A Euclidean Ramsey result in the plane

Sergei Tsaturian
Department of Mathemarics
University of Manitoba
Winnipeg, Canada
s.tsaturian@gmail.com

Submitted: Jul 9, 2017; Accepted: Nov 12, 2017; Published: Nov 24, 2017
Mathematics Subject Classification: 05D10

Abstract

An old question in Euclidean Ramsey theory asks, if the points in the plane are red-blue coloured, does there always exist a red pair of points at unit distance or five blue points in line separated by unit distances? An elementary proof answers this question in the affirmative.

1 Introduction

Many problems in Euclidean Ramsey theory ask, for some $d \in \mathbb{Z}^{+}$, if the d-dimensional Euclidean space \mathbb{E}^{d} is coloured with $r \geqslant 2$ colours, does there exist a colour class containing some desired geometric structure? Research in Euclidean Ramsey theory was surveyed in [4-6] by Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus; for a more recent survey, see Graham [7].

Say that two geometric configurations are congruent iff there exists an isometry (distance preserving bijection) between them. For $d \in \mathbb{Z}^{+}$, and geometric configurations F_{1}, F_{2}, let the notation $\mathbb{E}^{d} \rightarrow\left(F_{1}, F_{2}\right)$ mean that for any red-blue coloring of \mathbb{E}^{d}, either the red points contain a congruent copy of F_{1}, or the blue points contain a congruent copy of F_{2}.

For a positive integer i, denote by ℓ_{i} the configuration of i collinear points with distance 1 between consecutive points. One of the results in [5] states that

$$
\begin{equation*}
\mathbb{E}^{2} \rightarrow\left(\ell_{2}, \ell_{4}\right) \tag{1}
\end{equation*}
$$

In the same paper, it was asked if $\mathbb{E}^{2} \rightarrow\left(\ell_{2}, \ell_{5}\right)$, or perhaps a weaker result holds: $\mathbb{E}^{3} \rightarrow\left(\ell_{2}, \ell_{5}\right)$.

The result (1) was generalised by Juhász [10], who proved that if T_{4} is any configuration of 4 points, then $\mathbb{E}^{2} \rightarrow\left(\ell_{2}, T_{4}\right)$. Juhász [9] informed me that Iván's thesis [8] contains
a proof that for any configuration T_{5} of 5 points, $\mathbb{E}^{3} \rightarrow\left(\ell_{2}, T_{5}\right)$ (which implies that $\left.\mathbb{E}^{3} \rightarrow\left(\ell_{2}, \ell_{5}\right)\right)$. Arman and Tsaturian [1] proved that $\mathbb{E}^{3} \rightarrow\left(\ell_{2}, \ell_{6}\right)$.

In this paper, it is proved that $\mathbb{E}^{2} \rightarrow\left(\ell_{2}, \ell_{5}\right)$:
Theorem 1. Let the Euclidean space \mathbb{E}^{2} be coloured in red and blue so that there are no two red points distance 1 apart. Then there exist five blue points that form an ℓ_{5}.

The existence of a k, such that $\mathbb{E}^{2} \nrightarrow\left(\ell_{2}, \ell_{k}\right)$, was first noted by Erdős and Graham [3], who mention the upper bound of " 10000000 , more or less". A more precise bound for $k=10^{10}$ follows from a recent result of Conlon and Fox [2], who showed that for all $n \geqslant 2$, $\mathbb{E}^{n} \nrightarrow\left(\ell_{2}, \ell_{10^{5 n}}\right)$.

2 Proof of Theorem 1

The proof is by contradiction; it is assumed that there are no five blue points forming an ℓ_{5}. The following lemmas are needed.

Lemma 2. Let \mathbb{E}^{2} be coloured in red and blue so that there is no red ℓ_{2}. If there is no blue ℓ_{5}, then there are no three blue points forming an equilateral triangle with side length 3 and with a red centre.

Proof. Suppose that \mathbb{E}^{2} is coloured in red and blue so that there is no red ℓ_{2} and no blue ℓ_{5}. Suppose that blue points A, B and C form an equilateral triangle with side length 3 and with red centre O. Consider the part of the unit triangular lattice shown in Figure 1(a). The points D, E, F, G are blue, since they are distance 1 apart from O. The point X is red; otherwise $X A D E B$ is a red ℓ_{5}. Similarly, Y is red (to prevent red $Y A F G C$). Then X and Y are two red points distance 1 apart, which contradicts the assumption.

Figure 1: Red points are denoted by diamonds, blue points are denoted by discs.

Lemma 3. Let \mathbb{E}^{2} be coloured in red and blue so that there is no red ℓ_{2}. If there is no blue ℓ_{5}, then there are no three red points forming an equilateral triangle with side length 3 and with a red centre.

Proof. Suppose that \mathbb{E}^{2} is coloured in red and blue so that there is no red ℓ_{2} and no blue ℓ_{5}. Suppose that blue points A, B and C form an equilateral triangle with side length 3 and with red centre O. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the images of A, B and C, respectively, under a rotation about O so that $A A^{\prime}=B B^{\prime}=C C^{\prime}=1$ (see Figure 1(b)). Then A^{\prime}, B^{\prime}, C^{\prime} are blue and form an equilateral triangle with side length 3 and red center O, which contradicts the result of Lemma 2.

Define $\mathfrak{T}_{3}, \mathfrak{T}_{4}, \mathfrak{T}_{5}, \mathfrak{T}_{6}, \mathfrak{T}_{7}$ to be the configurations of three, four, five, six and seven points (respectively), depicted in Figure 2 (all the smallest distances between the points are equal to $\sqrt{3}$).

Figure 2
Lemma 4. Let \mathbb{E}^{2} be coloured in red and blue so that there is no red ℓ_{2}. If there is no blue ℓ_{5}, then there are no seven red points forming a \mathfrak{T}_{7}.

Proof. Suppose that \mathbb{E}^{2} is coloured in red and blue so that there is no red ℓ_{2} and no blue ℓ_{5}. Suppose that A, B, C, D, E, F and G are red points forming a \mathfrak{T}_{7} (as in Figure 3). Let X be the reflection of F in $B C$. Let $X^{\prime}, A^{\prime}, F^{\prime}$ be the images of X, A, F, respectively, under the clockwise rotation about B such that $X X^{\prime}=A A^{\prime}=F F^{\prime}=1$. Since A and F are red, A^{\prime} and F^{\prime} are blue. If X^{\prime} is blue, then $X^{\prime} A^{\prime} F^{\prime}$ is a blue equilateral triangle with side length 3 and red center B, which contradicts the result of Lemma 2. Therefore, X^{\prime} is red.

Let $X^{\prime \prime}, D^{\prime \prime}, F^{\prime \prime}$ be the images of X, D, F, respectively, under the clockwise rotation about C such that $X X^{\prime \prime}=D D^{\prime \prime}=F F^{\prime \prime}=1$. Since D and F are red, $D^{\prime \prime}$ and $F^{\prime \prime}$ are blue. If $X^{\prime \prime}$ is blue, then $X^{\prime \prime} D^{\prime \prime} F^{\prime \prime}$ is a blue equilateral triangle with side length 3 and red center C, which contradicts the result of Lemma 2. Therefore, $X^{\prime \prime}$ is red. Consider the clockwise rotation through 60° about X. This rotation sends C to B, and so every
point on the circle with radius $\sqrt{3}$ centered at C is sent to the corresponding point on the circle with radius $\sqrt{3}$ centered at B; in particular, X^{\prime} can be viewed as the image of $X^{\prime \prime}$. Therefore $X X^{\prime} X^{\prime \prime}$ is a unit equilateral triangle, hence $X^{\prime} X^{\prime \prime}$ is a red ℓ_{2}, which contradicts the assumption of the lemma.

Figure 3
Lemma 5. Let \mathbb{E}^{2} be coloured in red and blue so that there is no red ℓ_{2}. Let A, B, C be three red points forming $a \mathfrak{T}_{3}$. If there is no blue ℓ_{5}, then there exists a red \mathfrak{T}_{6} that contains $\{A, B, C\}$ as a subset.

Proof. Suppose that \mathbb{E}^{2} is coloured in red and blue so that there is no red ℓ_{2} and no blue ℓ_{5}. Let A, B, C be three red points forming a \mathfrak{T}_{3}. Consider the unit triangular lattice depicted in Figure 4.

Suppose that there is no red point D such that A, B, C, D form a \mathfrak{T}_{4}. Then points X, Y, Z are blue. Points E, F, G, H, I, J are blue, since each of them is distance 1 apart from a red point. If the point K is red, then the points L and M are blue and $L M Y G H$ is a blue ℓ_{5}. Therefore, K is blue. Then N is red (otherwise $K J I Z N$ is a blue ℓ_{5}), hence P and Q are blue, which leads to a blue $\ell_{5} P Q F E X$. A contradiction is obtained, therefore there exists a red point D such that A, B, C, D form a \mathfrak{T}_{4}.

Figure 4

Let A, B, C, D form a red \mathfrak{T}_{4}. Consider the part of the unit triangular lattice depicted in Figure 5. Suppose that there is no red point E such that A, B, C, D, E form a \mathfrak{T}_{5}. Then the points X, F and G are blue. Points H, I, K, L, M, N are blue, since each of them is distance 1 apart from a red point. Point P is red (otherwise FHIGP is a blue ℓ_{5}), therefore Q and R are blue. Then X, N, M, Q, R form a blue ℓ_{5}, which gives a contradiction. Hence, there exists a red point E such that A, B, C, D, E form a \mathfrak{T}_{5}.

Figure 5

Let A, B, C, D, E form a \mathfrak{T}_{5} (Figure 6). Suppose that F is blue. By Lemma 3, points X and Y are blue (otherwise $X, E, C(Y, A, D)$ form a red triangle with side length 3 and red center B). Points G, H, I, J, K, L, M, N are blue, since each one of them is at distance 1 from a red point. If point P is blue, then Q is red (otherwise $Q P K L F$ is a blue ℓ_{5}), U and T are blue and form a blue ℓ_{5} with points G, H and X. Therefore, P is red. Similarly, R is red (otherwise S is red and $V W J I Y$ is a blue ℓ_{5}). Then A, B, C, D, E, P and R form a red \mathfrak{T}_{7}, which is not possible by Lemma 4. Therefore, F is red and A, B, C, D, E, F form a red \mathfrak{T}_{6}.

Figure 6
Lemma 6. Let \mathbb{E}^{2} be coloured in red and blue so that there is no red ℓ_{2}. Let \mathfrak{L} be a unit triangular lattice that contains three red points forming a \mathfrak{T}_{3}. If there is no blue ℓ_{5} in \mathbb{E}^{2}, then the colouring of \mathfrak{L} is unique (up to translation or rotation by a multiple of 60°), and is depicted in Figure 7.

Figure 7

Proof. Suppose that \mathbb{E}^{2} is coloured in red and blue so that there is no red ℓ_{2} and no blue ℓ_{5}. Suppose there exist three red points of \mathfrak{L} that form a \mathfrak{T}_{3}. By Lemma 5 , it may be assumed that there is a red \mathfrak{T}_{6}. Denote its points by A, B, C, D, E, F (see Figure 8). It will be proved that the translate $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ of $A B C D E F$ by the vector of length 5 collinear to $\overrightarrow{A D}$ is red.

Consider the points shown in Figure 8. Since A, D and F are red, by Lemma 3, I is blue. Since C, F and D are red, by Lemma $3, J$ is blue. Points K, L, M, N are blue, since each one is distance 1 apart from a red point. If R is red, then both P and Q are blue and form a blue ℓ_{5} with K, L and I. Therefore R is blue. Then the point A^{\prime} is red (otherwise $A^{\prime} J N M R$ is a blue ℓ_{5}).

Since $S_{1}, S_{2}, S_{3}, S_{4}$ are blue (as distance 1 apart from red points D and A^{\prime}), B^{\prime} is red. Similarly, F^{\prime} is red. Points V and W are blue as they are distance 1 apart from C. Points U is blue by Lemma 3 (since A, D and B are red). If X is red, then X_{1} and X_{2} are blue and a blue $\ell_{5} U V W X_{1} X_{2}$ is formed. Therefore, X is blue. Similarly, Y is blue. By Lemma $5, A^{\prime} B^{\prime} F^{\prime}$ must be contained in a red \mathfrak{T}_{6}, and since X and Y are blue, the only possible such \mathfrak{T}_{6} is $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$. Hence, $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$ are blue.

Similarly, the translates of $A B C D E F$ by vectors of length 5 collinear to $\overrightarrow{E B}$ and $\overrightarrow{C F}$ are red. By repeatedly applying the same argument to the new red translates, it can be seen that all the translates of $A B C D E F$ by a multiple of 5 in \mathfrak{L} are red. All the other points are blue, as each one is distance 1 apart from a red point. Hence, the colouring as in Figure 7 is obtained.

Figure 8
Lemma 7. Let \mathbb{E}^{2} be coloured in red and blue so that there is no red ℓ_{2}. Let \mathfrak{L} be a unit triangular lattice that does not contain three red points forming a \mathfrak{T}_{3}. If there is no blue ℓ_{5} in \mathbb{E}^{2}, then the colouring of \mathfrak{L} is unique (up to translation or rotation by a multiple of 60°), and is depicted in Figure 9.

Figure 9

Proof. Suppose that \mathbb{E}^{2} is coloured in red and blue so that there is no red ℓ_{2} and no blue ℓ_{5}.

If \mathfrak{L} does not contain a red point, then any ℓ_{5} is blue, therefore \mathfrak{L} contains a red point A. By Lemma 2 , one of the points of \mathfrak{L} at distance $\sqrt{3}$ to A is red (otherwise the three such points form a blue triangle with side length 3 and red centre A). Denote this point by B (Figure 10). Since \mathfrak{L} does not contain a red \mathfrak{T}_{3}, the points D and G are blue. Points E, F, I, H, K, J are blue, since they are distance 1 apart from B. Then the point B^{\prime}
is red (otherwise blue $\ell_{5} D E F G B^{\prime}$ is formed). Point N is 1 apart from B^{\prime}, hence blue. Then C and A^{\prime} are red (otherwise a blue ℓ_{5} is formed).

By repeating the same argument for points B and C, B and A (instead of A and B), and so on, it can be shown that any node of \mathfrak{L} on the line $A B$ is red. Similarly, since A^{\prime} and B^{\prime} are both red, any node of \mathfrak{L} on the line $A^{\prime} B^{\prime}$ is red. By the same argument, $A^{\prime \prime}$, $B^{\prime \prime}$ and any node on the line containing them is red; $A^{\prime \prime \prime}, B^{\prime \prime \prime}$ and any node on the line containing them is red, and so on. By colouring all point distance 1 apart form red points blue, the colouring in Figure 9 is obtained.

Figure 10

Proof of Theorem 1. Let the Euclidean space \mathbb{E}^{2} be coloured in red and blue so that there are no two red points distance 1 apart. Suppose that there are no five blue points that form an ℓ_{5}. Then there is a red point A. Consider two points B and C, both distance 5 apart from A, such that $|B C|=1$. At least one of the points B and C (say, B) is blue. Consider the unit triangular lattice \mathfrak{L} that contains A and B. By Lemma 6 and Lemma $7, \mathfrak{L}$ is coloured either as in Figure 7 or as in Figure 9. But neither one of the colourings contains two points of different colour distance 5 apart, which gives a contradiction. Therefore, there exist five blue points that form an ℓ_{5}.

Acknowledgements

I would like to thank Ron Graham and Rozália Juhász for providing information about the current state of the problem. I would like to thank Andrii Arman and David Gunderson for valuable comments and suggestions.

References

[1] A. Arman and S. Tsaturian, A result in asymmetric Euclidean Ramsey theory, preprint available at arXiv:1702.04799, accessed 13 Nov 2017.
[2] D. Conlon and J. Fox, Lines in Euclidean Ramsey theory, preprint available at arXiv:1705.02166, accessed 13 Nov 2017.
[3] P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique, vol. 28, Université de Genève, L'Enseignement Mathématique, Geneva, 1980.
[4] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. I, J. Combin. Theory Ser. A 14 (1973), 341-363.
[5] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. II, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 529-557. Colloq. Math. Soc. János Bolyai, Vol. 10.
[6] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. III, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdös on his 60th birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 559-583. Colloq. Math. Soc. János Bolyai, Vol. 10.
[7] R. L. Graham, Euclidean Ramsey theory, in Handbook of discrete and computational geometry (J. E. Goodman and J. O'Rourke, Eds.), 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2004.
[8] L. Iván, Monochromatic point sets in the plane and in the space, 1979. Master's Thesis, University of Szeged, Bolyai Institute (in Hungarian).
[9] R. Juhász, Personal communication (10 February 2017).
[10] R. Juhász, Ramsey type theorems in the plane, J. Combin. Theory Ser. A 27 (1979), 152-160.

