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Abstract

For integers a1, . . . , an > 0 and k > 1, let Lk+2(a1, . . . , an) denote the set of
permutations of {1, . . . , a1 + · · · + an} whose descent set is contained in {a1, a1 +
a2, . . . , a1+ · · ·+an−1}, and which avoids the pattern 12 . . . (k+2). We exhibit some
bijections between such sets, most notably showing that #Lk+2(a1, . . . , an) is sym-
metric in the ai and is in fact Schur-concave. This generalizes a set of equivalences
observed by Mei and Wang.
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1 Introduction

1.1 Synopsis

For nonnegative integers a1, . . . , an an (a1, . . . , an)-ascending permutation is a permuta-
tion on {1, 2, . . . , a1 + · · · + an} whose descent set is contained in {a1, a1 + a2, . . . , a1 +
· · · + an−1}. In other words the permutation ascends in blocks of length a1, a2, . . . , an,
and thus has the form

π = π11 . . . π1a1 | π21 . . . π2a2 | · · · | πn1 . . . πnan

for which πi1 < πi2 < · · · < πiai for all i. (The | separators are added between blocks
for readability.) These permutations were introduced at least as early as 1993, when
Gessel and Reutenauer [2] exhibited a bijection between such permutations and so-called
ornaments, preserving the cycle structure of π. Their work was then extended by others
[1, 3, 6].

In this paper we study such permutations, but focusing on pattern avoidance rather
than cycle structure.
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Definition 1.1. Let a1, . . . , an be nonnegative integers.

• Let Lk+2(a1, . . . , an) denote the set of (a1, . . . , an)-ascending permutations that avoid
the pattern 12 . . . (k + 2). In particular, Lk+2(a1, . . . , an) = ∅ if max{a1, . . . , an} >
k + 2. (The use of k + 2 here is for consistency with [4] and [5].)

• Let Dh(a1, . . . , an) denote the set of (a1, . . . , an)-ascending permutations which avoid
12 . . . (h+1) but not 12 . . . h, that is, the longest increasing subsequence should have
length exactly equal to h. In other words,

Dh(a1, . . . , an) = Lh+1(a1, . . . , an) \ Lh(a1, . . . , an).

Many special cases of Lk+2(a1, . . . , an) are well-studied. For example,

• L3(1, . . . , 1) is the set of 123-avoiding permutations on {1, . . . , n}, and

• L3(2, . . . , 2) is the set of alternating or “zig-zag” permutations on {1, . . . , 2n} which
avoid 123.

Both have cardinality equal to the nth Catalan number.
In 2011, Lewis [4, Proposition 3.1, Theorem 4.1] generalized these results to give two

bijections:

• Lk+2(k, . . . , k) to standard Young tableaux of shape 〈(k + 1)n〉, and

• Lk+2(k + 1, . . . , k + 1) to standard Young tableaux of shape 〈(k + 1)n〉.

His proof uses a modified version of the Robinson-Schensted-Knuth correspondence; the
hook-length formula then lets us compute the cardinalities.

In 2017, Mei and Wang [5] generalized Lewis’s bijections to the 2n sets of the form

Lk+2(a1, . . . , an) where ai ∈ {k, k + 1}. (1)

Thus this cardinality of such sets does not depend on the choice of which ai are equal
to k or k + 1 [5, Theorem 2.3]. Mei and Wang then proposed the problem of finding
a direct bijection between these sets of permutations, without appealing to the RSK
correspondence [5, Problem 4.2].1

1.2 Statement of Results

The two major results we will prove are:

Theorem 1.2. For each h, the cardinality of Dh(a1, . . . , an) does not depend on the order
of the ai’s, and there is an explicit bijection between the sets.

1Actually, in the statement of Problem 4.2 in E-JC 24(1) 2017, there is a benign typo: Snk(123)
should be replaced by just L(n; k; ∅) (which corresponds to Lk+2(k, . . . , k) in our notation). In any case,
our approach does not treat Lk+2(k, . . . , k) specially.
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Theorem 1.3. Fix h, and suppose the sequence a1 > · · · > an majorizes the sequence
b1 > . . . > bn. Then there is an explicit injection

#Dh (a1, a2, . . . , an) ↪→ #Dh (b1, b2, . . . , bn) .

(Recall that a sequence a1 > · · · > an majorizes a sequence b1 > · · · > bn if a1 + · · ·+
ai > b1 + · · · + bi for all i and a1 + · · · + an = b1 + · · · + bn.) In other words, #Dh is
Schur-concave.

BecauseLk+2(a1, . . . , an) =
⋃
h6k+1Dh(a1, . . . , an) the Schur-concavity holds for #Lk+2

as well:

Corollary 1.4. For each k, the cardinality of Lk+2(a1, . . . , an) does not depend on the
order of the ai’s, and there is an explicit bijection between the sets.

Corollary 1.5. Fix k, and suppose the sequence a1 > · · · > an majorizes the sequence
b1 > · · · > bn. Then there is an explicit injection

#Lk+2 (a1, a2, . . . , an) ↪→ #Lk+2 (b1, b2, . . . , bn) .

We will also make the following simple observation:

Lemma 1.6. For all k, a2, . . . , an,

#Lk+2(k + 1, a2, . . . , an) = #Lk+2(k, a2, . . . , an)

and there is an explicit bijection between these sets.

The proofs of Theorem 1.2 (hence Corollary 1.4) and Lemma 1.6 are explicit bijections,
not relying on the RSK correspondence. Hence these two results resolve Mei and Wang’s
problem [5, Problem 4.2], because by composing them appropriately we may obtain a
direct bijection between any two sets of the form described in (1).

1.3 Outline

The rest of the paper is structured as follows. First in Section 2 we quickly prove
Lemma 1.6. Then, in Section 3 we describe two maps W and V in the special situa-
tion n = 2, which will form the core of the proof. In Section 4 we show how to extend the
maps W and V in order to obtain the desired bijection. Finally in Section 5 we compute
some specific values of #Lk+2(a1, . . . , an).

2 Proof of Lemma 1.6

First, we make the following observation.

Lemma 2.1. If π ∈ Lk+2(k + 1, a2, . . . , an) then π1,k+1 is the largest element of π, that
is, π1,k+1 = (k + 1) + a2 + · · ·+ an.
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Proof. By definition π1,1 < · · · < π1,k+1. Moreover if i > 2 and πi,j > π1,k+1 then
π1,1 < · · · < π1,k+1 < πi,j would be a 12 . . . (k + 2) pattern.

This gives us the map

Lk+2(k + 1, a2, . . . , an)→ Lk+2(k, a2, . . . , an)

defined by

π1,1 . . . π1,kπ1,k+1 | π2,1 . . . 7→ π1,1 . . . π1,k | π2,1 . . .

where we simply delete the maximal element from the (k + 1)st position. This map
obviously admits an inverse, since inserting a maximal element in the (k + 1)st position
cannot introduce a 1 . . . (k + 2) pattern. This produces the claimed bijection.

3 The Bijections W and V

In this section we define two maps W and V between sets of the form Dh(p, q) for a fixed
h. These maps form the heart of the proof of Theorem 1.2.

First, we introduce some notation for permutations of Dh(p, q), where 0 6 p, q 6 h.
Consider a permutation

π = x1x2 . . . xp | yqyq−1 . . . y1 ∈ Dh(p, q).

As the maximal increasing subsequence of π has length h, there should be an index j such
that

x1 < · · · < xj < yh−j < · · · < y1. (2)

However, this j may not be unique; for example, 1368 | 2457 has two maximal increasing
subsequences, namely 12457 and 13457. Nonetheless, we are interested in the largest and
smallest indices with this property.

Definition 3.1. For π ∈ Dh(p, q), we denote by νh(π) and ωh(π) the smallest and largest
index j, respectively, which satisfies (2).

With this definition we may define the map W.

Definition 3.2. Suppose p ∈ {0, . . . , h− 1} and q ∈ {1, . . . , h}. We define the map

Dh(p, q)
W−→ Dh(p+ 1, q − 1)

by

π = x1 . . . xp | yq . . . y1 ∈ Dh(p, q)
7→W(π) = x1 . . . xjyh−jxj+1 . . . xp | yq . . . yh−j+1yh−j−1 . . . y1

where j = ωh(π).
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In other words (in the notation of Definition 3.2),

x1 < · · · < xj < yh−j < · · · < y1 (3)

is an increasing subsequence of maximal length. Observe that this requires yh−j = xj + 1
(or yh−j = 1 if j = 0), since otherwise yh−j − 1 could be inserted into (3).

Example 3.3. For (p, q) = (3, 5), h = 6, we have an example

D6(3, 5)
W−→ D6(4, 4)

236 | 14578 7→ 2346 | 1578.

Proposition 3.4. This map is well-defined; that is, the longest increasing subsequence of
W(π) has length h.

Proof. Assume not, and that moving yh−j introduces some increasing subsequence with
length h+ 1. Then there must be some index k such that

x1 < · · · < xj < yh−j < xj+1 < · · · < xk < yh−k < yh−k−1 < · · · < y1.

But then x1 < · · · < xk < yh−k < · · · < y1 is an increasing subsequence of length h in π,
contradicting the choice of j = ωh(π) being maximal.

The map V is defined in an analogous way, in the reverse direction.

Definition 3.5. Suppose p ∈ {1, . . . , h} and q ∈ {0, . . . , h− 1}. We define the map

Dh(p− 1, q + 1)
V←− Dh(p, q)

by

π = x1 . . . xp | yq . . . y1 ∈ Dh(p, q)
7→ V(π) = x1 . . . xj−1xj+1 . . . xp | yq . . . yh−j+1xjyh−jyh−j−1 . . . y1

where j = νh(π).

In exactly the same way as before we have the following.

Proposition 3.6. This map is well-defined; that is, the longest increasing subsequence of
V(π) has length h.

Proposition 3.7. The maps W and V are inverses, and hence bijections.

Proof. We will check that V(W(π)) = π, with the other direction being analogous. Write

π = x1 . . . xp | yq . . . y1 ∈ Dh(p, q)
7→W(π) = x1 . . . xjyh−jxj+1 . . . xp | yq . . . yh−j+1yh−j−1 . . . y1
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where j = ω(π). Now, observe that W(π) still has a subsequence

x1 < · · · < xj < yh−j < yh−j+1 < · · · < y1

and consequently, we have ν(W(π)) 6 j + 1.
We now contend that ν(W(π)) = j + 1. (Informally, this is because all length h

subsequences of smaller index in the original sequence relied on yh−j, and hence are killed
by the application of W.) Assume for contradiction that ν(W(π)) < j + 1, so there is a
` 6 j such that

x1 < · · · < x` < yh−`+1 < · · · < yh−j+1 < yh−j−1 < · · · < y1

is an increasing subsequence in W(π). But this would imply that

x1 < · · · < x` < yh−`+1 < · · · < yh−j+1 < yh−j < yh−j−1 < · · · < y1

is an increasing subsequence of length h+ 1 in π, which is a contradiction.

By composing the bijection V, we deduce the following corollaries.

Corollary 3.8. Let h > 1 and p, q, p′, q′ ∈ {1, . . . , h} such that p+ q = p′ + q′. Then

#Dh(p, q) = #Dh(p′, q′).

Observe that this already implies Theorem 1.2 (and hence Corollary 1.4) in the case
n = 2; that is, composition of W induces a map

Lk+2(p, q)
W−→ Lk+2(q, p) (4)

whenever p < q.

4 Proofs of Theorem 1.2 and Theorem 1.3

4.1 Structure Preservation Lemma

First, we will make the following useful observation about the map W.

Lemma 4.1. Let Dh(p, q)
W−→ Dh(p+ 1, q− 1), and π ∈ Dh(p, q). For 1 6 a < b 6 p+ q,

the following are equivalent:

• There is an increasing subsequence of length r in π consisting of only elements in
the interval [a, b].

• There is an increasing subsequence of length r in W(π) consisting of only elements
in the interval [a, b].
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Proof. We will check only the forward direction, the reverse direction being analogous
using V in place of W. As always, let j = ω(π) and write

π = x1 . . . xp | yq . . . y1 ∈ Dh(p, q)
7→W(π) = x1 . . . xjyh−jxj+1 . . . xp | yq . . . yh−j+1yh−j−1 . . . y1

Clearly it suffices to consider subsequences which involve yh−j, since any other subsequence
remains intact under W.

We claim that yh−j+` < xj−`+1 for 1 6 ` 6 j. Indeed, if this was not the case, then we
could construct a sequence of length greater than h in π by taking

x1 < · · · < xj−`+1 < yh−j+` < · · · < yh−j < · · · < y1.

Thus, given any subsequence, if there are any y terms less than yh−j then we may replace
them with corresponding x terms instead. Explicitly, if our subsequence of length r in π
is

a 6 xi1 < · · · < xi2 < yh−j+` < · · · < yh−j < · · · < yi3 6 b

then in W(π) we have

a 6 xi1 < · · · < xi2 < xj−(`−1) < · · · < xj < yh−j < · · · < yi3 6 b.

This proves the lemma.

4.2 Proof of Theorem 1.2

We are now ready to prove the following result, which implies Theorem 1.2 directly.

Theorem 4.2. For any index `, if a` 6 a`+1 then we have a bijection

Dh (a1, . . . , a`, a`+1, . . . , an)→ Dh (a1, . . . , a`+1, a`, . . . , an) (5)

obtained by applying W in (4) on only the `th and (`+1)st blocks, viewed as a permutation
on {1, . . . , a` + a`+1}. The inverse map is given by applying V in the same way.

In other words, we may swap two adjacent ai’s.

Example 4.3. For an example with D5(1, 2, 4, 1)→ D5(1, 4, 2, 1) we have

1 | 37 | 2458 | 6 7→ 1 | 347 | 258 | 6
7→ 1 | 3478 | 25 | 6.

Proof of Theorem 4.2. Each permutation in Dh(a1, . . . , a`, a`+1, . . . , an) naturally induces
a permutation of Dr(a`, a`+1) for some r > a`+1, by looking at the relative ordering of
the a` + a`+1 elements in these two blocks. (To be exact, r is the length of the longest
increasing subsequence among π`1 . . . π`a` | π(`+1)1 . . . π(`+1)π`+1

.) In this way, we obtain a
partition

Dh(a1, . . . , a`, a`+1, . . . , an) =
⋃

r>a`+1

Xr
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whereXr is the set of permutations inDh(a1, . . . , an) whose longest increasing subsequence
among the `th and (`+ 1)st block has length exactly r.

Similarly, each permutation in Dh(a1, . . . , a`+1, a`, . . . , an) naturally induces a permu-
tation of Dr(a`+1, a`) for some r > a`+1. So in exactly the same fashion we partition the
left-hand side as

Dh(a1, . . . , a`+1, a`, . . . , an) =
⋃

r>a`+1

Yr

with Yr denoting those permutations in the right-hand side whose longest increasing
subsequence among the `th and (`+ 1)st block has length exactly r.

We claim that applying W as described in Theorem 4.2 yields a bijection Xr → Yr.
This follows from Lemma 4.1: the lemma then ensures that at each application of W, no
1 . . . (r + 1) patterns are created, nor are any 1 . . . r patterns destroyed. So the image of
this map on Xr really does lie in Yr, as claimed.

In the same way we may use V to define a map in the reverse direction. Since W
and V are inverses, we have produced a bijection Xr → Yr. Putting these together for all
r > a`+1 gives the desired result.

4.3 Proof of Theorem 1.3

In analogy to before, we will prove the following result, which implies Theorem 1.3.

Theorem 4.4. For any index `, if a`+1 > a` + 2 then we have an injective map

Dh (a1, . . . , a`, a`+1, . . . , an) ↪→ Dh (a1, . . . , a` + 1, a`+1 − 1, . . . , an) (6)

obtained by applying W in (4) on only the `th and (`+1)st blocks, viewed as a permutation
on {1, . . . , a` + a`+1}.

Proof. This is really an observation made within the proof of Theorem 4.2. Retaining the
notation in our earlier proof, we decompose

Dh(a1, . . . , a`, a`+1, . . . , an) =
⋃

r>a`+1

Xr

Dh(a1, . . . , a` + 1, a`+1 − 1, . . . , an) =
⋃

r>a`+1−1

Yr.

As in the proof of Theorem 1.2, we obtain bijections Xr → Yr for r > a`+0 which collate
to give a bijection ⋃

r>a`+1

Xr →
⋃

r>a`+1

Yr.

The change from the previous proof is that we now have a set Ya`+1−1 on the right-hand
side which is not in the image of our map. Nonetheless we may still conclude our map is
injective, which proves Theorem 4.4.
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5 Enumeration

Now that we have a symmetry result, we turn our attention to actually computing
#Lk+2(a1, . . . , an) in certain situations. By the main result of this paper, it suffices
to assume

1 6 a1 6 · · · 6 an 6 k.

The general problem of computing the value seems difficult, since the special case
a1 = · · · = an = 1 is equivalent to computing the number of 12 . . . (k + 2) avoiding
permutations; no closed formula is known for k > 3. Nonetheless, even computing the
cardinality for special cases other than those for which ai ∈ {k, k+1} would be interesting.
We give some examples here.

5.1 The n = 2 Case

We show that #Dh(p, q) is given by the entries of Catalan’s triangle.

Proposition 5.1. As usual, let

C(n, k) =
(n+ k)!(n− k + 1)

k!(n+ 1)!
=

(
n+ k

k

)
−
(
n+ k

k − 1

)
denote the (n, k)th entry of Catalan’s triangle. Then for any 1 6 p 6 q 6 h, we have

#Dh (p, q) =

{
C(h, p+ q − h) p+ q > h

0 p+ q < h.

Proof. Assume p+ q > h, and let m = p+ q − h > 0 for brevity. Thus by Corollary 3.8,
we have

#Dh(p, q) = #Dh(h,m).

If m = 0 the result is clear so assume m > 0. We now prove the result by induction on
h+m. From Lemma 1.6 and the definition of Lh+1,

#Lh+1(h,m) = #Lh+1(h− 1,m).

#Dh(h,m) = #Dh(h− 1,m) + #Dh−1(h− 1,m)

= C(h,m− 1) + C(h− 1,m) = C(h,m),

which completes the inductive step. (The term Dh−1(h − 1,m) is omitted when m =
h.)

5.2 Young Tableaux

We now give some examples of possible generalizations of the cardinality computed in [5].
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Proposition 5.2. For p 6 k, the cardinality

#Lk+2(p, k, k, . . . , k︸ ︷︷ ︸
n−1

)

is equal to the number of standard Young tableaux of shape〈
(k + 1)n−1, p

〉
.

Of course, this cardinality may be computed using the hook-length formula.

Proof. This is essentially identical to [4, Proposition 3.1]. By our results, it suffices to
consider the cardinality of

Lk+2(p, k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸
n−1

).

Given a permutation π = π11π12 . . . π1p | · · · | πn1 . . . πn(k+1), we construct a tableau as
follows:

πn,1 πn,2 πn,3 . . . πn,p . . . πn,k+1

πn−1,1 πn−1,2 πn−1,3 . . . πn−1,p . . . πn−1,k+1

...
...

...
. . .

...
. . .

...

π2,1 π2,2 π2,3 . . . π2,p . . . π2,k+1

π1,1 π1,2 π1,3 . . . π1,p

Obviously each row is increasing; then, one observes that π has no 12 . . . (k + 2) pattern
exactly if the tableau T is a standard Young tableau (the columns are increasing as
well).

5.3 Skew Young Tableau

It is possible to generalize both the results above using the concept of skew Young
tableaux.

Proposition 5.3. For p 6 q 6 k, the cardinality

#Lk+2(p, q, k, k, . . . , k︸ ︷︷ ︸
n−2

)

is equal to the number of standard skew Young tableaux of shape〈
(k + 1)n−1, p

〉
/ 〈k + 1− q〉 .
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Proof. By our results, it suffices to consider the cardinality of

Lk+2(p, k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸
n−2

, q).

Given a permutation π = π11π12 . . . π1p | · · · | πn1 . . . πnq, we write it in an array as follows:

πn,1 . . . πn,k+1−q . . . πn,q

πn−1,1 . . . πn−1,k+2−q . . . πn−1,p . . . πn−1,k+1

...
...

...
. . .

...
. . .

...

π2,1 . . . π2,k+1−q . . . π2,p . . . π2,k+1

π1,1 . . . π1,k+2−q . . . π1,p

In the same way as before, one observes that π has no 12 . . . (k+ 2) pattern exactly if this
tableau has increasing columns.

Example 5.4. To compute #L8(4, 5, 6, 6, 6), we biject it to L8(4, 7, 7, 7, 5) and arrange
the permutations of the latter in the following fashion:

π51 π52 π53 π54 π55

π41 π42 π43 π44 π45 π46 π47

π31 π32 π33 π34 π35 π36 π37

π21 π22 π23 π24 π25 π26 π27

π11 π12 π13 π14

Thus, #L8(4, 5, 6, 6, 6) is equal to the number of standard Young tableaux of shape
〈7, 7, 7, 7, 4〉 / 〈2〉.
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