(mi+1)i | 1 6 i 6 p+ q} are pairwise distinct.
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If 1 6 i < j 6 p, by (3) and (4), ωG(y1i) < ωG(y1j) and ωG(y(mi+1)i) > ωG(y(mi+1)j).
Thus, all the sums at vertices either in {y1i | 1 6 i 6 p} or in {y(mi+1)i | 1 6 i 6 p} are all
distinct, and

ωG(y1p) = max{ωG(y1i) | 1 6 i 6 p}, ωG(y(mp+1)p) = min{ωG(y(mi+1)i) | 1 6 i 6 p}.

Furthermore, by (3) and (4),

ωG(y(mp+1)p)− ωG(y1p)
= 2c+ 2m− k1 − p− (2c− p− 1 + k1 −mp)
= 2m− 2k1 +mp + 1 > 2 (2m > 2k1,mp > 1).

Thus, the ωG sums on vertices in {y1i, y(mi+1)i | 1 6 i 6 p} are all distinct.
By (5) and (6), ωG(y1i) > ωG(y(mi+1)i) for all i with p+1 6 i 6 p+q, and ωG(y(mi+1)i) >

ωG(y1j) if p+1 6 i < j 6 p+q. Thus, all the ωG sums on vertices in {y1i, y(mi+1)i | p+1 6
i 6 p+ q} are all distinct, and

ωG(y(mp+q+1)(p+q)) = min{ωG(y1i), ωG(y(mi+1)i) | p+ 1 6 i 6 p+ q}.

Furthermore,

ωG(y(m1+1)1) = max{ωG(y1i), ωG(y(mi+1)i) | 1 6 i 6 p},

and by (6) and (4),

ωG(y(mp+q+1)(p+q))− ωG(y(m1+1)1)
= 2d− k1 − k2 + 2− (2c+ 2m−m1 − 1)
= 2m− k1 − k2 +m1 + 1 > 2 (d = c+ 2m− 1, 2m > k1 + k2,m1 > 1).

Thus, all the ωG sums on vertices in {y1i, y(mi+1)i | 1 6 i 6 p+ q} are all distinct. We may
assume that ` > 1. Otherwise, we are done.

By the definition of the parameters bi and easy calculations,

p+q+`⋃
i=p+q+1

[2bi − 2mi + 5, 2bi − 2] ⊆ [2bp+q+` − 2mp+q+` + 5, 2bp+q+1 − 2].

By (3), (4),(5), and (6), the ωG sums at vertices in {y1i, y(mi+1)i | 1 6 i 6 p + q} fall into
the intervals

[2c− 2p, 2c+ 2m−m1 + 1] ∪ [2d− k1 − k2 + 2, 2d+ 2q − k1].

Since

(2bp+q+` − 2mp+q+` + 5)− (2c+ 2m−m1 − 1)
= 2d− 2k1 − 2k2 + 5− (2(d− 2m+ 1) + 2m−m1 − 1)
= 2m− 2k1 − 2k2 +m1 + 4
> 5 (2m > 2k1 + 2k2 and m1 > 1),
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and

(2d− k1 − k2 + 2)− (2bp+q+1 − 2)
= 2d− 2k1 − k2 + 2− (2d− 2k1 − 2k2 − 2)
= k1 + k2 + 4 > 4,

we then conclude that these 2(p+ q) ωG sums at vertices in {y1i, y(mi+1)i | 1 6 i 6 p+ q}
are all distinct with the ωG sums at vertices in

⋃p+q+`
i=p+q+1 V (Ci)∩ Y which fall into the set⋃p+q+`

i=p+q+1[2bi − 2mi + 5, 2bi − 2].
By all the arguments above, we have shown that ωG(y) 6= ωG(z) for any distinct

y, z ∈ Y . Since the sums on vertices in Y − {y1i, y(mi+1)i | 1 6 i 6 p + q} fall into the
interval [2c, 2d] and the sums on vertices in {y1i, y(mi+1)i | 1 6 i 6 p + q} fall into the
interval [2c− 2p, 2d+ 2q− k1], where the value 2d+ 2q− k1 is attained at ωG(y1(p+1)), we
have that ωG(y) ∈ [2c− 2p,max{2d+ 2q − k1, 2d}] for all y ∈ Y .

3 Proof of Theorem 3

Let G = [X, Y ] be a biregular bipartite graph. Assume that |X| = m, |Y | = n, dG(x) =
s > dG(y) = t, where x ∈ X, y ∈ Y . Consequently m 6 n and |E(G)| = ms = nt. Given

an orientation of G, we will denote the orientation by
−→
G .

If t = 1, then G is the union of vertex-disjoint stars with centers in X. Denote

X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}.

For each xi, 1 6 i 6 m, we assign arbitrarily edges incident to xi with labels

s(i− 1) + 1, s(i− 1) + 2, . . . , s(i− 1) + s.

Orient edges of G from X to Y . Thus, the oriented vertex sums for vertices in X
are negative, and the oriented vertex sums for vertices in Y are positive. Hence, no two
vertices x and y conflict if x ∈ X and y ∈ Y . Also, it is routine to check that no two

vertices in X conflicting and no two vertices in Y conflicting. Hence the labeling of
−→
G is

antimagic. Thus we assume t > 2. We distinguish three cases for finishing the proof.

Case 1: t > 3
Orient edges of G from X to Y , and denote the orientation by

−→
G . By the orientation

of G, the sums of vertices in X are negative while the sums at vertices in Y are positive.

Hence in the following, we just need to find a labeling of
−→
G using labels in [1, sm], which

guarantees that the sums at vertices in X are all distinct and the sums at vertices in Y
are all distinct. By Lemma 4, G has a matching M saturating X. Assume, w.l.o.g, that
M = {x1y1, x2y2, . . . , xmym}. Let H = G −M . Note that dH(yi) = t − 1 for 1 6 i 6 m
and dH(yi) = t for m+ 1 6 i 6 n.

Subcase 1.1: t > 3 and t is odd
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Reserve labels in [1,m] for edges in M , and use labels in [m+ 1, tn = sm] for edges in
H. For each yi with 1 6 i 6 m, assign arbitrarily the edges incident to yi with labels

m+ i, 3m− i+ 1, 3m+ i, 5m− i+ 1, 5m+ i, . . . , (t− 2)m− i+ 1, (t− 2)m+ i, tm;

and for each yi with m+ 1 6 i 6 n, assign arbitrarily the edges incident to yi with labels

t(i−m− 1) + tm+ 1, t(i−m− 1) + tm+ 2, . . . , t(i−m− 1) + tm+ t.

Under the above assignment of labels, we have that for any yi, yj ∈ {y1, y2, . . . , ym},
ωH(yi) = ωH(yj). Thus any assignment of distinct labels on the edges in M results in a
labeling of G such that the sums of labels at vertices in Y are all distinct. Hence, we can
choose an assignment of distinct labels on the edges in M just based on the ordering of
the values in {ωH(xi) | 1 6 i 6 m}. Therefore, up to a reordering of edges in M , we may
assume that ωH(x1) 6 ωH(x2) 6 · · · 6 ωH(xm). Now for each edge xiyi ∈M , 1 6 i 6 m,
assign the edge xiyi with the label i.

We verify now that the labeling of
−→
G given above is antimagic. For each xi, xj ∈ X

with i < j, since ωH(xi) 6 ωH(xj), it holds that ωG(xi) = ωH(xi) + i < ωH(xj) + j =
ωG(xj).

Next for each yi, yj ∈ {y1, y2, . . . , ym} with i < j, since ωH(yi) = ωH(yj) = t−1
2

((t +
1)m + 1), we have that ωG(yi) = ωH(yi) + i < ωH(yj) + j = ωG(yj). By the assignment
of labels on edges incident to yi with m+ 1 6 i 6 n, the sums at yi are pairwise distinct.

The smallest vertex sum among these values is ωG(ym+1) = t2m+
t∑
i=1

i. The largest vertex

sum among values in {ωG(y1), . . . , ωG(ym)} is ωG(ym) = t−1
2

((t+ 1)m+ 1) +m. It is easy
to check that ωG(ym) < ωG(ym+1). Hence, all the sums at vertices in Y are distinct.

Subcase 1.2: t > 3 and t is even
Reserve labels in {2, 4, . . . , 2m} for edges in M , and use the labels in {1, 3, . . . , 2m−

1}∪{2m+ 1, . . . , tn = sm} for edges in H. For each yi with 1 6 i 6 m, assign arbitrarily
the edges incident to yi with labels

2i− 1, 3m− i+ 1, 4m− i+ 1, 4m+ i, 6m− i+ 1, . . . , (t− 2)m+ i, tm− i+ 1;

and for each yi with m+ 1 6 i 6 n, assign arbitrarily the edges incident to yi with labels

t(i−m− 1) + tm+ 1, t(i−m− 1) + tm+ 2, . . . , t(i−m− 1) + tm+ t.

Assume, w.l.o.g., that under the above assignment of labels, ωH(x1) 6 ωH(x2) 6 · · · 6
ωH(xm). Now for each edge xiyi ∈M , 1 6 i 6 m, assign the edge xiyi with the label 2i.

We verify now that the labeling of
−→
G given above is antimagic. Obviously, for each

xi, xj ∈ X with 1 6 i < j 6 m, because ωH(xi) 6 ωH(xj), it holds that ωG(xi) =
ωH(xi) + 2i < ωH(xj) + 2j = ωG(xj).

Next for each yi, yj with 1 6 i < j 6 m, since ωH(yi) = ωH(yj) = (t2 − 9)m + t − 3,
we have that ωG(yi) = ωH(yi) + 2i < ωH(yj) + 2j = ωG(yj). By the assignment of labels
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on edges incident to yi with m + 1 6 i 6 n, the sums at yi are pairwise distinct. The

smallest sum among these values is ωG(ym+1) = t2m+
t∑
i=1

i. The largest sum among values

in {ωG(y1), . . . , ωG(ym)} is ωG(ym) = (t2 − 9)m + t − 3 + 2m. It is easy to check that
ωG(ym) < ωG(ym+1). Hence, all the sums at vertices in Y are distinct.

Case 2: t = 2 and s is odd
By Lemma 4, there exists a matching M saturating vertices in X. In each component

of G−M , the vertices contained in X are all of even degree s−1, and all vertices contained
in Y are of degree 2 or 1. Thus, the number of vertices with degree 1 in the component is
even. Since there are in total m vertices of degree 1 in Y , by Lemma 6, we can decompose
E(G−M) into m/2 open trials with endvertices in Y . Denote the trails by T1, . . . , Tm/2.
Since the endvertices of each Ti are in Y , all the vertices in V (Ti) ∩X have even degree.
Consequently, Ti has even length. For each i with 1 6 i 6 m/2, let

2mi := |E(Ti)| and Ti = y1ix1i · · ·xmiiy(mi+1)i,

where x1i, x2i, . . . , xmii ∈ X and y1i, y2i, . . . , ymi+1i ∈ Y . Note that x1i, x2i, . . . , xmii may
not be distinct vertices in X, but y1i, y2i, . . . , ymi+1i are distinct vertices in Y because all
vertices in Y have degree 2 in G. Assume further, w.l.o.g., that there are p trails T1, . . . , Tp
of length congruent to 2 modulo 4, and q trails Tp+1, . . . , Tp+q of length congruent to 0
modulo 4. Set

c := 2p+ 1, d := sm− 2q, and H =

p+q⋃
i=1

Ti.

The endvertices of the m/2 open trails are exactly the set of Y-endvertices of the m
matching edges. Thus, for each i with 1 6 i 6 m/2, and for each edge e ∈ M , e is
incident to either y1i or y(mi+1)i. We assign labels in [1, 2p] ∪ [sm − 2q + 1, sm] on e as
below. If 1 6 i 6 p,

label on e =

{
i, if e is incident to y1i; (7)

2p− i+ 1, if e is incident to y(mi+1)i; (8)

if p+ 1 6 i 6 p+ q,

label on e =

{
sm− 2(i− p− 1), if e is incident to y1i; (9)

sm− 2(i− p− 1)− 1, if e is incident to y(mi+1)i. (10)
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Thus,

ωG(y1i) = ωH(y1i) + i, if 1 6 i 6 p,

= ωH(y1i) + (c− 2p+ i− 1),

ωG(y(mi+1)i) = ωH(y(mi+1)i) + (2p− i+ 1), if 1 6 i 6 p,

= ωH(y(mi+1)i) + (c− i),
ωG(y1i) = ωH(y1i) + (sm− 2(i− p− 1)), if p+ 1 6 i 6 p+ q,

= ωH(y1i) + (d+ 2q − 2(i− p− 1)),

ωG(y(mi+1)i) = ωH(y(mi+1)i) + (sm− 2(i− p− 1)− 1), if p+ 1 6 i 6 p+ q,

= ωH(y(mi+1)i) + (d+ 2q − 2(i− p− 1)− 1),

ωG(y) = ωH(y), if y ∈ Y, y 6= y1i, y(mi+1)i.

Applying Lemma 10 on H with c = 2p+ 1 and d = sm− 2q defined as above, we get
an assignment of labels on E(H) such that

(i) For any x ∈ V (H) ∩X, ωH(x) = dH(x)(c+d)
2

= (s−1)(sm−2q+2p+1)
2

; and

(ii) For any distinct y, z ∈ V (H) ∩ Y , ωG(y) 6= ωG(z).

Orient all the edges of G from X to Y , and denote the orientation by
−→
G .

Claim 1: The labeling of
−→
G given above is antimagic.

Proof. We first show that all the set of labels used is the set [1, sm]. The set of labels
used on edges in M is the set [1, 2p]∪ [sm−2q+1, sm], and the set of labels used on edges
in H is the set [c, d] = [2p+ 1, sm− 2q]. The union of these two sets is the set [1, sm].

We then show that all the oriented sums on vertices in
−→
G are pairwise distinct. We

first examine the sums on vertices in Y . For any y ∈ Y , since Y = V (H) ∩ Y , we know
that all the sums on vertices in Y are pairwise distinct by (ii) preceding Claim 1.

Finally, we show that for any x ∈ X and y ∈ Y the oriented sums at x and y are
distinct in G. This is clear since all the oriented sums at vertices in Y are positive while
that at vertices in X are negative.

Case 3: t = 2 and s is even
We may assume that s > 4. Otherwise G is 2-regular and |E(G)| = 2m. By Lemma 7,

G has an antimatic labeling by taking a := 1 and b := 2m, and the labeling is also an

antimagic labeling of
−→
G obtained by orienting all edges from X to Y .

Claim 2: The graph G[X, Y ] contains a subgraph F such that

(1) F is a set of vertex disjoint cycles; and

(2) V (F ) ∩X = X.
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Proof. Suppressing all degree 2 vertices in Y (removing the vertex and adding an edge
joining the two neighbors of the removed vertex), we obtain an s-regular (multi)graph G′.
Since s is even, by applying Lemma 5, we find a 2-factor of G′. Subdivide each edge in
the 2-factor of G′, we get the desired graph F .

Now G− E(F ) is a graph with all vertices having even degree. So G− E(F ) can be
decomposed into edge-disjoint cycles. Assume that there are in total ` edge-disjoint cycles
in G − E(F ) such that each of them has length congruent to 0 modulo 4, and there are
in total h edge-disjoint cycles in G− E(F ) such that each of them has length congruent
to 2 modulo 4. For each i with 1 6 i 6 h, denote by

Ci = x1iy1i · · ·xmiiymiix1i, where x1i, x2i, . . . , xmii ∈ X, y1i, y2i, . . . , ymii ∈ X.

the i-th cycle of length congruent to 2 modulo 4.
We pre-label edges in {x1iy1i, x1iymii, y1ix2i, ymiixmii, x2iy2i, xmiiy(mi−1)i | 1 6 i 6 h}.

In doing so, we distinguish if s = 4 or s > 6.
If s = 4, for each i with 1 6 i 6 h, use the labels in [1, 3h]∪ [2m− 3h+ 1, 2m] to label

each edge e indicated below.

label on e =



i, if e = x1iy1i; (11)

2m− (i− 1), if e = x1iymii; (12)

h+ 2i− 1, if e = y1ix2i; (13)

h+ 2i, if e = ymiixmii; (14)

2m+ 1− (h+ 2i− 1), if e = x2iy2i; (15)

2m+ 1− (h+ 2i), if e = xmiiy(mi−1)i. (16)

If s > 6, for each i with 1 6 i 6 h, use the labels in [1, 4h]∪ [(s−2)m−2h+1, (s−2)m]
to label each edge e indicated below.

label on e =



i, if e = x1iy1i; (17)

h+ i, if e = x1iymii; (18)

2h+ 2i− 1, if e = y1ix2i; (19)

2h+ 2i, if e = ymiixmii; (20)

(s− 2)m+ 2h+ 1− (2h+ 2i− 1), if e = x2iy2i; (21)

(s− 2)m+ 2h+ 1− (2h+ 2i), if e = xmiiy(mi−1)i. (22)

Assume there are q paths with positive length after deleting the vertices x1i, x2i, xmii,
y1i, ymii in each Ci for 1 6 i 6 h. Assume, w.l.o.g., that these paths are obtained from
Ch−q+1, . . . , Ch. For each 1 6 i 6 q, denote these paths by

Pi = Ch−q+i − {x1(h−q+i), x2(h−q+i), xm(h−q+i)(h−q+i), y1(h−q+i), ym(h−q+i)(h−q+i)},

and assume that Pi starts at y2(h−q+i) and ends at y(mh−q+i−1)(h−q+i). Then each Pi has
length 2(mh−q+i − 3) ≡ 0(mod 4). Under this assumption, we know that C1, C2, . . . , Ch−q
are 6-cycles.
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Denote the ` edge-disjoint cycles in G − E(F ) such that each of them has length
congruent to 0 modulo 4 by Dq+1, Dq+2, . . . , Dq+`. Let

H =

(
q⋃
i=1

Pi

)⋃(
q+`⋃
i=q+1

Di

)
.

If s = 4, then let
c := 3h+ 1 and d := 2m− 3h.

It is clear that d− c = 2m− 6h− 1 = |E(H)|− 1. For h− q+ 1 6 j 6 h, let i = j−h+ q.
Then by Equations (15) and (16), the labels on the other edges not in H incident to y2j
and y(mj−1)j, respectively, are

2m+ 1− (h+ 2j − 1) = (s− 2)m− h− 2(i+ h− q) + 2

= (s− 2)m− 3h+ 2q − 2i+ 2 = d+ 2q − 2(i− 1),

2m+ 1− (h+ 2j) = (s− 2)m− h− 2(i+ h− k) + 1

= (s− 2)m− 3h+ 2q − 2i+ 1 = d+ 2q − 2(i− 1)− 1.

If s > 6, then let
c := 4h+ 1 and d := (s− 2)m− 2h.

Again d− c = (s− 2)m− 6h− 1 = |E(H)| − 1. For h− q + 1 6 j 6 p, let i = j − h+ q.
Then by Equations (21) and (22), the labels on the other edges not in H incident to y2j
and y(mj−1)j, respectively, are

(s− 2)m+ 2h+ 1− (2h+ 2j − 1) = (s− 2)m− 2(i+ h− q) + 2

= (s− 2)m− 2h+ 2q − 2i+ 2 = d+ 2q − 2(i− 1),

(s− 2)m+ 2h+ 1− (2h+ 2j) = (s− 2)m− 2(i+ h− q) + 1

= (s− 2)m− 2h+ 2q − 2i+ 1

= d+ 2q − 2(i− 1)− 1.

Thus,

ωG(y2j) = ωH(y2j) + (d+ 2q − 2(i− p− 1)),

ωG(y(mj−1)j) = ωH(y(mj−1)j) + (d+ 2q − 2(i− p− 1)− 1).

Apply Lemma 10 on H with c and d defined above (according to if s = 4 or s > 6) and
with p = 0, we get an assignment of labels on E(H) such that

(i) For any x ∈ V (H) ∩X, ωH(x) = dH(x)(c+d)
2

; and

(ii) For any distinct y, z ∈ V (H) ∩ Y , ωG(y) 6= ωG(z), and ωG(y) ∈ [2c, 2d+ 2q].
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Apply Lemma 7 on F with

a := (s− 2)m+ 1 and b := sm,

we get an antimagic labeling on F .
If s = 4, orient the edges in {x1iy1i, x1iymii | 1 6 i 6 h} from Y to X, and orient all

the remaining edges from X to Y . If s > 6, orient the edges in {x1iy1i| 1 6 i 6 h} from
Y to X, and orient all the remaining edges from X to Y . Denote the orientation of G by−→
G .

Claim 3: The labeling of
−→
G given above is antimagic.

Proof. We first show that the set of labels used is the set [1, sm]. The labels used on edges
in F are exactly numbers in the set [(s − 2)m + 1, sm]. If s = 4, then the set of labels
used on edges in {x1iy1i, x1iymii, x2iy1i, xmiiymii, x2iy2i, xmiiy(mi−1)i | 1 6 i 6 h} is [1, 3h] ∪
[2m− 3h+ 1, 2m], and the set of labels used on E(H) is [3h+ 1, 2m− 3h]. If s > 6, then
the set of labels used on edges in {x1iy1i, x1iymii, x2iy1i, xmiiymii, x2iy2i, xmiiy(mi−1)i | 1 6
i 6 h} is [1, 4h] ∪ [(s − 2)m − 2h + 1, (s − 2)m], and the set of labels used on E(H) is
[4h+ 1, (s− 2)m− 2h]. The union of these sets is the set [1, sm].

We then show that the oriented sums on vertices in
−→
G are all distinct. We separate

the proof according to if s = 4 or s > 6.
Case s = 4: For each i with 1 6 i 6 h, by (11)-(14) and the orientation of G, the

labels at y1i, ymii, respectively, are

(−i, h+ 2i− 1) and (−2m+ (i− 1), h+ 2i).

Thus,

ωG(y1i) = h+ i− 1 ∈ [h, 2h− 1],

ωG(ymii) = −2m+ h+ 3i− 1 ∈ [−2m+ h+ 2,−2m+ 4h− 1].

All these 2h values are pairwise distinct and fall into the interval [−2m+ h+ 2, 2h− 1].
For each i with 1 6 i 6 h− q, by (15) and (16), the label at y2i is,

(2m+ 1− (h+ 2i− 1), 2m+ 1− (h+ 2i).

Thus,
ωG(y2i) = 4m+ 3− 2h− 4i ∈ [4m+ 3− 6h+ 4q, 4m− 1− 2h].

All these h− q values are pairwise distinct.
The sums at vertices in V (H)∩Y are all distinct and fall into the interval [2c, 2d+2q] =

[6h+2, 4m−6h+2q] ⊆ [6h+2, 4m] (q 6 h) by Lemma 10. The sums at vertices in V (F )∩Y
are all distinct and fall into the interval [4m + 3, 8m − 1] by Lemma 7. Since these sets
[−2m + h + 2, 2h − 1], [6h + 2, 4m − 6h + 2q], [4m + 3 − 6h + 4q, 4m − 1 − 2h], and
[4m+ 3, 8m− 1] are pairwise disjoint, we see that the oriented sums on vertices in Y are
all distinct.
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Next we show that in
−→
G , the oriented sums on vertices in X are all distinct. For each

i with 1 6 i 6 h,
ωG−E(F )(x1i) = 2m+ 1 by (11) and (12) ,

ωG−E(F )(x2i) = ωG−E(F )(xmii) = −2m− 1 by (13) (15), and (14) (16),

ωG−E(F )(x) = −dH(x)(c+d)
2

= −(c+ d) = −2m− 1 if x ∈ V (H) ∩X.

Hence,
|ωG−E(F )(u)− ωG−E(F )(v)| = 0 or 4m+ 2, for any u, v ∈ X. (23)

For the graph F , by Lemma 7, the sums on vertices in V (F ) ∩ X are pairwise distinct.
Since the set of labels used on E(F ) is [2m+ 1, 4m] and F is 2-regular, it follows that in
F , ωF (x) ∈ [−8m + 1,−4m− 3] and any two of the sums at vertices in V (F ) ∩X differ
an absolute value of at most 4m− 4. Because of ωG(x) = ωG−E(F )(x) + ωF (x) for x ∈ X
and the fact in (23), we conclude that the total oriented vertex sums at vertices in X are
all distinct.

Finally, we show that for any x ∈ X and y ∈ Y the oriented vertex sums at x and y are

distinct in
−→
G . By the analysis above, ωG(y) ∈ [−2m+ h+ 2, 8m− 1] for any y ∈ Y . And

ωG(x) ∈ [−10m,−2m − 2] for any x ∈ X, which follows by the facts that ωG−E(F )(x) =
−2m − 1 or 2m + 1, ωF (x) ∈ [−8m + 1,−4m − 3], and ωG(x) = ωG−E(F )(x) + ωF (x).
Thus, ωG(x) 6= ωG(y).

Case s > 6: For each i with 1 6 i 6 h, by (17)-(20) and the orientation of G, the
labels at y1i, ymii, respectively, are

(−i, 2h+ 2i+ 1) and (h+ i, 2h+ 2i).

Thus,

ωG(y1i) = 2h+ i+ 1 ∈ [2h+ 2, 3h+ 1] and ωG(ymii) = 3h+ 3i ∈ [3h+ 3, 6h].

All these 2h values are pairwise distinct and fall into the interval [2h+ 2, 6h].
For each i with 1 6 i 6 h− q, by (21) and (22), the label at y2i is,

((s− 2)m+ 2h+ 1− (h+ 2i− 1), (s− 2)m+ 2h+ 1− (h+ 2i).

Thus,

ωG(y2i) = 2(s− 2)m+ 3 + 2h− 4i ∈ [2(s− 2)m+ 3− 2h+ 4q, 2(s− 2)m+ 2h− 1].

All these h− q values are pairwise distinct.
The sums at vertices in V (H)∩Y are all distinct and fall into the interval [2c, 2d+2q] =

[8h + 2, 2(s − 2)m − 4h + 2q] by Lemma 10. The sums at vertices in V (F ) ∩ Y are all
distinct and fall into the interval [2(s− 2)m+ 3, 2sm− 1] by Lemma 7. Since these sets
[2h+ 2, 6h], [8h+ 2, 2(s− 2)m− 4h+ 2q], [2(s− 2)m+ 3− 2h+ 4q, 2(s− 2)m+ 2h− 1],
and [2(s − 2)m + 3, 2sm − 1] are pairwise disjoint, we see that the oriented vertex sums
on vertices in Y are all distinct.
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Next we show that in
−→
G , the oriented sums at vertices in X are all distinct. Assume

that for each x ∈ X, x appears αx times in {x1i | 1 6 i 6 h}, and βx times in {x2i, xmii | 1 6
i 6 h}. Since each of x1i, x2i, and xmii has two distinct neighbors in Y , x has degree
s− 2− 2αx − 2βx in H. In addtion, each appearance of x in {x1i | 1 6 i 6 h} contributes
a value of −h to the oriented sum at x by (17) and (18), and each appearance of x in
{x2i, xmii | 1 6 i 6 h} contributes a value of −(c + d) to the oriented sum at x by (19)

(21), and (20) (22). By (i) preceeding Claim 3, ωH(x) = −dH(x)(c+d)
2

= − (s−2−2αx−2βx)(c+d)
2

.
Hence,

ωG−E(F )(x) = −(s− 2− 2αx − 2βx)(c+ d)

2
− αxh− βx(c+ d)

= −(s− 2)(c+ d)

2
+ αx(c+ d− h).

Thus, for any u, v ∈ X,

|ωG−E(F )(u)− ωG−E(F )(v)| = |αu − αv|(c+ d− h)

= |αu − αv|((s− 2)m+ h+ 1) = 0 or > 4m. (24)

For the graph F , by Lemma 7, the sums on vertices in V (F ) ∩ X are pairwise distinct,
any two of the sums at vertices in V (F ) ∩X differ an absolute value of at most 4m− 4.
Because of ωG(x) = ωG−E(F )(x) + ωF (x) for x ∈ X and the fact in (24), we conclude that
the total oriented sums at vertices in X are all distinct.

Finally, we show that for any x ∈ X and y ∈ Y the oriented sums at x and y are distinct

in
−→
G . By the analysis above, for any y ∈ Y , ωG(y) ∈ [2h+2, 2sm−1] is a positive integer.

For any x ∈ X, ωG−F (x) is negative and ωF (x) is negative, so ωG(x) = ωG−E(F )(x)+ωF (x)
is negative. Hence ωG(x) 6= ωG(y).
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[14] J. Petersen. Die Theorie der regulären graphs. Acta Math., 15: 193-220, 1891.

[15] Z. B. Yilma. Antimagic properties of graphs with large maximum degree. J. Graph
Theory, 72 (4): 367-373, 2013.

the electronic journal of combinatorics 24(4) (2017), #P4.31 20

http://arxiv.org/abs/1707.03507

	Introduction
	Notation and Lemmas
	Proof of Theorem 3

