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Abstract

In this note we consider a Ramsey type result for partially ordered sets. In
particular, we give an alternative short proof of a theorem for a posets with multiple
linear extensions recently obtained by Solecki and Zhao (2017).
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1 Preliminary definitions

A poset is a pair (X,PX), where X is a set and PX is a partial order on X. We consider
partial orders that are strict, i.e. not reflexive.

We say that a partial order LX on X extends a partial order PX on X if for all x, y ∈ X

xPXy ⇒ xLXy.

If (X,PX) is a poset and U ⊂ X we denote by PX |U the restriction of PX onto U .
Below, we consider collections LXk = (LX1 , L

X
2 , . . . , L

X
k ), where each of LXi is a linear

order on X.

Definition 1. We denote by PL(k) the set consisting of all triplets (X,PX ,LXk ), where
(X,PX) is a poset and each LXi for i ∈ [k] is a linear order that extends PX .

Definition 2. Let X ,Y ∈ PL(k), where X = (X,PX ,LXk ) and Y = (Y, P Y ,LYk ). We
write X ⊆ Y if
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• X ⊆ Y and P Y |X extends PX .

• LYi |X = LXi for all i ∈ [k].

Definition 3. Let X ,Y ∈ PL(k), where X = (X,PX ,LXk ) and Y = (Y, P Y ,LYk ). We say
that a mapping π : X → Y is order preserving for X and Y if for any i ∈ [k] and any
x, y ∈ X we have

xLXi y ⇔ π(x)LYi π(y) and xPXy ⇔ π(x)P Y π(y).

Definition 4. We say that π is an isomorphism between X ∈ PL(k) and X̃ ∈ PL(k) if it
is order preserving bijection. We say that X ∈ PL(k) is isomorphic to X̃ ∈ PL(k) if there
is an isomorphism between X and X̃ .

Definition 5. Let k > 0 and X ,Y ∈ PL(k). We say that X̃ ∈ PL(k) is a copy of X in Y
if X̃ ⊆ Y and X̃ is isomorphic to X . For X ,Y ∈ PL(k) denote by

(Y
X

)
the set of all copies

of X in Y .

For any X̃ ∈
(Y
X

)
there is unique order preserving mapping π : X → X̃. On other

hand, any order preserving mapping π : X → Y induces a copy X̃ = π(X ) ∈
(Y
X

)
. We

identify each X̃ ∈
(Y
X

)
with corresponding order preserving mapping π and will say that

π is a copy of X in Y instead of saying that X̃ is a copy of X in Y with corresponding
order preserving mapping π.

The following theorem follows from the result of [3] (see [2] and [4]). Different proof
of Theorem 6 was also given by Sokić [9] (using results of [5] and [1]).

Theorem 6. For any integer r and any X ,Y ∈ PL(1) there is Z ∈ PL(1), such that for

any r-colouring of set
(Z
X

)
there is Ỹ, a copy of Y in Z, such that

(Ỹ
X

)
is monochromatic.

Next theorem is a product version of the Theorem 6, that we are going to use in
Section 3. Proof of this theorem is based on a standard folkloristic product argument.
For similar results of this type see e.g. [6].

Theorem 7. For any Xi,Yi ∈ PL(1) with i ∈ [k] there are Zi ∈ PL(1) with i ∈ [k], such
that for any 2-colouring of set

(Z1

X1

)
× · · · ×

(Zk
Xk

)
there are Ỹi, a copies of Yi in Zi for

i ∈ [k], such that
(Ỹ1
X1

)
× · · · ×

(Ỹk
Xk

)
is monochromatic.

Based on Theorem 7, in Section 3 we provide a proof of the following result, first
obtained in [7].

Theorem 8. For any integer k any A,B ∈ PL(k) there is C ∈ PL(k), such that for any

colouring 2-colouring of set
(C
A

)
there is B̃, a copy of B in C, such that

(B̃
A

)
is monochro-

matic.

To distinguish between the objects of PL(1), which play a special role in our proof,
and PL(k) for k > 2, from now on, we use letters X , Y and Z for elements of PL(1) and
A, B, C for elements of PL(k).

For the ease of notation we will give a proof of Theorem 8 for case k = 2. The proof
of the general case follows the same lines (and is accessible on arxiv.org).
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2 Properties of join and canonical copies

First, we define the join of two elements of PL(1).

Definition 9. Let Zi = (Zi, P
Zi , LZi) ∈ PL(1) for i = 1, 2. Define C = Z1 t Z2 by

C = (Z1 × Z2, <C, <lx1 , <lx2),

where Z1 × Z2 is Cartesian product of sets Z1 and Z2, <C is a partial order and
<lx1 , <lx2 are linear orders on Z1 × Z2 defined by:

(x1, x2) <C (y1, y2)⇔ x1P
Z1y1 and x2P

Z2y2 ,

(x1, x2) <lx1 (y1, y2)⇔ x1L
Z1y1 or {x1 = y1 and x2L

Z2y2 },

(x1, x2) <lx2 (y1, y2)⇔ x2L
Z2y2 or {x2 = y2 and x1L

Z1y1 }.

We say that Z1 t Z2 is the join of Z1 and Z2.

Note, that for Z1,Z2 ∈ PL(1) we have that Z1 t Z2 ∈ PL(2). Indeed, since both LZi

extend PZi we infer that both <lxi also extend <C for i = 1, 2.

Claim 10. Let Zi = (Zi, P
Zi , LZi) ∈ PL(1) for i = 1, 2 and let B = (Y, P Y , LY1 , L

Y
2 ) ∈

PL(2). Set C = Z1 t Z2 and let πi : Y → Zi be a copy of Yi = (Y, P Y , LYi ) in Zi for
i = 1, 2. Then the image of the mapping π : Y → Z1 × Z2, defined by

π(y) = (π1(y), π2(y))

for each y ∈ Y , is a copy of B in
(C
B

)
.

Remark 11.

• We say that the image of the mapping π from Claim 10, is a canonical copy of B in
C = Z1 t Z2.

• By
(C
B

)
can
⊆

(C
B

)
we denote a set of all canonical copies of B in C.

Proof. We need to verify that π : Y → Z1 × Z2 is order preserving for A and C. Indeed,
we observe that if x, y ∈ Y , then fact that πi : Y → Zi preserves P Y for i = 1, 2 combined
with definition of Z1 t Z2 yields

xP Y y ⇔ π1(x)PZ1π1(y),
π2(x)PZ2π2(y)

⇔ π(x) <C π(y).

Since πi preserves LYi for i = 1, 2 , we have

xLYi y ⇔ πi(x)LZii πi(y)⇔ π(x) <lxi π(y)

for i = 1, 2. Hence, π preserves P Y and LYi for i = 1, 2.
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For the rest of this section we assume that C = Z1 t Z2 = (Z1 × Z2, <C, <lx1 , <lx2),
A = (X,PX , LX1 , L

X
2 ) and B = (Y, P Y , LY1 , L

Y
2 ).

Fact 12. By construction,
(C
A

)
can

is in 1-1 correspondence with the set
(Z1

X1

)
×
(Z2

X2

)
and the

function λ : (π1(X), π2(X)) 7→ π(X) is the bijection between sets
(Z1

X1

)
×
(Z2

X2

)
and

(C
A

)
can

.

The following Claim states that if π is a canonical copy of B in C and Ã is a copy of
A in B, then π(Ã) is a canonical copy of A in C.

Claim 13. If π ∈
(C
B

)
can

and τ ∈
(B
A

)
, then σ = π ◦ τ ∈

(C
A

)
can

.

Proof. Since π : Y → Z1 × Z2 is a canonical copy, we have that π = (π1, π2), where
πi : Y → Zi are copies of Y in Zi for i = 1, 2. Define σi = πi ◦ τ for i = 1, 2. It is sufficient
to prove that for i = 1, 2 σi is order preserving for X and Zi.

Indeed, since τ preserves PX , LX1 , L
X
2 and that πi preserves P Y , LYi for i = 1, 2, we

have for any x, y ∈ X and for i = 1, 2

xPXy ⇔ τ(x)P Y τ(y)⇔ πi(τ(x))PZiπi(τ(y))⇔ σi(x)PZiσi(y),

xLXi y ⇔ τ(x)LYi τ(y)⇔ πi(τ(x))LZiπi(τ(y))⇔ σi(x)LZiσi(y).

Consequently, for i = 1, 2, σi is order preserving for X and Zi, and σ = (σ1, σ2) is a
canonical copy of A in C.

Our final Claim states that if B̃ is a canonical copy of B in C, and Ã is a copy of A in
B̃, then Ã is a canonical copy of A in C.

Claim 14. If π ∈
(C
B

)
can

and σ ∈
(
π(B)
A

)
, then σ ∈

(C
A

)
can

.

Proof. Since π is an isomorphism between B and π(B), the mapping π−1 exists and is
order preserving for π(B) and B. Since σ : A → σ(A) ⊆ π(B) and π−1 : π(B) → B, the
mapping τ = π−1 ◦ σ : A → B is well defined. Moreover, σ and π−1 are order preserving,
so is also τ . Finally, Claim 13 applied for π and τ gives that π ◦ τ = σ is a canonical copy
of A.

3 Proof of Theorem 8

Let A = (X,PX , LX1 , L
X
2 ) and B = (Y, P Y , LY1 , L

Y
2 ) be given. Applying Theorem 7

with Xi = (X,PX , LXi ) for i = 1, 2 and Yi = (Y, P Y , LYi ) for i = 1, 2 we obtain Zi =
(Zi, P

Zi , LZii ) for i = 1, 2.
Set C = Z1 t Z2. Let χ :

(C
A

)
→ {red, blue} be a colouring. Since

(C
A

)
can
⊆

(C
A

)
,

colouring χ induces {red, blue} colouring of
(C
A

)
can

. By Fact 12,
(Z1

X1

)
×

(Z2

X2

)
and

(C
A

)
can

are in 1-1 correspondence and thus χ induces a colouring of
(Z1

X1

)
×

(Z2

X2

)
. By a choice of

Z1 and Z2 (recall that Zi ∈ PL(1), i = 1, 2) there are Ỹi ∈
(Zi
Yi

)
for i = 1, 2, such that
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(Ỹ1
X1

)
×

(Ỹ2
X2

)
is monochromatic and w.l.o.g we assume that all elements of

(Ỹ1
X1

)
×

(Ỹ2
X2

)
are

red.
Let πi : Yi → Zi be a copy of Yi in Zi, such that πi(Yi) = Ỹi for i = 1, 2. Then, by

Claim 10, the mapping π : Y → Z1 × Z2 defined by π(y) = (π1(y), π2(y)) is a canonical
copy of B in C (see Remark 11) i.e. π ∈

(C
B

)
can

. Let σ ∈
(
π(B)
A

)
, then, by Claim 14,

σ ∈
(
π(B)
A

)
can

.

Therefore, σ is of the form σ(x) = (σ1(x), σ2(x)), where σ1 ∈
(Ỹ1
X1

)
and σ2 ∈

(Ỹ2
X2

)
.

Since all elements of
(Ỹ1
X1

)
×

(Ỹ2
X2

)
are red, we get that the pair (σ1, σ2) and σ itself is red.

Consequently, every element of
(
π(B)
A

)
is colored red.

Concluding remarks

We chose to present the argument for k = 2 for its notational ease. With the concept of
join of two posets replaced with join of k posets, as in definition below, the proof follows
the line of the argument presented in this note.

Definition 15. Let Zi = (Zi, P
Zi , LZi) ∈ PL(1) for i ∈ [k] and set C = Πk

i=1Zi.
Define partial order <C on set C by x <C y if xiP

Ziyi for all i ∈ [k].
For all i ∈ [k] define shifted lexicographic orders <lxi on set Πk

i=1Zi, by

x <lxi y ⇔ xi+δL
Zi+δyi+δ,

where δ is the smallest non-negative number j, for which xi+j 6= yi+j (with addition mod
k). Let LCk = (<lx1 , <lx2 , . . . , <lxk). Then the join of Z1, . . . ,Zk is

C = (C,<C ,LCk ).

During preparation of this paper it was brought to our attention that Theorem 8 also
follows from the results of Sokić [8]. Alternative proof of Theorem 8 can be deduced from
Theorem 1 in [8] and follows the same steps as the proof presented in this note.

The original version of this note is available on arxiv.org.

References
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