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Abstract

Let (X,R) be a commutative association scheme and let Γ = (X,R ∪R>) be a
connected undirected graph where R ∈ R. Godsil (resp., Brouwer) conjectured that
the edge connectivity (resp., vertex connectivity) of Γ is equal to its valency. In this
paper, we prove that the deletion of the neighborhood of any vertex leaves behind
at most one non-singleton component. Two distinct vertices a, b ∈ X are called
“twins” in Γ if they have identical neighborhoods: Γ(a) = Γ(b). We characterize
twins in polynomial association schemes and show that, in the absence of twins, the
deletion of any vertex and its neighbors in Γ results in a connected graph. Using
this and other tools, we prove lower bounds on the connectivity of Γ, especially in
the case where Γ has diameter two. Among the applications of these results, we
prove that the only connected relations in symmetric association schemes which
admit a disconnecting set of size two are those which are ordinary polygons.

Keywords: Association scheme; Connectivity

1 Overview

Let X be a finite set of size v and let R = {R0, . . . , Rd} be a partition of X × X into
binary relations such that R0 is the identity relation on X and for each i ∈ {1, . . . , d}
there exists i′ ∈ {1, . . . , d} such that R>i = Ri′ where R> = {(b, a) | (a, b) ∈ R}. We say
(X,R) is an association scheme (with d classes) if there exist integers pkij (0 6 i, j, k 6 d)
such that

|{c ∈ X | (a, c) ∈ Ri ∧ (c, b) ∈ Rj}| = pkij

whenever (a, b) ∈ Rk. Throughout this paper, all association schemes are commutative:
we require pkij = pkji for all i, j, k. The problems addressed here immediately reduce to the
symmetric case where i′ = i for all i; i.e., we will work with symmetric relations only.

Association schemes arise in group theory, graph theory, design theory, coding theory
and more. For example, if X is a finite group with conjugacy classes C[g] = {hgh−1 :
h ∈ X} (g ∈ X), then the conjugacy class relations Rg = {(a, b) | ab−1 ∈ C[g]} yield a
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commutative association scheme on the vertex set X. The orbits on X ×X of any per-
mutation group G acting generously transitively on a set X give a symmetric association
scheme. Some of the most well-studied association schemes are distance-regular graphs,
including Moore graphs, distance-transitive graphs, strongly regular graphs, generalized
polygons, etc. One studies q-ary error-correcting codes of length n as vertex subsets of
the Hamming association scheme H(n, q) [4, Sec. 9.2] and one studies t-(v, k, λ) designs
as vertex subsets of the Johnson association scheme J(v, k) [4, Sec. 9.1]. For an intro-
duction to the extensive literature on the subject, the reader may consult [13, 2, 4, 17],
the survey [22], or the more recent book of Bailey [1] which focuses on connections to the
statistical design of experiments.

Let (X,R) be a commutative d-class association scheme with basis relations R = {R0,
. . . , Rd}. For 1 6 i 6 d, we have a (possibly directed) simple graph Γi = (X,Ri) on X.
For a ∈ X, the set X is partitioned into subconstituents Ri(a) = {b ∈ X | (a, b) ∈ Ri}
(0 6 i 6 d) with respect to a. The association scheme is symmetric if all basis relations
are symmetric; each Γi may be considered as an undirected graph in this case as i′ = i
for all i. The association scheme is primitive [4, Sec. 2.4] if Γi is connected for all
i = 1, . . . , d and imprimitive otherwise. A system of imprimitivity for (X,R) is any non-
trivial partition of X consisting of the components of some graph (X,R) where R is a
union of basis relations. (The trivial partitions {X} and {{a} | a ∈ X} are not systems
of imprimitivity.) For each i, we may construct an undirected graph Hi (possibly with
loops) on vertex set {0, 1, . . . , d}, joining j to k if pkij+p

j
ik > 0. We call this the unweighted

distribution diagram corresponding to basis relation Ri.
With reference to a fixed undirected graph Γ with vertex set V Γ and edge set EΓ,

we say that a and b are twins if a 6= b yet Γ(a) = Γ(b), where Γ(a) denotes the set of
neighbors of a in graph Γ. Write1 a⊥ = {a} ∪Γ(a). A graph Γ is complete multipartite if
any two non-adjacenct vertices are twins: i.e., the complement of Γ is a union of complete
graphs.

The main goal of this paper is to prove the following theorem:

Theorem 1. Let (X,R) be a symmetric association scheme. Assume the graph Γ =
(X,Ri) is connected and not complete multipartite. Let H = Hi be the corresponding
unweighted distribution diagram on {0, 1, . . . , d}. The following are equivalent:

(1) there exists a ∈ X for which the subgraph Γ \ a⊥ is connected;

(2) for all a ∈ X, the subgraph Γ \ a⊥ is connected;

(3) the subgraph H \ {0, i} is connected;

(4) Γ contains no twins.

We obtain the following corollaries.

Corollary 2. Let (X,R) be a commutative association scheme. Assume the undirected
graph Γ = (X,Ri ∪ Ri′) is connected and a ∈ X. Then Γ \ Γ(a) contains at most one
non-singleton component.

1Note that some authors assign another meaning to ⊥; here, we follow [4, p. 440].
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Corollary 3. Let (X,R) be a commutative association scheme. Assume the undirected
graph Γ = (X,Ri ∪ Ri′) is connected and a ∈ X. Then, for any T ⊆ a⊥ with Γ(a) 6⊆ T ,
the graph Γ \ T is connected.

Corollary 4. Let (X,R) be a commutative association scheme. Assume the undirected
graph Γ = (X,Ri ∪Ri′) is connected and C ⊆ X is the vertex set of a clique in Γ. Then
Γ \ C is connected.

The graphs considered in these theorems are all undirected graphs, either a symmet-
ric basis relation in our association scheme or the symmetrization (X,Ri∪̇Ri′) of some
directed basis relation. In both cases, the edge set of Γ is a basis relation of the sym-
metrization (X,R′) of (X,R) where

R′ =
{
R ∪R> | R ∈ R

}
.

In this way, the main theorem, while dealing only with the symmetric case, extends
immediately to give these corollaries.

We should remark that these last two results extend naturally to the case where Γ is
not connected in that the deletion of vertices does not increase the number of components.
One verifies this by applying the respective corollary to the subscheme induced by vertices
in a particular component of Γ.

2 Connectivity results for highly regular graphs

Before we provide proofs of these results and explore various consequences, we now survey
earlier work on the connectivity of graphs in certain association schemes.

Brouwer and Mesner [3] showed in 1985 that the vertex connectivity of a strongly
regular graph Γ is equal to its valency and that the only disconnecting sets of minimum
size are the neighborhoods Γ(a) of its vertices. (Brouwer [5] mentions that the corre-
sponding result for edge connectivity was established by Plesńık in 1975.) This result
on vertex connectivity was extended by Brouwer and Koolen [6] in 2009 to show that
a distance-regular graph of valency at least three has vertex connectivity equal to its
valency and that the only disconnecting sets of minimum size are again the neighbor-
hoods Γ(a). Meanwhile a conjecture of Brouwer on the size and nature of the “second
smallest” disconnecting sets in a strongly regular graph has inspired both new results
and interesting examples by Cioabă, et al. [8, 9, 10, 11, 12].

Godsil [16] conjectured in 1981 that the edge connectivity of a connected basis relation
in any symmetric association scheme is equal to the valency of that graph. Brouwer [5]
claimed in 1996 that the same should hold for the vertex connectivity. In [16], Godsil
proves that if Γ = (X,R1) is regular of valency v1, then the edge connectivity of Γ is

at least v1
2
|X|
|X|−1

. In 2006, Evdokimov and Ponomarenko proved Brouwer’s conjecture for

Γ = (X,R1) in the case when (X,R) is equal to the projection onto X of the v1-fold
tensor product

⊗v1
h=1(X,R). See [15] for definitions and details.

Much more is known about the connectivity of vertex- and edge-transitive graphs.
(See [18, Sec. 3.3-4].) Mader [19] and Watkins [26] independently obtained the following
two results in 1970. The vertex connectivity of an edge-transitive graph is equal to the
smallest valency. A vertex transitive graph of valency k has vertex connectivity at least
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2
3
(k + 1). Further, in 1971, Mader [20] proved that any vertex transitive graph has edge

connectivity equal to its valency.

3 Preliminary results

Throughout this section, (X,R) denotes a commutative association scheme.
In preparation for the proof of our main result, we now prove a few lemmas. We utilize

basic terminology and notation regarding symmetric association schemes. We refer the
reader to Section 2.2 of [4] for basic facts about the Bose-Mesner algebra and Section 2.4
of [4] for information on imprimitivity.

Let Ai denote the 01-matrix with rows and columns indexed by X and (a, b)-entry
equal to one if (a, b) ∈ Ri and equal to zero otherwise. Then the Bose-Mesner algebra
span(A0, . . . , Ad) is a complex vector space closed under both ordinary and entrywise
multiplication. So it admits a basis E0 = 1

|X|J, . . . , Ed of pairwise orthogonal idempotents

(EiEj = δi,jEi) and the change of basis matrices [Pij]
d
i,j=0 and [Qij]

d
i,j=0 given by

Aj =
d∑
i=0

PijEi and Ej =
1

|X|

d∑
i=0

QijAi

satisfy QP = |X|I (in particular,
∑d

j=0Qij = 0 for i 6= 0) and AiEj = PjiEj [4, p. 45],

as well as Pji = vi
mj
Q̄ij where vi = P0i and mj = Q0j [4, Lemma 2.2.1(iv)].

3.1 Twins

Let Γ = (X,R) be the graph of a basis relation in (X,R). Write R(a) = Γ(a). Examples
where twins arise (i.e., R(a) = R(b) for a 6= b) include not only complete multipartite
graphs but antipodal distance-regular graphs such as the n-cube in which case R is the
distance-n

2
relation of the association scheme.

Lemma 5. Let (X,R) be a symmetric association scheme and let Γ = (X,Ri) for some
i 6= 0. If a and b are twins, then (X,R) is imprimitive and some system of imprimitivity
exists in which a and b belong to the same fibre.

Proof. One easily checks that the following relation ∼ on X is an equivalence relation:
a ∼ b if either a = b or a and b are twins. To see that this is a system of imprimitivity,
we verify that ∼ is the union of basis relations Rj for which pjii = p0

ii. Since piii < p0
ii and

we are assuming at least one pair of twins exists, the equivalence relation is non-trivial
and (X,R) is imprimitive.

Remark 6. We now discuss twins in polynomial association schemes. We use the well-
known fact that an association scheme is imprimitive if and only if some idempotent Ej
(1 6 j 6 d) has repeated columns (see, e.g., [21, Theorem 2.1]). Denote by uj(a) the
column of Ej indexed by a ∈ X. If Ri(a) = Ri(b), then for each 0 6 j 6 d

Pjiuj(a) = Aiuj(a) =
∑

(x,a)∈Ri

uj(x) =
∑

(x,b)∈Ri

uj(x) = Aiuj(b) = Pjiuj(b)

so that either Pji = 0 or uj(a) = uj(b).
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1. Assume (X,R) is the association scheme coming from a distance-regular graph
Γ = (X,R1) with distance-k relation Rk for 0 6 k 6 d and assume Ri(a) = Ri(b)
for distinct vertices a and b. Suppose a and b do not belong to a common antipodal
fibre in an antipodal system of imprimitivity. Then Γ must be bipartite, in which
case columns a and b of Ej can be identical only for j ∈ {0, d} (where E0, . . . , Ed
are ordered so that P01 > P11 > · · · > Pd1 = −P01 [4, Prop. 4.4.7]). But then,
except for d = 2, there is some j 6= 0, d for which Pji 6= 0; thus a = b for d > 2. So
bipartite systems of imprimitivity only arise for d = 2. Viewing complete bipartite
graphs as having the antipodal property, we then have that any distinct a and b
with Ri(a) = Ri(b) must belong to the same antipodal fibre, d is even, and i = d/2.

2. Assume (X,R) is a Q-polynomial (“cometric”) association scheme [4, Section 2.7],
not a polygon, and a 6= b yet Ri(a) = Ri(b). Then, by a theorem of Suzuki, et
al. [24, 7, 25], (X,R) is either Q-bipartite or Q-antipodal. Let E0, . . . , Ed be a
Q-polynomial ordering of the primitive idempotents and order relations such that
Q01 > Q11 > · · · > Qd1. If a and b belong to the same fibre of a Q-bipartite
imprimitivity system, then d must be even and i = d

2
by Corollary 4.2 in [21].

Otherwise, a and b must belong to the same Q-antipodal fibre and uj(a) = uj(b)
only for j ∈ {0, d}. So Pji = 0 for 1 6 j < d, forcing (X,Ri) to be an imprimitive
strongly regular graph (as it is regular with three eigenvalues). Since the scheme
is cometric with an imprimitive strongly regular graph as a basis relation, we must
have d = 2 and a and b are non-adjacent vertices in a complete multipartite graph.

3.2 The graph homomorphism ϕa

For 0 < i 6 d, let Γi = (X,Ri) and let Hi denote the unweighted distribution diagram
corresponding to symmetric relation Ri.

Proposition 7. For any a ∈ X, the map ϕa,i : Γi → Hi sending b ∈ X to j where
(a, b) ∈ Rj is a graph homomorphism. Under this map, every walk in Γi projects to a
walk in Hi of the same length. As a partial converse, for any b ∈ X with (a, b) ∈ Rj0 and
any walk

w = (j0, j1, . . . , j`)

in Hi, there is at least one walk (b = b0, b1, . . . , b`) of length ` in Γi such that ϕa,i(bs) = js
for each 0 6 s 6 `. �

We will call ϕa,i the projection map and will omit the second subscript when it is clear
from the context.

For vertices x and y in an undirected graph ∆, we use d∆(x, y) to denote the path-
length distance from x to y in ∆, setting d∆(x, y) =∞ when no path from x to y exists
in ∆.

Lemma 8. Let (X,R) be a symmetric association scheme and, for some 0 < i 6 d, let
Γ = (X,Ri) with corresponding unweighted distribution diagram H. If Γ is connected,
then for (a, b) ∈ Rj, dΓ(a, b) = dH(0, j).

Proof. A shortest path in H from j to 0 lifts via ϕ−1
a,i to a walk in Γ from b to a vertex

in R0(a) — i.e., lifts to a walk from b to a — of length dH(j, 0). Conversely, each path
from b to a in Γ projects to a walk of the same length from j to 0 in H.
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Ũ Ĩ W̃

•

•

•

0

1

h • •· · · •

Figure 1: Graph H. Upon deletion of 0 and 1, the isolated vertices in Ĩ are those subcon-
stituents which contain all twins of the basepoint while Ũ is vertex set of a component
outside Ĩ which minimizes

∑
i∈Ũ vi.

3.3 The decomposition {Ia, Ua,Wa} with respect to a basepoint a

For simplicity, we henceforth take Γ = (X,R1) with unweighted distribution diagram H =
H1 in the symmetric association scheme (X,R). We assume throughout the remainder
of the paper that Γ itself is a connected graph. We will compare the graphs Γa := Γ \ a⊥
and H ′ := H \ {0, 1} and show that, with known exceptions, one is connected if and only
if the other is connected. One direction is straightforward.

Proposition 9. If H ′ is not a connected graph, then for any a ∈ X, Γa is also discon-
nected. If i and j are in distinct components of H ′, then Γa contains no path from Ri(a)
to Rj(a).

Proof. Let x ∈ Ri(a) and y ∈ Rj(a) and suppose x = x0, x1, . . . , x` = y is a path in
Γa. Then i = ϕa(x0), ϕa(x1), . . . , ϕa(x`) = j is a walk from i to j in H. Since H ′ is
disconnected, ϕa(xt) 6 1 for some t which forces xt ∈ a⊥, a contradiction.

Proposition 10. If x and y lie in distinct components of Γa, then Γ(x) ∩ Γ(y) ⊆ Γ(a).
�

For Ũ ⊆ {0, 1, . . . , d}, note that |ϕ−1
a (Ũ)| =

∑
i∈Ũ vi. We now assume that H ′ is

disconnected and we define a decomposition of its vertex set. Let

Ĩ = {i > 0 | pi11 = p0
11}.

Now the set {2, . . . , d} \ Ĩ decomposes naturally into the vertex sets of the connected
components of H ′, excluding the isolated vertices in Ĩ. Let Ũ be the vertex set of some

component of H ′ \ Ĩ such that |ϕ−1
a (Ũ)| is minimized. Let W̃ = {2, . . . , d} \

(
Ĩ ∪ Ũ

)
as

depicted in Figure 1. For x ∈ X, set

Ix = ϕ−1
x (Ĩ), Ux = ϕ−1

x (Ũ), Wx = ϕ−1
x (W̃ )

and note that |Ix|, |Ux|, and |Wx| are independent of the choice of x ∈ X. Observe that
x and y are twins if and only if y ∈ Ix. While our basepoint will vary in what follows,
our choice of Ũ , W̃ and Ĩ will remain fixed for this connected graph Γ.

Lemma 11. If W̃ 6= ∅, then for every u ∈ Ux, dΓ(x, u) = 2.
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Proof. By way of contradiction, assume u ∈ Ux with Γ(x) ∩ Γ(u) = ∅. For any w ∈ Wx,
we note that Γ contains an xw-path which does not pass through u⊥. So x and w lie
in the same connected component of Γu. But if (x, u) ∈ Rh then h ∈ Ũ so x ∈ Uu by
symmetry. It follows that Wx∪{x} ⊆ Uu. But this contradicts |ϕ−1

u (Ũ)| 6 |ϕ−1
x (W̃ )|.

3.4 Comparing the view from multiple basepoints

Proposition 12. For any a ∈ X and any b ∈ Ua, we have Wa ∩ Ib = ∅.

Proof. If x and b are twins, then x cannot be a twin of a since b is not a twin of a. So
Γ(x) = Γ(b) ⊆ Ua ∪ Γ(a) gives Γ(x) ∩ Ua 6= ∅. So x 6∈ Wa.

Now fix a ∈ X and choose b ∈ Ua. Consider the component ∆ of Γb containing a.
Since b and a are not twins, some element of Γ(a) is a vertex of ∆ and hence ∆ contains
vertices in Wa unless W̃ = ∅. Let Za = V∆ ∩Wa and let Ya = Wa \ Za. This vertex
decomposition is depicted in Figure 2. Since b ∈ Ua, we have a ∈ Ub and, since ∆ is
connected, Za ⊆ Ub.

•a

• b

Γ(a)

Ua Ia Wa

Ya

Zab⊥

b⊥

Figure 2: This diagram depicts Γ as decomposed relative to basepoint a. In Γb, vertex
a belongs to component ∆, whose vertex set is indicated by the shaded region. The set
Wa splits into Za and Ya according to membership in V∆.

In the next two results, we proceed under the hypotheses stated at the beginning of
Section 3.3 and assume that vertices a and b ∈ Ua have been chosen and the sets Ya and
Za are defined as above relative to this pair of vertices.

Lemma 13. Let w = (u0, u1, . . . , u`) be a walk in Γ with u0 ∈ Ya and u` lying some
other component of Γa. Let t ∈ {1, . . . , `} be the smallest subscript with ut 6∈ Ya. Then
ut ∈ Γ(a). �

Lemma 14. For 0 6 i 6 d, Ri(a)∩ Ya 6= ∅ implies Ri(a)∩Za 6= ∅. So no subconstituent
of Γ with respect to a is entirely contained in Ya.
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Proof. Let y ∈ Ya and consider a shortest ya-path π in Γ, of length ` say, and label its
vertices as follows: π = (y = v`, v`−1, . . . , v1, v0 = a). Then, by Lemma 13, vs ∈ Ya for
1 < s 6 `. Consider js = ϕa(vs), 0 6 s 6 `, and assume j` = i. Then we have pjs1,js+1

> 0
for 0 6 s < `. Note j0 = 0 and j1 = 1. Now we lift the walk (j0, . . . , j`) in H to a different
walk in Γ. Since a and b are not twins, we may choose v′1 ∈ Γ(a) \ Γ(b). Since p1

1j2
> 0,

there exists v′2 ∈ Rj2(a) with v′2 adjacenct to v′1 in Γ. Continuing in this manner, we may
construct a walk π′ = (a = v′0, v

′
1, . . . , v

′
`) in Γ with ϕa(v

′
s) = js. Since Γ(b) ⊆ Γ(a) ∪ Ua,

none of the vertices v′s lie in Γ(b), so the entire walk π′ is contained in one component of
Γb. By definition of Za, we then have v′` ∈ Za ∩Ri(a).

Lemma 15. If W̃ 6= ∅, then Γ has diameter two; i.e., pi11 > 0 for all i > 1.

Proof. Let a, x ∈ X with x 6∈ a⊥. Choose b ∈ Ua as above and consider, in turn, each
part of the decomposition

V Γa = Ia ∪̇ Ua ∪̇ Za ∪̇ Ya

relative to a and b. If x ∈ Ia, Γ(x) = Γ(a); if x ∈ Ua, then dΓ(a, x) = 2 by Lemma
11. Next consider x ∈ Za. Then d(x, b) = 2 but Γ(x) ∩ Γ(b) ⊆ Γ(a) since x and b lie in
distinct components of Γa (Proposition 10). Finally, consider x ∈ Ya with (a, x) ∈ Ri. By
Lemma 14, there exists x′ ∈ Za ∩ Ri(a). Since x′ has a neighbor in Γ(a), pi11 > 0 which
then implies that some neighbor of x lies in Γ(a) as well.

Theorem 16. Let (X,R) be any symmetric association scheme and let Γ = (X,R1) be
any connected basis relation. With reference to the above definitions, W̃ = ∅.

Proof. By way of contradiction, assume W̃ 6= ∅ and define

µ = min{pi11 | i ∈ Ũ}, ω = min{pi11 | i ∈ W̃}

and select k ∈ Ũ and ` ∈ W̃ with pk11 = µ and p`11 = ω. Note that µ > 0 and ω > 0
by Lemma 15. Now choose a ∈ X, and select x in Rk(a). Since x is not a twin of a,
we may choose a′ ∈ Γ(a) \ Γ(x) and since p1

1` > 0, we may choose and y in R`(a) which
is a neighbor of a′. Since Γx contains a path from a to y and a ∈ Ux, we have y ∈ Ux.
So |Γ(x) ∩ Γ(y)| > µ. By Proposition 10, Γ(x) ∩ Γ(y) ⊆ Γ(a). (See Figure 3.) But
a′ ∈ Γ(y) ∩ Γ(a). So

ω > 1 + |Γ(x) ∩ Γ(y)| > µ.

Now we simply reverse the roles of x and y; more precisely, we swap ` and k.
Select x in R`(a) and, choosing a′ ∈ Γ(a)\Γ(x), we may find a vertex y in Rk(a) which

is a neighbor of a′. Since Γx contains a path from a to y and a ∈ Wx, we have y ∈ Wx.
So |Γ(x) ∩ Γ(y)| > ω. By Proposition 10, Γ(x) ∩ Γ(y) ⊆ Γ(a). But a′ ∈ Γ(y) ∩ Γ(a). So

µ > 1 + |Γ(x) ∩ Γ(y)| > ω.

We have ω > µ and µ > ω, producing the desired contradiction.
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Ua Wa

• a

• x • y

•a′
Γ(a) ∩ Γ(x) Γ(a) ∩ Γ(y)

Figure 3: Since Γ has diameter two, all common neighbors of x and y are contained in
Γ(a).

4 Proofs of the main theorem and its corollaries

We are now ready to present the proof of our main theorem. The notation in this section
is defined either in the statements of the results, the introductory material leading up to
the statement of Theorem 1 in Section 1, with the exception of the index sets Ĩ and W̃
which are fixed in Section 3.3. Recall that, for a ∈ X, Γa := Γ \ a⊥ is the subgraph of
Γ = (X,Ri) obtained by deleting basepoint a and all its neighbors.

Proof of Theorem 1. As before, we assume i = 1 for notational convenience.
We begin by showing (3) ⇔ (4). If a and b are twins in Γ with (a, b) ∈ Rj, then

j > 1 and pj11 = v1 so that j ∈ Ĩ and {j} is the entire vertex set of some component of
H ′ = H \ {0, 1}. So either H ′ is not connected or d = j = 2 and Γ, being imprimitive, is
a complete multipartite graph. Conversely, by Theorem 16, W̃ = ∅ so if Ĩ = ∅ we have
that H ′ is connected.

The assertion (2)⇒ (1) is trivial. Proposition 9 gives us (1)⇒ (3). So we need only
check that (3) implies (2).

Assume now that H ′ is connected and yet there is some a ∈ X with Γa not connected.
By Proposition 7, any x in Γa is joined by a walk in Γa to some vertex in Rj(a) for every
j > 1. (Simply lift a walk in H ′ from ` to j where (a, x) ∈ R`.) So for every j > 1 every
connected component of Γa intersects every subconstituent Rj(a) non-trivially. Select
j > 1 so as to maximize D := dH(0, j) and choose x, y ∈ Rj(a) such that x and y lie in
distinct components of Γa. Then every xy-path in Γ must include a vertex in Γ(a), so
dΓ(x, y) > 2(D − 1). Since dΓ(x, y) 6 D by Lemma 8, this forces D 6 2. In particular,
p`11 > 0 for every ` > 1.

Select ` > 1 so as to minimize p`11 and select x, y ∈ R`(a) from distinct components
of Γa. Then (x, y) ∈ Rj for some j > 1 and so |Γ(x) ∩ Γ(y)| > p`11. But since these two
vertices lie in distinct components, Proposition 10 gives us

Γ(x) ∩ Γ(y) ⊆ Γ(a) ∩ Γ(y)

so pj11 = p`11 and Γ(x) ∩ Γ(y) = Γ(a) ∩ Γ(y). If a′ ∈ Γ(a), then a′ has p1
1` > 0 neighbors

in R`(a). For any such neighbor z, we must have either Γ(z) ∩ Γ(a) = Γ(x) ∩ Γ(a) or
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Γ(z) ∩ Γ(a) = Γ(y) ∩ Γ(a), both of which force a′ ∈ Γ(x). So vertices a and x must be
twins. The only possibility that remains is that Γ is a complete multipartite graph. �

The proofs of Corollaries 2, 3, and 4 are now rather immediate. Since each is a
statement about the symmetrization of some commutative scheme, Theorem 1 applies.

Proof of Corollary 2. This is essentially Theorem 16. �

Proof of Corollary 3. We apply Theorem 1 to prove this. First, if we have no twins then
Γa is connected. Any a′ ∈ Γ(a) has at least one neighbor in V Γa. If a 6∈ T , then some
a′ ∈ Γ(a) is also not included in T . So the graph Γ \ T is connected as long as T 6= Γ(a).

If b is a twin of a in Γ, then b is adjacent to every x ∈ Γ(a). Since Γ(a) 6⊆ T , some
a′ ∈ Γ(a) is a vertex of Γ \ T . By Corollary 2, Γ \ a⊥ has at most one non-singleton
component. Let Ξ be the component of Γ \ T containing this component as a connected
subgraph. (If Γ \ a⊥ consists only of singletons, choose Ξ to be any component of Γ \ T
containing some twin of a.) Since a′ has at least one neighbor in V Γa, the component
Ξ contains a′ and every twin b of a since each of these is a neighbor of a′. Likewise, if
a 6∈ T , then a belongs to Ξ since it is adjacent to a′. So in this case as well, Γ \ T is
connected. �

Proof of Corollary 4. Let a ∈ C and take T = C. Then apply Corollary 3. �

We finish this section with a simple generalization arising from the proof above.

Theorem 17. Assume (X,R), Γ and H are defined as in Theorem 1. Let BH,t(0) = {i |
0 6 i 6 d, dH(0, i) 6 t} and BΓ,t(a) = ∪BH,t(0)Ri(a).

(a) If Γ′ := Γ \ BΓ,t(a) is disconnected and b ∈ X with dΓ(a, b) = D (the diameter
of Γ), then for any x 6∈ BΓ,t(a) not in the same component of Γ′ as b, we have
dΓ(a, x) 6 2t.

(b) If H \BH,t(0) is connected and yet Γ′ is disconnected, then D 6 2t.

Proof. (a) Since x and b are in distinct components of Γ′, there must exist some y ∈ X
such that dΓ(a, y) 6 t and dΓ(x, b) = dΓ(x, y)+dΓ(y, b). This gives dΓ(y, b) > D− t which
then implies dΓ(x, a) 6 dΓ(x, y) + dΓ(y, a) 6 2t.

(b) Since H \BH,t(0) is connected, for every j 6∈ BH,t(0), Rj(a) has non-trivial inter-
section with every component of Γ′. So we may select x, b in distinct components of Γ′

both satisfying dΓ(a, x) = dΓ(a, b) = D and then apply part (a).

5 Further results on connectivity

In this section, we develop some machinery for the study of small disconnecting sets
which are not localized. We then apply these tools to show that, with the exception
of polygons, a basis relation in a symmetric association scheme has vertex connectivity
at least three. We can say a bit more in the case where Γ has diameter two. For the
remainder of this paper, we assume without loss of generality that Γ = (X,R1) in order
to simplify notation.
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Elementary graph theoretic techniques allow us to handle the case where Γ is in
some sense locally connected. For example, if Γ(y) induces a connected subgraph for
every y ∈ T and dΓ(y, y′) > 3 for any pair of distinct elements y, y′ ∈ T , then Γ \ T is
connected. The proof of this claim is essentially the same as the proof of the following
proposition, which applies more generally to any connected simple graph Γ.

Proposition 18. Let Γ = (X,R1) be the graph associated to a connected basis relation
in a symmetric association scheme (X,R). Suppose any two vertices at distance two in
Γ lie in some common cycle of length at most g and T ⊆ V Γ satisfies dΓ(y, y′) > g + 1
for all pairs y, y′ of distinct vertices from T . Then Γ \ T is connected.

Proof. Set δ = bg/2c and, for y ∈ T set Bδ(y) = {x ∈ X | dΓ(x, y) 6 δ}. The induced
subgraph Γ[B] of Γ determined by B = Bδ(y) is connected so admits a spanning tree.
Moreover, since y is not a cut vertex of Γ[B], there exists a spanning tree Ty for Γ[B] in
which y is a leaf vertex. For y ∈ T , let Ey denote the edge set of Ty with the sole edge
incident to y removed.

Now consider the minor ∆ of Γ obtained by contracting Bδ(y) to a single vertex for
every y ∈ T . Since ∆ is again a connected graph, it admits a spanning tree T . Lift the
edge set ET of T back to EΓ and note that ET contains no edge from any of the induced
subgraphs Γ[Bδ(y)], y ∈ T . So ET ∪ (∪y∈TEy) is the edge set of a spanning tree in Γ \ T ,
which demonstrates that Γ \ T is connected.

5.1 A spectral lemma

Eigenvalue techniques such as applications of eigenvalue interlacing play an important
role in [3] and [6]. The following lemma is inspired by those ideas. This can be used,
in conjunction with Lemma 23, to show that a graph with a small disconnecting set T
whose elements are not too close together must be locally a disjoint union of cliques of
size at most |T |.

Lemma 19. Let (X,R) be a symmetric association scheme and let Γ = (X,R1) be
the graph associated to a connected basis relation. Assume that Γ contains no induced
subgraph isomorphic to K2,1,1. If T ⊆ X is a disconnecting set for Γ, then |T | > p1

11.

Proof. The result obviously holds when Γ is complete multipartite, so assume Γ is not a
complete multipartite graph. By [4, Cor. 3.5.4(ii)], we then know that the second largest
eigenvalue θ of Γ is positive. Order the eigenspaces of the scheme so that A1E1 = θE1

and abbreviate E = E1. For K,L ⊆ X, denote by EK,L the submatrix of E obtained
by restricting to rows in K and columns in L. Let C be any clique in Γ. Then, because
v1 > θ > 0, the matrix EC,C = m1

|X|I + θm1

v1|X|(J − I) is invertible.

Assume now that some disconnecting set T ⊆ X has |T | 6 p1
11. Let Ξ and Ξ′ be two

connected components of Γ \ T with vertex sets B and B′, respectively, and let ρ and
ρ′ denote the spectral radii of these two graphs. Assume, without loss, that ρ 6 ρ′. By
eigenvalue interlacing, ρ 6 θ. (see, e.g.,[4, Theorem 3.3.1].) We now show ρ = θ.

Since Γ does not contain K2,1,1 as an induced subgraph, it is locally a disjoint union
of cliques and every edge of Γ lies in a clique C of size p1

11 + 2. If Ξ is edgeless, then
T contains all neighbors of some vertex, which is impossible since |T | 6 p1

11 < v1. So Ξ
contains at least one edge and B ∪ T contains some clique C of size at least p1

11 + 2. It
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follows that the submatrix EX,B∪T has rank at least p1
11 + 2. But |T | 6 p1

11. So the row
space of EX,B∪T contains at least two linearly independent vectors which are zero in every
entry indexed by an element of T . Restricting these two vectors to coordinates in B only,
we obtain two linearly independent eigenvectors for graph Ξ belonging to eigenvalue θ.
It follows that ρ = θ and ρ, the spectral radius of Ξ, is not a simple eigenvalue. This
contradicts the Perron-Frobenius Theorem (see, e.g., [4, Theorem 3.1.1]) since Ξ was
chosen to be a connected graph.

Remark 20. The hypotheses of the above lemma may clearly be weakened. The proof
simply requires that both B ∪ T and B′ ∪ T contain cliques of size |T |+ 2 or larger and
that the entries Exy of idempotent E are the same for all adjacent x and y in V Γ.

5.2 Intervals and metric properties of Γ

Let (X,R) be a symmetric association scheme and Γ = (X,R1) with unweighted distri-
bution diagram H. For a, b ∈ X, if (a, b) ∈ Ri, Lemma 8 tells us that the path-length
distance dΓ(a, b) between a and b in graph Γ is equal to the path-length distance dH(0, i)
between 0 and i in H. It follows that the diameter, D say, of Γ is equal to maxi dH(0, i),
which happens to be the diameter of H. We thus partition the index set {0, 1, . . . , d}
according to distance from 0 in H. For each 0 6 h 6 D, define Ih = {i : dH(0, i) = h}.
For 0 6 i 6 d with i ∈ Ih, define

c(i) =
∑
j∈Ih−1

pi1j .

Proposition 21. With c(i) defined as above

(a) For any geodesic 0 = `0, 1 = `1, `2, . . . , `h in H,

1 = c(`1) 6 c(`2) 6 · · · 6 c(`h).

(b) If c(i) = 1, then for any ` ∈ {1, . . . , d} which lies along a geodesic from 0 to i in
H, c(`) = 1 as well.

(c) If c(i) = 1, then there is a unique shortest path in H from 0 to i and, for (a, b) ∈ Ri,
there is a unique shortest path in Γ from a to b.

Proof. For part (a), observe that for (a, b) ∈ R`h there exists a′ ∈ R`h−1
(b) adjacent to a

since p`h1,`h−1
> 0 so that

{x | (x, b) ∈ R1, dΓ(x, a′) = dΓ(b, a′)− 1}⊆{x | (x, b) ∈ R1, dΓ(x, a) = dΓ(b, a)− 1}.

Parts (b) and (c) follow immediately.

For a, b ∈ X, we define the interval [a, b] to be the union of the vertex sets of all
geodesics in Γ from a to b:

[a, b] = {x ∈ X | dΓ(a, x) + dΓ(x, b) = dΓ(a, b)} .

For the purpose of the present discussion, we introduce a piece of terminology. For
x ∈ X and y ∈ T ⊆ X, we say that x is proximal to y (relative to T ) if dΓ(x, y) 6 dΓ(x, y′)
for all y′ ∈ T . Vertex x is then proximal only to y ∈ T if dΓ(x, y) < dΓ(x, y′) for all y′ ∈ T
distinct from y.
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Proposition 22. Let T be a disconnecting set for Γ and let x and z be vertices lying in
different components of Γ \ T with (x, z) ∈ Ri. Suppose there is some y ∈ T such that x
is proximal only to y and z is proximal to y with (x, y) ∈ Rs and (z, y) ∈ Rt. If c(s) = 1
or c(t) = 1, then c(i) = c(s) = c(t) = 1.

Proof. Every shortest path joining x to z in Γ must pass through y. Apply Proposition
21(b).

5.3 Small disconnecting sets

We continue under the assumption that Γ = (X,R1) is the graph of some connected basis
relation in the symmetric association scheme (X,R). We begin by examining a simple
condition which guarantees that Γ is locally a disjoint union of cliques.

Lemma 23. Let T be a minimal disconnecting set for Γ, y ∈ T . Suppose dΓ(y, y′) > 4
for all y′ ∈ T with y′ 6= y. Then c(j) = 1 for all indices j in I2.

Proof. Let j ∈ I2 and let x ∈ Rj(y). Let z ∼ y be some vertex lying in a different
component of Γ \ T from that containing x. For (z, x) ∈ Ri, we find c(i) = 1 by
Proposition 22. So c(j) = 1 by Lemma 21.

Lemma 24. Let T be a disconnecting set for Γ, y ∈ T .

(a) Let x and z be vertices lying in different components of Γ\T . If dΓ(x, y′)+dΓ(y′, z) >
D for every y′ ∈ T except y, then z has a unique neighbor lying closer to x and z
has a unique neighbor lying closer to y.

(b) Suppose x ∈ X \T satisfies dΓ(x, y′) = D for every y′ ∈ T except y. If z ∈ X lies in
a component of Γ \ T distinct from that containing x, then z has a unique neighbor
lying closer to x and z has a unique neighbor lying closer to y.

In both cases, for (x, z) ∈ Ri, and (y, z) ∈ Rj, we have c(i) = c(j) = 1.

Proof. Clearly (b) follows from (a). So first verify (a) for the case z ∼ y. Next, observe
that any geodesic joining x to z passes through y. So [x, z] = [x, y]∪ [y, z]. Let z′ ∈ Γ(y)∩
[y, z]. Since [x, y] ⊆ [x, z] and [x, z′] = [x, y]∪{z′}, we find Γ(x)∩ [x, z] = Γ(x)∩ [x, z′], a
set of size one. By the same token, [y, z] ⊆ [x, z] and so Γ(z) ∩ [y, z] ⊆ Γ(z) ∩ [x, z] gives
|Γ(z) ∩ [y, z]| = 1.

Lemma 25. Let T be a minimal disconnecting set for Γ, y ∈ T , and suppose x ∈ X
satisfies dΓ(x, y′) = D for every y′ ∈ T except y. Then

(a) for (x, y) ∈ Ri where i ∈ Ih, we have
∑

`∈Ih p
i
1` = p1

11.

(b) for z ∈ X \ T which is separated from x by deletion of T , if Γ(z) ∩ T ⊆ {y}, then∑
`∈Ik p

j
1` = p1

11 where (y, z) ∈ Rj with j ∈ Ik.

Proof. Let z be a neighbor of y which is separated from x by deletion of T . Since
dΓ(x, z) 6 D, we see that x is proximal only to y and [x, z] = [x, y] ∪ {z}. The set
Γ(y) ∩ Γ(z) has size p1

11 and every z′ ∈ Γ(y) ∩ Γ(z) lies at distance h + 1 from x in Γ.
Since every other neighbor of z, with the exception of y, is further away from x, we have
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∑
`∈Ih+1

pj1` = p1
11 where (x, z) ∈ Rj. Reversing roles, we see that x then has exactly p1

11

neighbors which lie at distance h + 1 from z. But, for x′ ∼ x, dΓ(x′, y) = dΓ(x′, z) − 1.
This gives (a). To obtain (b), observe that every neighbor x′ of x with dΓ(x′, z) = dΓ(x, z)
must have dΓ(x′, y) = dΓ(x, y). By part (a), there are exactly p1

11 such vertices. So, for
(x, z) ∈ Rs,

∑
`∈Ih+k

ps1` = p1
11. Reversing roles, we see that exactly p1

11 neighbors of z lie
at distance h+ k from x. But this is precisely the set of vertices adjacent to z which lie
at distance k from y.

Theorem 26. Let (X,R) be a symmetric association scheme and let Γ = (X,R1) be the
graph associated to a connected basis relation. If Γ admits a disconnecting set of size two,
then Γ is isomorphic to a polygon.

Proof. Let T = {y, y′} be a disconnecting set of size two. Let D = diam Γ and let B be
the vertex set of some connected component of Γ \ T . First consider the case where y′ is
the unique vertex at distance D from y in Γ. Then every vertex is at distance D from
exactly one other vertex. On the other hand, if x ∈ B ∩ Γ(y), then any neighbor of y′

not lying in B must be at distance D from x by the triangle inequality. It follows that
y has exactly one neighbor not in B and, symmetrically, exactly one neighbor in B. So
the graph has valency two in this special case. For the remainder of the proof, assume
dΓ(y, y′) < D.

By Corollary 3, we have dΓ(y, y′) > 3. Let x (resp., x′) denote some vertex at distance
D from y′ (resp., y). (Note x 6= y, x′ 6= y′.) Let B and B′ be the vertex sets of two
connected components Ξ and Ξ′, respectively, of Γ \ T and assume x ∈ B. By Lemma
24(b), any z ∈ B′ has a unique neighbor lying closer to y. (Choosing j ∈ I2 and
z ∈ Rj(y), we see that this implies Γ is K2,1,1-free.) By Lemma 25(a), any z ∈ B′ \ Γ(y′)
has exactly p1

11 neighbors z′ satisfying dΓ(z′, y) = dΓ(z, y). Since dΓ(x, y) + dΓ(y, x′) > D
and dΓ(x, y′) + dΓ(y′, x′) > D, we must have x′ ∈ B also. So we can swap the roles
of x and x′, y′ and y, to find that any z ∈ B′ \ Γ(y) has a unique neighbor closer to
y′ and exactly p1

11 neighbors z′ with dΓ(z′, y′) = dΓ(z, y′). Now select z ∈ B′ so as to
maximize dΓ(z, y) + dΓ(z, y′). Since dΓ(y, y′) > 3, z is non-adjacent to at least one of
y, y′; assume z is not adjacent to y′. Then z has exactly p1

11 neighbors z′ satisfying
dΓ(z′, y) = dΓ(z, y). Since z maximizes dΓ(z, y) + dΓ(z, y′), any neighbor of z which lies
farther away from y must lie closer to y′. But there is exactly one such vertex. In all,
we have |Γ(z)| = 1 + p1

11 + 1. But Γ is K2,1,1-free so the neighborhood of any vertex is
partitioned into cliques of size p1

11 + 1. We find that p1
11 + 1 divides p1

11 + 2. This can
only happen if p1

11 = 0; i.e., Γ is triangle-free. But then z has degree two and Γ must be
a polygon.

Our final two results deal with the special case where graph Γ has diameter two.

Theorem 27. Let (X,R) be a symmetric association scheme and let Γ = (X,R1) be
the graph associated to a connected basis relation. If Γ has diameter two and |X| >
v1(t− 1) + 2, then Γ has vertex connectivity at least t+ 1 unless t = v1.

Proof. Let T be a minimal disconnecting set of size at most t. For each y ∈ T , we use
the fact that any two vertices have at least one common neighbor to obtain∣∣∣∣∣ ⋃

y 6=y′∈T

Γ(y′)

∣∣∣∣∣ 6 (v1 − 1)(t− 1) + 1
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so that there is some x ∈ X \ T not adjacent to any element of T except possibly y. Let
B be the component of Γ \ T containing x. Since Γ has diameter two, x ∼ y and every
z ∈ X \ (B ∪ T ) must also be adjacent to y. Swapping roles of the vertices in T , we find
that, for every y in T , there is some vertex x (necessarily in B) with Γ(x) ∩ T = {y}.
But this implies that every z ∈ X \ (B ∪T ) is adjacent to every vertex in T , so T = Γ(z)
for every z 6∈ B ∪ T .

Remark 28. We expect very few exceptions to arise here. If t = v1, then we find that
X \ (B ∪ T ) = {z} is a singleton and all but at most v1 − 2 elements of B have exactly
one neighbor in T = Γ(z). With |X| > v2

1− v1 + 3 so close to the Moore bound, does this
condition force Γ to be a Moore graph?

Theorem 29. Let (X,R) be a symmetric association scheme and let Γ = (X,R1) be the
graph associated to a connected basis relation. If Γ has diameter two, then either Γ has
vertex connectivity at least four or Γ is isomorphic to one of the following graphs: the
4-cycle, the 5-cycle, K3,3, the Petersen graph.

Proof. The case where Γ admits a disconnecting set of size two is handled by Theorem
26. Let T = {y1, y2, y3} be a minimal disconnecting set of size three.
Case (i): T ⊆ a⊥ for some a ∈ X.

By Corollary 3, we have T = Γ(a) and Γ has valency three; i.e., Γ is isomorphic to
either K3,3 or the Petersen graph.

Case (ii): Assume T is not contained in a⊥ for any vertex a.
In view of Theorem 27, we may assume |X| 6 2v1+2. (There is no cubic graph on nine

vertices.) Let B and B′ denote the vertex sets of two distinct connected components of

Γ \ T and assume, without loss of generality, that |B| 6 |B′|. Then we have |B| 6 |X|−3
2

.
So |B| − 1 6 v1 − 2. In view of Case (i), we may assume each x ∈ B is adjacent to
exactly two members of T and every pair of distinct vertices in B is adjacent. This forces
|B| = v1 − 1. Looking at x ∼ x′ in B, we find that p1

11 > |B| − 2 + 1 since x and x′

must share a common neighbor in T . Now compare this to some y ∈ T . Since we are
not in Case (i), some y ∈ T is not adjacent to any other element of T . For this y, choose
some neighbor z of y where z ∈ B if |Γ(y) ∩ B| 6 v1

2
and z ∈ B′ if |Γ(y) ∩ B| > v1

2
.

The number of common neighbors of y and z is then at most v1
2
− 1. The inequalities

v1−2 6 p1
11 6

v1
2
−1 then imply that Γ is a polygon, which is impossible as T was chosen

to be minimal.
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