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Abstract

An odd hole is an induced odd cycle of length at least 5. Scott and Seymour
confirmed a conjecture of Gyárfás and proved that if a graph G has no odd holes
then χ(G) 6 22

ω(G)+2
. Chudnovsky, Robertson, Seymour and Thomas showed that

if G has neither K4 nor odd holes then χ(G) 6 4. In this note, we show that if a
graph G has neither triangles nor quadrilaterals, and has no odd holes of length at
least 7, then χ(G) 6 4 and χ(G) 6 3 if G has radius at most 3, and for each vertex
u of G, the set of vertices of the same distance to u induces a bipartite subgraph.
This answers some questions in [17].
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1 Introduction

Let G be a graph, and let k be an integer. A k-coloring of G is an assignment of k colors
to the vertices of G such that adjacent vertices receive distinct colors. The chromatic
number χ(G) of G is the minimum integer k such that G admits a k-coloring. We use
ω(G) to denote the clique number of G which is the largest integer l such that G contains
the complete graph Kl as a subgraph. It is certain that χ(G) > ω(G). But the difference
χ(G) − ω(G) may be arbitrarily large as there are triangle-free graphs with arbitrary
large chromatic number (see [7, 23, 15]), and furthermore, Erdős [8] showed that for every
positive integers k and l there exists a graph G with χ(G) > k whose shortest cycle has
length at least l.

There are still quite a lot of families of graphs whose chromatic numbers are bounded
by a function of their clique numbers. For instance, the Strong Perfect Graph Theorem
[2] asserts that χ(G) = ω(G) if G contains neither odd cycles of length at least 5 nor their
complements as induced subgraphs, and Vizing’s theorem [24] together with Beineke’s
characterization [1] shows that χ(G) 6 ω(G) + 1 if G contains none of the nine given
graphs as induced subgraphs. As a natural question, one may ask, for a given family of
graphs G, whether there is a function f such that χ(G) 6 f(ω(G)) for each graph G ∈ G?
If such a function f does exist, then we say that the family G is χ-bounded, and call f a
binding function of G. In this literature, the family of perfect graphs is χ-bounded with
a binding function f(x) = x, and the family of line graphs is χ-bounded with a binding
function f(x) = x+ 1.

For convenience, we say that a graph G induces a graph H if H is isomorphic to an
induced subgraph of G. Let F be a family of graphs. A graph G is said to be F -free
if it induces no member of F . For a finite family F , Erdős [8] shows that if F -free
graphs are χ-bounded then F must contain a tree. Then, Gyárfás [10], and Sumner [22]
independently, conjectured that F -free graphs are χ-bounded for every forest F . There
are some partial results about this conjecture (see [4, 12, 11, 13, 14, 18]).

A hole of a graph is an induced cycle of length at least four. Gyárfás [12] also proposed
three conjectures on the relation between chromatic number and induced cycles in graphs.
Let l be an integer of at least 4.

Conjecture 1. ([12]) {odd holes}-free graphs are χ-bounded.

Conjecture 2. ([12]) {holes of length at least l}-free graphs are χ-bounded.

Conjecture 3. ([12]) {odd holes of length at least l}-free graphs are χ-bounded.

Scott [19] proved that for each l > 0, the family of graphs with neither odd holes nor
hole of length at least l is χ-bounded. Chudnovsky, Robertson, Seymour and Thomas
[3] confirmed Conjecture 1 on graphs of clique number at most 3 and showed that if G
is {K4, odd holes}-free, then χ(G) 6 4 (note that if G is {K3, odd holes}-free, then it is
bipartite).

In 2016, Scott and Seymour [20] proved that χ(G) 6 22ω(G)+2
for {odd holes}-free graph

G and thus confirmed Conjecture 1. As to Conjectures 2 and 3, Scott and Seymour [21]
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first proved that for each l > 0, every triangle-free graph with sufficiently large chromatic
number contains holes of l consecutive lengths, and thus confirmed them on triangle-
free graphs. Finally, Chudnovsky, Scott and Seymour [5] confirmed Conjecture 2, and
Chudnovsky, Scott, Seymour and Spirkl [6] confirmed Conjecture 3.

We use G to denote the family of graphs that have neither triangles nor quadrilaterals,
and have no odd holes of length larger than 5.

Robertson conjectured (see [16]) that the only 3-connected, internally 4-connected
graph in G is the Petersen graph. This conjecture is true if the requirement on internally 4-
connectivity is replaced by cubic [16]. Plummer and Zha [17] presented a counterexample
to Robertson’s conjecture, and posed a few new questions including (1) whether every
such graph has bounded chromatic number? and (2) how close to being perfect are these
graphs?

In this note, we prove that, for every graph G ∈ G, χ(G) 6 4 and χ(G) 6 3 if G has
radius at most 3 (Theorem 6), which answers the first question of Plummer and Zha, and
for each vertex u of G, the set of vertices of the same distance to u induces a bipartite
subgraph (Lemma 4), which answers the second question in some sense.

We introduce some notations. Let S be a subset of V (G), and let x be a vertex of G.
We use G[S] to denote the subgraph of G induced by S, and let NS(x) be the neighbors
of x in S. Let x and y be two vertices of G. An xy-path refers to a path from x to y. We
use dG(x, y) to denote the length of a shortest xy-path which is referred to as the distance
between the two vertices. A cycle of length k is simply called a k-cycle.

2 Proof of the main results

Recall that G denotes the family of graphs that have neither C3 nor C4, and have no odd
holes of length at least 7. First, we have the following lemma on the structure of graphs
in G.

Lemma 4. Let G be a graph in G, let u be an arbitrary vertex of G, and let Li = {x :
dG(u, x) = i} for i = 0, 1, 2, · · · . Then, G[Li] is bipartite for every i.

Proof. Since G has no C3, L0 = {u}, and G[L1] is an independent set. So the conclusion
holds for i = 0, 1. Suppose that, G[Li] is bipartite for each 0 6 i 6 h for some h > 1.

Let H = G[Lh+1], and suppose that H is not bipartite. Then, H has an odd cycle and
thus a 5-cycle, say u1u2u3u4u5u1. Let vi be a neighbor of ui in Lh. Since G has neither
C3 nor C4, vi 6= vj if i 6= j.

Among all paths of length h from u to v1 or v3, we choose P to be a uv1-path, and
P ′ to be a uv3-path, such that P and P ′ have the most common vertices. Let w ∈ Lj be
the last common vertex of P and P ′, let Pw = xjxj+1 . . . xh be the segment of P from w
to v1, and let P ′w = yjyj+1 . . . yh be the segment of P ′ from w to v3, where xj = yj = w,
xh = v1 and yh = v3. Then, j 6 h − 1, and thus C = wPwv1u1u5u4u3v3P

′
ww is an odd

cycle of length 2(h− j) + 5 > 7. Therefore, C has chords.
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By the choice of P and P ′, each chord of C must be of the form xiyi for some j + 2 6
i 6 h. Let i0 be the largest index such that xi0yi0 ∈ E(G). If i0 < h, then,

u1u2u3v3yh−1 . . . yi0xi0xi0+1 . . . xh−1v1u1

is an odd hole of length at least 7. Therefore, i0 = h, i.e., v1v3 ∈ E(G).
With the same arguments, we can show that {v2v4, v3v5, v4v1, v5v2} ⊆ E(G). It follows

that G[Lh] has a 5-cycle v1v3v5v2v4v1, a contradiction. Thus, Lemma 4 holds.

To prove our theorem, we need the following generalization of Brook’s theorem by
Gallai [9]. A graph G is said to be k-vertex-critical if χ(G) = k and χ(G− v) < χ(G) for
each vertex v.

Theorem 5. ([9]) Let G be a k-vertex-critical graph, and let V1 be the set of vertices of
degree k− 1 in G. Then every 2-connected induced subgraph of G[V1] is either a complete
graph or an odd hole.

Now, we are ready to state and prove our theorem.

Theorem 6. Let G be a graph in G. Then, χ(G) 6 4, and χ(G) 6 3 if G has radius at
most 3.

Proof. Let u be an arbitrary vertex of G, and let Li = {u : dG(u, v) = i} for an integer
i > 0. By Lemma 4, the vertices with even distance to u induce a bipartite subgraph, and
the vertices with odd distance to u induce a bipartite subgraph too. Therefore, χ(G) 6 4.

Next, we suppose that G has radius at most 3. Suppose that the conclusion does not
hold. Let G be a counterexample in G with the smallest order, i.e., every proper subgraph
of G is 3-colorable, and let k = max{i : Li 6= ∅}. Then,

k 6 3, G is 4-vertex-critical, and δ(G) > 3.

If k = 2, then χ(G) 6 3 as we may color L2 ∪ {u} with two colors by Lemma 4, and
color L1 with the third color. So, we suppose that k = 3.

We will show that
G[L2 ∪ L3] is bipartite.

Then, we may color L2 ∪L3 ∪ {u} with two colors, and color L1 with the third color, and
thus χ(G) 6 3.

Suppose to the contrary that G[L2 ∪ L3] is not bipartite. Then, G[L2 ∪ L3] has odd
cycles, and thus has 5-cycles. We choose C to be a 5-cycle in G[L2 ∪ L3] that maximizes
|V (C) ∩ L2|. Let C = u1u2u3u4u5u1, and let m = |V (C) ∩ L2|. By Lemma 4,

1 6 m 6 4.

We may assume that V (C) ∩ L2 does not contain two nonadjacent vertices. For
otherwise, let u1, u3 ∈ L2 by symmetry. Let P1 = uw1u1 and P2 = uw2u3 be two paths.
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SinceG has neither C3 nor C4, w1 6= w2, w1w2 6∈ E(G), and w1u1 and w2u3 are the only two
edges from {w1, w2} to {u1, u3}. Now, uw1u1u5u4u3w2u is an odd hole, a contradiction.

It follows that m 6 2, and if m = 2 then the two vertices in V (C) ∩ L2 must be
adjacent.

Suppose that m = 2, and let u1, u2 ∈ L2 by symmetry. Let x be a neighbor of u4 in
L2. Let P1 = uw1u1, P2 = uw2u2, and P3 = ux′x. It is clear that w1 6= w2, and so we
suppose by symmetry that x′ 6= w1. Now, uw1u1u5u4xx

′u is an odd hole.
Finally, the only remaining case is that m = 1, i.e.,

every 5-cycle of G[L2 ∪ L3] has a unique vertex in L2.

For convenience, we relabel the 5-cycle C as v0u0u1u2u3v0, and let v0 ∈ L2 by symme-
try. Let P = uw0v0, and let Pi = uwiviui for i ∈ {0, 1, 2}. It is certain that

{v0, v1, v2} is an independent set of size 3

as G has neither C3 nor C4.
If N(v1) ∩ L1 6= {w0}, we may choose P1 such that w1 6= w0, then w0v1, w1v0 6∈ E(G)

for otherwise G[{u,w0, w1, v0, v1}] will have a C4, and thus uw0v0u0u1v1w1u is an odd
hole. The same contradiction occurs if N(v2) ∩ L1 6= {w0}. Therefore, we have

(N(v0) ∪N(v1) ∪N(v2)) ∩ L1 = {w0}. (1)

Recall that for a subset S of vertices and a vertex z, NS(z) denotes the neighbors of
z in S.

Let B be the component of G[L3] that contains u0. We will show that

B is a cycle that can be labelled as u0u1 . . . u3q−1 for some integer q. (2)

and for each integer i and each integer j ∈ {0, 1, 2},

d(ui) = 3, and NL2(ui) = {vj} if i ≡ j mod 3. (3)

We proceed to prove (2) and (3), and prove (3) by induction first.
If NL2(u3) 6= {v0}, we may choose P3 = uw3v3u3 such that v3 6= v0, then v2 6= v3,

w3 6= w0, and {v2w3, w0v3, v2v3, w0w3} ∩ E(G) = ∅ by (1) (as G has neither C3 nor C4).
Now, uw3v3u3u2v2w0u is an odd hole (note that w2 = w0 by (1)), a contradiction. The
same happens if NL2(u0) 6= {v0}. So,

NL2(u0) ∪NL2(u3) = {v0}. (4)

Since δ(G) > 3 and k = 3, both |NB(u0)| > 1 and |NB(u3)| > 1. Choose u4 ∈
NB(u3) \ {u2}, and let P4 = uw4v4u4. If NL1(v4) 6= {w0}, we may choose P4 such that
w4 6= w0, then it is easy to check that uw0v0u3u4v4w4u would be an odd hole. So,

NL1(v4) = {w0}.
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If NL2(u4) 6= {v1}, we may choose P4 such that v4 6= v1, then w0v4u4u3u2u1v1w0 would
be an odd hole, a contradiction. So, we may suppose, by symmetry, that

NL2(x) = {v1} for every vertex x ∈ NB(u3) \ {u2}, (5)

and
NL2(y) = {v2} for every vertex y ∈ NB(u0) \ {u1}. (6)

Let u−1 be a vertex in NB(u0) \ {u1}. If NB(u0) 6= {u−1, u1}, choose z0 ∈ NB(u0) \
{u−1, u1}, then z0v2 ∈ E(G) by (6) and thus z0v2u−1u0z0 would be a C4. Therefore, we
may suppose, by (4) and by symmetry, that

N(u0) = {u−1, u1, v0} and N(u3) = {u2, u4, v0}.

By applying the same arguments as that used on C to 5-cycles v1u1u2u3u4v1 and
v2u−1u0u1u2v2, we see that

N(u1) = {u0, u2, v1} and N(u2) = {u1, u3, v2}.

We have proved (3) for i ∈ {0, 1, 2, 3}. Suppose that (3) holds for i ∈ {0, 1, . . . ,m},
where m > 3. Let i = m + 1, and suppose, without loss of generality, that m ≡ 1 (mod
3). Then, v1um−3um−2um−1umv1 is a 5-cycle, NL2(um−2) = {v2}, and NL2(um−1) = {v0}
by the inductive hypothesis. By applying the same argument to v1um−3um−2um−1umv1 as
that used on C, we see that

NL2(um+1) = {v2} and d(um+1) = 3.

Therefore, (3) holds for all i.
Since G is finite, there must be an integer j such that u0uj ∈ E(G). Suppose that

j ≡ r (mod 3). By (3), v0u0ujv0 would be a C3 if r = 0, and u0u1v1uju0 would be a C4 if
r = 1. Therefore, r = 2, and so B is a cycle of length j + 1 which is a multiple of 3. This
completes the proof of (2).

Let H be the subgraph of G induced by the vertices of degree 3. Now, B is a 2-
connected subgraph of H, which is neither complete nor an odd hole. This contradiction
to Theorem 5 shows that G[L2∪L3] is bipartite. Now, by coloring L2∪L3∪{u} with two
colors and coloring L1 with the third color, we can complete the proof of Theorem 6.

Finally, we would like to mention that in [17], Plummer and Zha also conjectured that
the graphs in G may have chromatic number at most 3. This problem is still open in
general.
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