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Abstract

An old question in Euclidean Ramsey theory asks, if the points in the plane are
red-blue coloured, does there always exist a red pair of points at unit distance or
five blue points in line separated by unit distances? An elementary proof answers
this question in the affirmative.

1 Introduction

Many problems in Euclidean Ramsey theory ask, for some d ∈ Z+, if the d-dimensional
Euclidean space Ed is coloured with r > 2 colours, does there exist a colour class containing
some desired geometric structure? Research in Euclidean Ramsey theory was surveyed in
[4–6] by Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus; for a more recent
survey, see Graham [7].

Say that two geometric configurations are congruent iff there exists an isometry (dis-
tance preserving bijection) between them. For d ∈ Z+, and geometric configurations F1,
F2, let the notation Ed → (F1, F2) mean that for any red-blue coloring of Ed, either the
red points contain a congruent copy of F1, or the blue points contain a congruent copy of
F2.

For a positive integer i, denote by `i the configuration of i collinear points with distance
1 between consecutive points. One of the results in [5] states that

E2 → (`2, `4). (1)

In the same paper, it was asked if E2 → (`2, `5), or perhaps a weaker result holds:
E3 → (`2, `5).

The result (1) was generalised by Juhász [10], who proved that if T4 is any configuration
of 4 points, then E2 → (`2, T4). Juhász [9] informed me that Iván’s thesis [8] contains
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a proof that for any configuration T5 of 5 points, E3 → (`2, T5) (which implies that
E3 → (`2, `5)). Arman and Tsaturian [1] proved that E3 → (`2, `6).

In this paper, it is proved that E2 → (`2, `5):

Theorem 1. Let the Euclidean space E2 be coloured in red and blue so that there are no
two red points distance 1 apart. Then there exist five blue points that form an `5.

The existence of a k, such that E2 6→ (`2, `k), was first noted by Erdős and Graham [3],
who mention the upper bound of “10000000, more or less”. A more precise bound for
k = 1010 follows from a recent result of Conlon and Fox [2], who showed that for all n > 2,
En 6→ (`2, `105n).

2 Proof of Theorem 1

The proof is by contradiction; it is assumed that there are no five blue points forming an
`5. The following lemmas are needed.

Lemma 2. Let E2 be coloured in red and blue so that there is no red `2. If there is no
blue `5, then there are no three blue points forming an equilateral triangle with side length
3 and with a red centre.

Proof. Suppose that E2 is coloured in red and blue so that there is no red `2 and no blue
`5. Suppose that blue points A, B and C form an equilateral triangle with side length 3
and with red centre O. Consider the part of the unit triangular lattice shown in Figure
1(a). The points D, E, F , G are blue, since they are distance 1 apart from O. The point
X is red; otherwise XADEB is a red `5. Similarly, Y is red (to prevent red Y AFGC).
Then X and Y are two red points distance 1 apart, which contradicts the assumption.
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Figure 1: Red points are denoted by diamonds, blue points are denoted by discs.
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Lemma 3. Let E2 be coloured in red and blue so that there is no red `2. If there is no
blue `5, then there are no three red points forming an equilateral triangle with side length
3 and with a red centre.

Proof. Suppose that E2 is coloured in red and blue so that there is no red `2 and no blue
`5. Suppose that blue points A, B and C form an equilateral triangle with side length 3
and with red centre O. Let A′, B′, C ′ be the images of A, B and C, respectively, under
a rotation about O so that AA′ = BB′ = CC ′ = 1 (see Figure 1(b)). Then A′, B′,
C ′ are blue and form an equilateral triangle with side length 3 and red center O, which
contradicts the result of Lemma 2.

Define T3, T4, T5, T6, T7 to be the configurations of three, four, five, six and seven
points (respectively), depicted in Figure 2 (all the smallest distances between the points
are equal to

√
3).

T3 T4 T5

T6 T7

Figure 2

Lemma 4. Let E2 be coloured in red and blue so that there is no red `2. If there is no
blue `5, then there are no seven red points forming a T7.

Proof. Suppose that E2 is coloured in red and blue so that there is no red `2 and no blue
`5. Suppose that A, B, C, D, E, F and G are red points forming a T7 (as in Figure 3).
Let X be the reflection of F in BC. Let X ′, A′, F ′ be the images of X, A, F , respectively,
under the clockwise rotation about B such that XX ′ = AA′ = FF ′ = 1. Since A and F
are red, A′ and F ′ are blue. If X ′ is blue, then X ′A′F ′ is a blue equilateral triangle with
side length 3 and red center B, which contradicts the result of Lemma 2. Therefore, X ′

is red.
Let X ′′, D′′, F ′′ be the images of X, D, F , respectively, under the clockwise rotation

about C such that XX ′′ = DD′′ = FF ′′ = 1. Since D and F are red, D′′ and F ′′ are
blue. If X ′′ is blue, then X ′′D′′F ′′ is a blue equilateral triangle with side length 3 and
red center C, which contradicts the result of Lemma 2. Therefore, X ′′ is red. Consider
the clockwise rotation through 60° about X. This rotation sends C to B, and so every
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point on the circle with radius
√

3 centered at C is sent to the corresponding point on the
circle with radius

√
3 centered at B; in particular, X ′ can be viewed as the image of X ′′.

Therefore XX ′X ′′ is a unit equilateral triangle, hence X ′X ′′ is a red `2, which contradicts
the assumption of the lemma.
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Figure 3

Lemma 5. Let E2 be coloured in red and blue so that there is no red `2. Let A, B, C
be three red points forming a T3. If there is no blue `5, then there exists a red T6 that
contains {A,B,C} as a subset.

Proof. Suppose that E2 is coloured in red and blue so that there is no red `2 and no blue
`5. Let A, B, C be three red points forming a T3. Consider the unit triangular lattice
depicted in Figure 4.

Suppose that there is no red point D such that A, B, C, D form a T4. Then points X,
Y , Z are blue. Points E, F , G, H, I, J are blue, since each of them is distance 1 apart
from a red point. If the point K is red, then the points L and M are blue and LMYGH is
a blue `5. Therefore, K is blue. Then N is red (otherwise KJIZN is a blue `5), hence P
and Q are blue, which leads to a blue `5 PQFEX. A contradiction is obtained, therefore
there exists a red point D such that A, B, C, D form a T4.
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Figure 4
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Let A, B, C, D form a red T4. Consider the part of the unit triangular lattice depicted
in Figure 5. Suppose that there is no red point E such that A, B, C, D, E form a T5.
Then the points X, F and G are blue. Points H, I, K, L, M , N are blue, since each of
them is distance 1 apart from a red point. Point P is red (otherwise FHIGP is a blue
`5), therefore Q and R are blue. Then X, N , M , Q, R form a blue `5, which gives a
contradiction. Hence, there exists a red point E such that A, B, C, D, E form a T5.
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Figure 5

Let A, B, C, D, E form a T5 (Figure 6). Suppose that F is blue. By Lemma 3, points
X and Y are blue (otherwise X, E, C (Y , A, D) form a red triangle with side length 3
and red center B). Points G, H, I, J , K, L, M , N are blue, since each one of them is
at distance 1 from a red point. If point P is blue, then Q is red (otherwise QPKLF is a
blue `5), U and T are blue and form a blue `5 with points G, H and X. Therefore, P is
red. Similarly, R is red (otherwise S is red and VWJIY is a blue `5). Then A, B, C, D,
E, P and R form a red T7, which is not possible by Lemma 4. Therefore, F is red and
A, B, C, D, E, F form a red T6.
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Figure 6

Lemma 6. Let E2 be coloured in red and blue so that there is no red `2. Let L be a unit
triangular lattice that contains three red points forming a T3. If there is no blue `5 in E2,
then the colouring of L is unique (up to translation or rotation by a multiple of 60°), and
is depicted in Figure 7.
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Figure 7

Proof. Suppose that E2 is coloured in red and blue so that there is no red `2 and no blue
`5. Suppose there exist three red points of L that form a T3. By Lemma 5, it may be
assumed that there is a red T6. Denote its points by A, B, C, D, E, F (see Figure 8). It
will be proved that the translate A′B′C ′D′E ′F ′ of ABCDEF by the vector of length 5

collinear to
−−→
AD is red.

Consider the points shown in Figure 8. Since A, D and F are red, by Lemma 3, I is
blue. Since C, F and D are red, by Lemma 3, J is blue. Points K, L, M , N are blue,
since each one is distance 1 apart from a red point. If R is red, then both P and Q are
blue and form a blue `5 with K, L and I. Therefore R is blue. Then the point A′ is red
(otherwise A′JNMR is a blue `5).

Since S1, S2, S3, S4 are blue (as distance 1 apart from red points D and A′), B′ is
red. Similarly, F ′ is red. Points V and W are blue as they are distance 1 apart from C.
Points U is blue by Lemma 3 (since A, D and B are red). If X is red, then X1 and X2

are blue and a blue `5 UVWX1X2 is formed. Therefore, X is blue. Similarly, Y is blue.
By Lemma 5, A′B′F ′ must be contained in a red T6, and since X and Y are blue, the
only possible such T6 is A′B′C ′D′E ′F ′. Hence, A′, B′, C ′, D′, E ′, F ′ are blue.

Similarly, the translates of ABCDEF by vectors of length 5 collinear to
−−→
EB and

−→
CF

are red. By repeatedly applying the same argument to the new red translates, it can be
seen that all the translates of ABCDEF by a multiple of 5 in L are red. All the other
points are blue, as each one is distance 1 apart from a red point. Hence, the colouring as
in Figure 7 is obtained.
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Lemma 7. Let E2 be coloured in red and blue so that there is no red `2. Let L be a unit
triangular lattice that does not contain three red points forming a T3. If there is no blue
`5 in E2, then the colouring of L is unique (up to translation or rotation by a multiple of
60°), and is depicted in Figure 9.

Figure 9

Proof. Suppose that E2 is coloured in red and blue so that there is no red `2 and no blue
`5.

If L does not contain a red point, then any `5 is blue, therefore L contains a red point
A. By Lemma 2, one of the points of L at distance

√
3 to A is red (otherwise the three

such points form a blue triangle with side length 3 and red centre A). Denote this point
by B (Figure 10). Since L does not contain a red T3, the points D and G are blue. Points
E, F , I, H, K, J are blue, since they are distance 1 apart from B. Then the point B′
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is red (otherwise blue `5 DEFGB′ is formed). Point N is 1 apart from B′, hence blue.
Then C and A′ are red (otherwise a blue `5 is formed).

By repeating the same argument for points B and C, B and A (instead of A and B),
and so on, it can be shown that any node of L on the line AB is red. Similarly, since A′

and B′ are both red, any node of L on the line A′B′ is red. By the same argument, A′′,
B′′ and any node on the line containing them is red; A′′′, B′′′ and any node on the line
containing them is red, and so on. By colouring all point distance 1 apart form red points
blue, the colouring in Figure 9 is obtained.
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Figure 10

Proof of Theorem 1. Let the Euclidean space E2 be coloured in red and blue so that there
are no two red points distance 1 apart. Suppose that there are no five blue points that
form an `5. Then there is a red point A. Consider two points B and C, both distance
5 apart from A, such that |BC| = 1. At least one of the points B and C (say, B)
is blue. Consider the unit triangular lattice L that contains A and B. By Lemma 6
and Lemma 7, L is coloured either as in Figure 7 or as in Figure 9. But neither one
of the colourings contains two points of different colour distance 5 apart, which gives a
contradiction. Therefore, there exist five blue points that form an `5.
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de Genève, L’Enseignement Mathématique, Geneva, 1980.
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