Note on a Ramsey theorem for posets with linear extensions

Andrii Arman

Vojtěch Rödl*

Department of Mathematics and Computer Sciences

Department of Mathematics University of Manitoba Winnipeg, Canada

Emory University Atlanta, U.S.A.

armana@myumanitoba.ca

rodl@mathcs.emory.edu

Submitted: Aug 19, 2016; Accepted: Nov 17, 2017; Published: Dec 8, 2017 Mathematics Subject Classifications: 05C55, 06A07

Abstract

In this note we consider a Ramsey type result for partially ordered sets. In particular, we give an alternative short proof of a theorem for a posets with multiple linear extensions recently obtained by Solecki and Zhao (2017).

Keywords: Ramsey theorem; posets

1 Preliminary definitions

A poset is a pair (X, P^X) , where X is a set and P^X is a partial order on X. We consider partial orders that are strict, i.e. not reflexive.

We say that a partial order L^X on X extends a partial order P^X on X if for all $x, y \in X$

$$xP^Xy \Rightarrow xL^Xy.$$

If (X, P^X) is a poset and $U \subset X$ we denote by $P^X|_U$ the restriction of P^X onto U.

Below, we consider collections $\mathcal{L}_k^X = (L_1^X, L_2^X, \dots, L_k^X)$, where each of L_i^X is a linear order on X.

Definition 1. We denote by $PL^{(k)}$ the set consisting of all triplets $(X, P^X, \mathcal{L}_k^X)$, where (X, P^X) is a poset and each L_i^X for $i \in [k]$ is a linear order that extends P^X .

Definition 2. Let $\mathcal{X}, \mathcal{Y} \in PL^{(k)}$, where $\mathcal{X} = (X, P^X, \mathcal{L}_k^X)$ and $\mathcal{Y} = (Y, P^Y, \mathcal{L}_k^Y)$. We write $\mathcal{X} \subseteq \mathcal{Y}$ if

^{*}Supported by NSF grant DMS 1301698

THE ELECTRONIC JOURNAL OF COMBINATORICS 24(4) (2017), #P4.36

- $X \subseteq Y$ and $P^Y|_X$ extends P^X .
- $L_i^Y|_X = L_i^X$ for all $i \in [k]$.

Definition 3. Let $\mathcal{X}, \mathcal{Y} \in PL^{(k)}$, where $\mathcal{X} = (X, P^X, \mathcal{L}_k^X)$ and $\mathcal{Y} = (Y, P^Y, \mathcal{L}_k^Y)$. We say that a mapping $\pi : X \to Y$ is order preserving for \mathcal{X} and \mathcal{Y} if for any $i \in [k]$ and any $x, y \in X$ we have

$$xL_i^X y \Leftrightarrow \pi(x)L_i^Y \pi(y) \text{ and } xP^X y \Leftrightarrow \pi(x)P^Y \pi(y).$$

Definition 4. We say that π is an isomorphism between $\mathcal{X} \in PL^{(k)}$ and $\tilde{\mathcal{X}} \in PL^{(k)}$ if it is order preserving bijection. We say that $\mathcal{X} \in PL^{(k)}$ is isomorphic to $\tilde{\mathcal{X}} \in PL^{(k)}$ if there is an isomorphism between \mathcal{X} and $\tilde{\mathcal{X}}$.

Definition 5. Let k > 0 and $\mathcal{X}, \mathcal{Y} \in PL^{(k)}$. We say that $\tilde{\mathcal{X}} \in PL^{(k)}$ is a copy of \mathcal{X} in \mathcal{Y} if $\tilde{\mathcal{X}} \subseteq \mathcal{Y}$ and $\tilde{\mathcal{X}}$ is isomorphic to \mathcal{X} . For $\mathcal{X}, \mathcal{Y} \in PL^{(k)}$ denote by $\begin{pmatrix} \mathcal{Y} \\ \mathcal{X} \end{pmatrix}$ the set of all copies of \mathcal{X} in \mathcal{Y} .

For any $\tilde{\mathcal{X}} \in {\mathcal{Y} \choose \mathcal{X}}$ there is unique order preserving mapping $\pi : X \to \tilde{X}$. On other hand, any order preserving mapping $\pi : X \to Y$ induces a copy $\tilde{\mathcal{X}} = \pi(\mathcal{X}) \in {\mathcal{Y} \choose \mathcal{X}}$. We identify each $\tilde{\mathcal{X}} \in {\mathcal{Y} \choose \mathcal{X}}$ with corresponding order preserving mapping π and will say that π is a copy of \mathcal{X} in \mathcal{Y} instead of saying that $\tilde{\mathcal{X}}$ is a copy of \mathcal{X} in \mathcal{Y} with corresponding order preserving mapping π .

The following theorem follows from the result of [3] (see [2] and [4]). Different proof of Theorem 6 was also given by Sokić [9] (using results of [5] and [1]).

Theorem 6. For any integer r and any $\mathcal{X}, \mathcal{Y} \in PL^{(1)}$ there is $\mathcal{Z} \in PL^{(1)}$, such that for any r-colouring of set $\begin{pmatrix} \mathcal{Z} \\ \mathcal{X} \end{pmatrix}$ there is $\tilde{\mathcal{Y}}$, a copy of \mathcal{Y} in \mathcal{Z} , such that $\begin{pmatrix} \tilde{\mathcal{Y}} \\ \mathcal{X} \end{pmatrix}$ is monochromatic.

Next theorem is a product version of the Theorem 6, that we are going to use in Section 3. Proof of this theorem is based on a standard folkloristic product argument. For similar results of this type see e.g. [6].

Theorem 7. For any $\mathcal{X}_i, \mathcal{Y}_i \in PL^{(1)}$ with $i \in [k]$ there are $\mathcal{Z}_i \in PL^{(1)}$ with $i \in [k]$, such that for any 2-colouring of set $\binom{\mathcal{Z}_1}{\mathcal{X}_1} \times \cdots \times \binom{\mathcal{Z}_k}{\mathcal{X}_k}$ there are $\tilde{\mathcal{Y}}_i$, a copies of \mathcal{Y}_i in \mathcal{Z}_i for $i \in [k]$, such that $\binom{\tilde{\mathcal{Y}}_1}{\mathcal{X}_1} \times \cdots \times \binom{\tilde{\mathcal{Y}}_k}{\mathcal{X}_k}$ is monochromatic.

Based on Theorem 7, in Section 3 we provide a proof of the following result, first obtained in [7].

Theorem 8. For any integer k any $\mathcal{A}, \mathcal{B} \in PL^{(k)}$ there is $\mathcal{C} \in PL^{(k)}$, such that for any colouring 2-colouring of set $\begin{pmatrix} \mathcal{C} \\ \mathcal{A} \end{pmatrix}$ there is $\tilde{\mathcal{B}}$, a copy of \mathcal{B} in \mathcal{C} , such that $\begin{pmatrix} \tilde{\mathcal{B}} \\ \mathcal{A} \end{pmatrix}$ is monochromatic.

To distinguish between the objects of $PL^{(1)}$, which play a special role in our proof, and $PL^{(k)}$ for $k \ge 2$, from now on, we use letters \mathcal{X} , \mathcal{Y} and \mathcal{Z} for elements of $PL^{(1)}$ and \mathcal{A} , \mathcal{B} , \mathcal{C} for elements of $PL^{(k)}$.

For the ease of notation we will give a proof of Theorem 8 for case k = 2. The proof of the general case follows the same lines (and is accessible on arxiv.org).

The electronic journal of combinatorics $\mathbf{24(4)}$ (2017), #P4.36

2 Properties of join and canonical copies

First, we define the join of two elements of $PL^{(1)}$.

Definition 9. Let $\mathcal{Z}_i = (Z_i, P^{Z_i}, L^{Z_i}) \in PL^{(1)}$ for i = 1, 2. Define $\mathcal{C} = \mathcal{Z}_1 \sqcup \mathcal{Z}_2$ by

$$\mathcal{C} = (Z_1 \times Z_2, <_{\mathcal{C}}, <_{lx_1}, <_{lx_2}),$$

where $Z_1 \times Z_2$ is Cartesian product of sets Z_1 and Z_2 , $<_{\mathcal{C}}$ is a partial order and $<_{lx_1}, <_{lx_2}$ are linear orders on $Z_1 \times Z_2$ defined by:

$$(x_1, x_2) <_{\mathcal{C}} (y_1, y_2) \Leftrightarrow x_1 P^{Z_1} y_1 \text{ and } x_2 P^{Z_2} y_2 ,$$

$$(x_1, x_2) <_{lx_1} (y_1, y_2) \Leftrightarrow x_1 L^{Z_1} y_1 \text{ or } \{x_1 = y_1 \text{ and } x_2 L^{Z_2} y_2 \},$$

$$(x_1, x_2) <_{lx_2} (y_1, y_2) \Leftrightarrow x_2 L^{Z_2} y_2 \text{ or } \{x_2 = y_2 \text{ and } x_1 L^{Z_1} y_1 \}.$$

We say that $\mathcal{Z}_1 \sqcup \mathcal{Z}_2$ is the join of \mathcal{Z}_1 and \mathcal{Z}_2 .

Note, that for $\mathcal{Z}_1, \mathcal{Z}_2 \in PL^{(1)}$ we have that $\mathcal{Z}_1 \sqcup \mathcal{Z}_2 \in PL^{(2)}$. Indeed, since both L^{Z_i} extend P^{Z_i} we infer that both $<_{lx_i}$ also extend $<_{\mathcal{C}}$ for i = 1, 2.

Claim 10. Let $\mathcal{Z}_i = (Z_i, P^{Z_i}, L^{Z_i}) \in PL^{(1)}$ for i = 1, 2 and let $\mathcal{B} = (Y, P^Y, L_1^Y, L_2^Y) \in PL^{(2)}$. Set $\mathcal{C} = \mathcal{Z}_1 \sqcup \mathcal{Z}_2$ and let $\pi_i : Y \to Z_i$ be a copy of $\mathcal{Y}_i = (Y, P^Y, L_i^Y)$ in \mathcal{Z}_i for i = 1, 2. Then the image of the mapping $\pi : Y \to Z_1 \times Z_2$, defined by

$$\pi(y) = (\pi_1(y), \pi_2(y))$$

for each $y \in Y$, is a copy of \mathcal{B} in $\binom{\mathcal{C}}{\mathcal{B}}$.

Remark 11.

- We say that the image of the mapping π from Claim 10, is a *canonical* copy of \mathcal{B} in $\mathcal{C} = \mathcal{Z}_1 \sqcup \mathcal{Z}_2$.
- By $\binom{\mathcal{C}}{\mathcal{B}}_{can} \subseteq \binom{\mathcal{C}}{\mathcal{B}}$ we denote a set of all canonical copies of \mathcal{B} in \mathcal{C} .

Proof. We need to verify that $\pi: Y \to Z_1 \times Z_2$ is order preserving for \mathcal{A} and \mathcal{C} . Indeed, we observe that if $x, y \in Y$, then fact that $\pi_i: Y \to Z_i$ preserves P^Y for i = 1, 2 combined with definition of $\mathcal{Z}_1 \sqcup \mathcal{Z}_2$ yields

$$xP^Yy \Leftrightarrow \frac{\pi_1(x)P^{Z_1}\pi_1(y)}{\pi_2(x)P^{Z_2}\pi_2(y)} \Leftrightarrow \pi(x) <_{\mathcal{C}} \pi(y).$$

Since π_i preserves L_i^Y for i = 1, 2, we have

$$xL_i^Y y \Leftrightarrow \pi_i(x)L_i^{Z_i}\pi_i(y) \Leftrightarrow \pi(x) <_{lx_i} \pi(y)$$

for i = 1, 2. Hence, π preserves P^Y and L_i^Y for i = 1, 2.

The electronic journal of combinatorics $\mathbf{24(4)}$ (2017), $\#\mathrm{P4.36}$

3

For the rest of this section we assume that $\mathcal{C} = \mathcal{Z}_1 \sqcup \mathcal{Z}_2 = (Z_1 \times Z_2, <_{\mathcal{C}}, <_{lx_1}, <_{lx_2}),$ $\mathcal{A} = (X, P^X, L_1^X, L_2^X)$ and $\mathcal{B} = (Y, P^Y, L_1^Y, L_2^Y).$

Fact 12. By construction, $\binom{\mathcal{C}}{\lambda}_{can}$ is in 1-1 correspondence with the set $\binom{\mathcal{Z}_1}{\chi_1} \times \binom{\mathcal{Z}_2}{\chi_2}$ and the function $\lambda : (\pi_1(X), \pi_2(X)) \mapsto \pi(X)$ is the bijection between sets $\binom{\mathcal{Z}_1}{\chi_1} \times \binom{\mathcal{Z}_2}{\chi_2}$ and $\binom{\mathcal{C}}{\lambda}_{can}$.

The following Claim states that if π is a canonical copy of \mathcal{B} in \mathcal{C} and $\tilde{\mathcal{A}}$ is a copy of \mathcal{A} in \mathcal{B} , then $\pi(\tilde{\mathcal{A}})$ is a canonical copy of \mathcal{A} in \mathcal{C} .

Claim 13. If $\pi \in {\binom{\mathcal{C}}{\mathcal{B}}}_{can}$ and $\tau \in {\binom{\mathcal{B}}{\mathcal{A}}}$, then $\sigma = \pi \circ \tau \in {\binom{\mathcal{C}}{\mathcal{A}}}_{can}$.

Proof. Since $\pi : Y \to Z_1 \times Z_2$ is a canonical copy, we have that $\pi = (\pi_1, \pi_2)$, where $\pi_i : Y \to Z_i$ are copies of Y in Z_i for i = 1, 2. Define $\sigma_i = \pi_i \circ \tau$ for i = 1, 2. It is sufficient to prove that for $i = 1, 2 \sigma_i$ is order preserving for \mathcal{X} and \mathcal{Z}_i .

Indeed, since τ preserves P^X, L_1^X, L_2^X and that π_i preserves P^Y, L_i^Y for i = 1, 2, we have for any $x, y \in X$ and for i = 1, 2

$$xP^{X}y \Leftrightarrow \tau(x)P^{Y}\tau(y) \Leftrightarrow \pi_{i}(\tau(x))P^{Z_{i}}\pi_{i}(\tau(y)) \Leftrightarrow \sigma_{i}(x)P^{Z_{i}}\sigma_{i}(y),$$
$$xL_{i}^{X}y \Leftrightarrow \tau(x)L_{i}^{Y}\tau(y) \Leftrightarrow \pi_{i}(\tau(x))L^{Z_{i}}\pi_{i}(\tau(y)) \Leftrightarrow \sigma_{i}(x)L^{Z_{i}}\sigma_{i}(y).$$

Consequently, for $i = 1, 2, \sigma_i$ is order preserving for \mathcal{X} and \mathcal{Z}_i , and $\sigma = (\sigma_1, \sigma_2)$ is a canonical copy of \mathcal{A} in \mathcal{C} .

Our final Claim states that if $\hat{\mathcal{B}}$ is a canonical copy of \mathcal{B} in \mathcal{C} , and $\hat{\mathcal{A}}$ is a copy of \mathcal{A} in $\tilde{\mathcal{B}}$, then $\tilde{\mathcal{A}}$ is a canonical copy of \mathcal{A} in \mathcal{C} .

Claim 14. If $\pi \in \binom{\mathcal{C}}{\mathcal{B}}_{can}$ and $\sigma \in \binom{\pi(\mathcal{B})}{\mathcal{A}}$, then $\sigma \in \binom{\mathcal{C}}{\mathcal{A}}_{can}$.

Proof. Since π is an isomorphism between \mathcal{B} and $\pi(\mathcal{B})$, the mapping π^{-1} exists and is order preserving for $\pi(\mathcal{B})$ and \mathcal{B} . Since $\sigma : \mathcal{A} \to \sigma(\mathcal{A}) \subseteq \pi(\mathcal{B})$ and $\pi^{-1} : \pi(\mathcal{B}) \to \mathcal{B}$, the mapping $\tau = \pi^{-1} \circ \sigma : \mathcal{A} \to \mathcal{B}$ is well defined. Moreover, σ and π^{-1} are order preserving, so is also τ . Finally, Claim 13 applied for π and τ gives that $\pi \circ \tau = \sigma$ is a canonical copy of \mathcal{A} .

3 Proof of Theorem 8

Let $\mathcal{A} = (X, P^X, L_1^X, L_2^X)$ and $\mathcal{B} = (Y, P^Y, L_1^Y, L_2^Y)$ be given. Applying Theorem 7 with $\mathcal{X}_i = (X, P^X, L_i^X)$ for i = 1, 2 and $\mathcal{Y}_i = (Y, P^Y, L_i^Y)$ for i = 1, 2 we obtain $\mathcal{Z}_i = (Z_i, P^{Z_i}, L_i^{Z_i})$ for i = 1, 2.

Set $\mathcal{C} = \mathcal{Z}_1 \sqcup \mathcal{Z}_2$. Let $\chi : \binom{\mathcal{C}}{\mathcal{A}} \to \{red, blue\}$ be a colouring. Since $\binom{\mathcal{C}}{\mathcal{A}}_{can} \subseteq \binom{\mathcal{C}}{\mathcal{A}}$, colouring χ induces $\{red, blue\}$ colouring of $\binom{\mathcal{C}}{\mathcal{A}}_{can}$. By Fact 12, $\binom{\mathcal{Z}_1}{\chi_1} \times \binom{\mathcal{Z}_2}{\chi_2}$ and $\binom{\mathcal{C}}{\mathcal{A}}_{can}$ are in 1-1 correspondence and thus χ induces a colouring of $\binom{\mathcal{Z}_1}{\chi_1} \times \binom{\mathcal{Z}_2}{\chi_2}$. By a choice of \mathcal{Z}_1 and \mathcal{Z}_2 (recall that $\mathcal{Z}_i \in PL^{(1)}$, i = 1, 2) there are $\tilde{Y}_i \in \binom{\mathcal{Z}_i}{\mathcal{Y}_i}$ for i = 1, 2, such that $\begin{pmatrix} \tilde{y}_1 \\ \chi_1 \end{pmatrix} \times \begin{pmatrix} \tilde{y}_2 \\ \chi_2 \end{pmatrix}$ is monochromatic and w.l.o.g we assume that all elements of $\begin{pmatrix} \tilde{y}_1 \\ \chi_1 \end{pmatrix} \times \begin{pmatrix} \tilde{y}_2 \\ \chi_2 \end{pmatrix}$ are red.

Let $\pi_i : \mathcal{Y}_i \to \mathcal{Z}_i$ be a copy of \mathcal{Y}_i in \mathcal{Z}_i , such that $\pi_i(\mathcal{Y}_i) = \tilde{\mathcal{Y}}_i$ for i = 1, 2. Then, by Claim 10, the mapping $\pi : Y \to Z_1 \times Z_2$ defined by $\pi(y) = (\pi_1(y), \pi_2(y))$ is a canonical copy of \mathcal{B} in \mathcal{C} (see Remark 11) i.e. $\pi \in \binom{\mathcal{C}}{\mathcal{B}}_{can}$. Let $\sigma \in \binom{\pi(\mathcal{B})}{\mathcal{A}}$, then, by Claim 14, $\sigma \in \binom{\pi(\mathcal{B})}{\mathcal{A}}_{can}$.

Therefore, σ is of the form $\sigma(x) = (\sigma_1(x), \sigma_2(x))$, where $\sigma_1 \in \begin{pmatrix} \tilde{\mathcal{Y}}_1 \\ \mathcal{X}_1 \end{pmatrix}$ and $\sigma_2 \in \begin{pmatrix} \tilde{\mathcal{Y}}_2 \\ \mathcal{X}_2 \end{pmatrix}$. Since all elements of $\begin{pmatrix} \tilde{\mathcal{Y}}_1 \\ \mathcal{X}_1 \end{pmatrix} \times \begin{pmatrix} \tilde{\mathcal{Y}}_2 \\ \mathcal{X}_2 \end{pmatrix}$ are red, we get that the pair (σ_1, σ_2) and σ itself is red. Consequently, every element of $\begin{pmatrix} \pi(\mathcal{B}) \\ \mathcal{A} \end{pmatrix}$ is colored red.

Concluding remarks

We chose to present the argument for k = 2 for its notational ease. With the concept of join of two posets replaced with join of k posets, as in definition below, the proof follows the line of the argument presented in this note.

Definition 15. Let $\mathcal{Z}_i = (Z_i, P^{Z_i}, L^{Z_i}) \in PL^{(1)}$ for $i \in [k]$ and set $C = \prod_{i=1}^k Z_i$.

Define partial order $<_C$ on set C by $\overline{x} <_C \overline{y}$ if $x_i P^{Z_i} y_i$ for all $i \in [k]$.

For all $i \in [k]$ define shifted lexicographic orders $\langle lx_i \rangle$ on set $\prod_{i=1}^k Z_i$, by

$$\overline{x} <_{lx_i} \overline{y} \Leftrightarrow x_{i+\delta} L^{Z_{i+\delta}} y_{i+\delta},$$

where δ is the smallest non-negative number j, for which $x_{i+j} \neq y_{i+j}$ (with addition mod k). Let $\mathcal{L}_k^C = (\langle z_{11}, \langle z_{22}, \ldots, \langle z_{kk} \rangle)$. Then the join of $\mathcal{Z}_1, \ldots, \mathcal{Z}_k$ is

$$\mathcal{C} = (C, <_C, \mathcal{L}_k^C).$$

During preparation of this paper it was brought to our attention that Theorem 8 also follows from the results of Sokić [8]. Alternative proof of Theorem 8 can be deduced from Theorem 1 in [8] and follows the same steps as the proof presented in this note.

The original version of this note is available on arxiv.org.

References

- W. L. Fouché. Symmetry and the Ramsey degree of posets. Discrete Math., 167/168:309–315, 1997.
- [2] J. Nešetřil. Ramsey classes and homogeneous structures. Combin. Probab. Comput., 14(1-2):171-189, 2005.
- [3] J. Nešetřil and V. Rödl. Partitions of finite relational and set systems. J. Combinatorial Theory Ser. A, 22(3):289–312, 1977.
- [4] J. Nešetřil and V. Rödl. Ramsey partial orders from acyclic graphs. Order, posted on 15 June 2017.

- [5] M. Paoli, W. T. Jr. Trotter and J. W. Walker. Graphs and orders in Ramsey theory and in dimension theory. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 147:351–394, Reidel, Dordrecht, 1985.
- [6] H. J. Prömel. Ramsey theory for discrete structures. Springer, Cham, xvi+232, 2013.
- [7] S. Solecki and M. Zhao. A Ramsey theorem for partial orders with linear extensions. *European Journal of Combinatorics*, 60:21–30, 2017.
- [8] M. Sokić. Directed graphs and boron trees. J. Combin. Theory Ser. A, 132:142–171, 2015.
- [9] M. Sokić. Ramsey properties of finite posets II. Order, 29(1):31–47, 2012.