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Abstract
A famous conjecture (usually called Ryser’s conjecture) that appeared in the

PhD thesis of his student, J. R. Henderson, states that for an r-uniform r-partite
hypergraph H, the inequality τ(H) 6 (r − 1)·ν(H) always holds.

This conjecture is widely open, except in the case of r = 2, when it is equivalent
to Kőnig’s theorem, and in the case of r = 3, which was proved by Aharoni in 2001.

Here we study some special cases of Ryser’s conjecture. First of all, the most
studied special case is when H is intersecting. Even for this special case, not too
much is known: this conjecture is proved only for r 6 5 by Gyárfás and Tuza. For
r > 5 it is also widely open.

Generalizing the conjecture for intersecting hypergraphs, we conjecture the fol-
lowing. If an r-uniform r-partite hypergraph H is t-intersecting (i.e., every two
hyperedges meet in at least t < r vertices), then τ(H) 6 r − t. We prove this
conjecture for the case t > r/4.

Gyárfás showed that Ryser’s conjecture for intersecting hypergraphs is equivalent
to saying that the vertices of an r-edge-colored complete graph can be covered by
r − 1 monochromatic components.

Motivated by this formulation, we examine what fraction of the vertices can be
covered by r−1 monochromatic components of different colors in an r-edge-colored
complete graph. We prove a sharp bound for this problem.

Finally we prove Ryser’s conjecture for the very special case when the maximum
degree of the hypergraph is two.
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1 Introduction

A hypergraph is a pair H = (V,E) where V is a finite set (vertices), and E is a multiset
of subsets of V (hyperedges). A hypergraph is r-partite if its vertex set has a partition
to r nonempty classes such that no hyperedge contains two vertices from the same class.
We refer to the partite classes simply as classes (note that in some papers they are called
sides). A set is called multi-colored if it intersects every class in at most one vertex, i.e., in
an r-partite hypergraph every hyperedge is multi-colored. A hypergraph is r-uniform if all
of its hyperedges have cardinality r. A hypergraph is d-regular if every vertex is contained
in exactly d hyperedges. A hypergraph is t-intersecting if every pair of hyperedges have at
least t common vertices. Throughout the paper we assume 0 < t < r when speaking about
t-intersecting r-uniform hypergraphs. A hypergraph is intersecting if it is 1-intersecting.

Let us introduce some more standard notations. For a hypergraph H with vertex set
V = V (H) and hyperedge set E = E(H)

the vertex covering number is: τ(H) = min{|T | : T ⊆ V, T ∩ f 6= ∅ ∀f ∈ E},

the edge covering number is: %(H) = min{|F | : F ⊆ E,
⋃
F = V },

the matching number is: ν(H) = max{|F | : F ⊆ E, f1 ∩ f2 = ∅ ∀f1 6= f2 ∈ F},

the maximum degree is: ∆(H) = max{|F | : F ⊆ E,
⋂
F 6= ∅},

the independence number is: α(H) = max{|X| : X ⊆ V, f 6⊆ X ∀f ∈ E},

the strong independence number is: α′(H) = max{|X| : X ⊆ V, |f ∩X| 6 1 ∀f ∈ E}.

A famous conjecture of Ryser (which appeared in the PhD thesis of his student,
J.R. Henderson [15, p.26]) states that for an r-uniform r-partite hypergraph H, we have
τ(H) 6 (r − 1)·ν(H).

This conjecture is widely open, except in the special case of r = 2, when it is equivalent
to Kőnig’s theorem [18], and when r = 3, which was proved by Aharoni in 2001 [3], using
topological results from [5]. We mention also some related results. Henderson [15] showed
that the conjecture cannot be improved if r − 1 is a prime power. Haxell and Scott [13]
showed that the constant in the conjecture cannot be smaller than r−4 for all but finitely
many values of r. Füredi [9] proved that the fractional covering number is always at most
(r − 1) ·ν(H), and Lovász [19] proved that the fractional matching number is always at
least 2

r
·τ(H). The hypergraphs achieving τ(H) = (r−1)·ν(H) have also been investigated,

but this problem is also widely open. Haxell, Narins and Szabó characterized the sharp
examples for r = 3 [11, 12]. For larger values of r, truncated projective planes give
an infinite family of sharp examles. Apart from these, there are some sporadic examples
[4, 2, 8, 20], moreover, Abu-Khazneh, Barát, Pokrovskiy and Szabó [1] constructed another
infinite family of extremal hypergraphs but projective planes play also an important role
in their construction.

Here we study some special cases of Ryser’s conjecture. First of all, the most studied
special case is when ν = 1, i.e., when H is intersecting. Even for this case, not too much
is known. Gyárfás [10] showed that this special case of the conjecture is equivalent to
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saying that the vertices of an r-edge-colored complete graph can be covered by r − 1
monochromatic components (see below). He also proved this conjecture for r 6 4 [10],
and later Tuza [21] proved it for r = 5. For r > 5 this conjecture is also widely open. Some
recent papers study this special case, e.g., see [6, 13, 8, 20]. For intersecting hypergraphs,
we generalize Ryser’s conjecture by conjecturing the following. If an r-uniform r-partite
hypergraph H is t-intersecting, then τ(H) 6 r − t. We prove this conjecture for the case
r > t > r/4. This question was also studied (independently) by Bustamante and Stein,
see [7].

The construction of Gyárfás [10] (see also in [16]) is the following. We associate a
multi edge-colored graph to an r-partite r-uniform hypergraph.

Definition 1. For an r-partite r-uniform hypergraph H, let G = G(H) be the following
multi edge-colored graph:

The vertex set of G is V (G) = E(H). Two vertices u, v ∈ V (G) are connected by an
edge if the corresponding hyperedges Eu, Ev ∈ E(H) have a nonempty intersection. The
edge uv is colored by the colors {i : Eu and Ev share a vertex from the ith class}. We
denote the set of colors of edge uv by Col(uv). If i ∈ Col(uv), then we say that the edge
uv has the color i.

Note that if H is intersecting, then G is a complete graph.
Remark 2. The original construction of Gyárfás colored each edge uv by only one color,
chosen arbitrarily from Col(uv).
Remark 3. The color sets we defined in this way are transitive: if i ∈ Col(uv) ∩Col(vw),
then i ∈ Col(uw). We call a complete graph G multi r-edge-colored if for each distinct
vertex pair {u, v} we have ∅ 6= Col(uv) ⊆ [r] = {1, . . . , r} and if the coloring is transitive.
In a multi r-edge-colored graph, a monochromatic component of color i is a component
of the subgraph formed by the edges using the color i. Note that – as the coloring is
transitive – if U is the vertex set of a monochromatic component of color i, then for every
u 6= v ∈ U we have i ∈ Col(uv); in other words, the edges of G having color i form a
partition of V (G) into i-colored cliques. Each vertex of H in the class i corresponds to one
maximal clique of color i, which is also a monochromatic (i-colored) connected component
of G. A set of vertices T ⊆ V (H) covers the hyperedges of H (as in the definition of τ) if
and only if the monochromatic components corresponding to its elements cover V (G).
Remark 4. We also note that for any edge-colored complete graph we can consider the
color-transitive closure: for any edge uv we define Col(uv) = {i | u and v are in the same
monochromatic component of color i}. The vertex sets of the monochromatic components
of this multi edge-colored graph are the same as the vertex sets of the monochromatic
components of the original edge-colored graph.

Ryser’s conjecture for intersecting hypergraphs is equivalent to the statement that
r−1 monochromatic components can cover V (G(H)). The more general conjecture for t-
intersecting hypergraphs is equivalent to the statement that for every multi r-edge-colored
complete graph, where each edge has at least t colors, there is a set of r−t monochromatic
components that cover the vertices (if t < r).

the electronic journal of combinatorics 24(4) (2017), #P4.40 3



For the case of r-edge-colored complete graphs, we also study the following problem:
What fraction of the vertices can be covered by r − 1 monochromatic components of dif-
ferent colors? We prove a sharp bound for this problem, namely

(
1− r−2

(r−1)2

)
· |V (G)|. In

the hypergraph language, this corresponds to the question of “How many hyperedges can
be covered by a multi-colored set of size r−1 in an intersecting r-partite r-uniform hyper-
graph?” We show that the hypergraphs giving the minimum are exactly the hypergraphs
that can be obtained from a truncated projective plane by replacing each hyperedge by b
parallel copies for some integer b.

Finally we prove Ryser’s conjecture for the very special case when the maximum degree
of the hypergraph is two, i.e., when no vertex is contained in three or more hyperedges.

The preliminary version of this paper can be found in [17].

2 The t-intersecting case

Conjecture 5. Let H be an r-uniform r-partite t-intersecting hypergraph with 1 6 t 6
r − 1. Then τ(H) 6 r − t.

Theorem 6. If H is an r-uniform r-partite t-intersecting hypergraph and r
4 < t 6 r − 1,

then τ(H) 6 r − t.

Using Gyárfás’ construction (Definition 1), Theorem 6 follows from the following state-
ment:

Theorem 7. Let G be a multi r-edge-colored complete graph where each edge has at least t
different colors. If r−1 > t > r

4 , then V (G) can be covered by at most r−t monochromatic
components.

Remark 8. Conjecture 5 is seemingly a strengthening of Ryser’s conjecture for intersecting
hypergraphs (which corresponds to t = 1). However, the statement is stronger for smaller
t values.

To see this, suppose the conjecture is proved for a fixed t and for every r > t. To
prove it for t+ 1, suppose we are given a multi r-edge-colored complete graph where each
edge has at least t+ 1 different colors and r > t+ 1. Deleting color r from every Col(uv),
we get a multi (r−1)-edge-colored complete graph where each edge has at least t different
colors, so by the assumption its vertex set can be covered by r − 1 − t = r − (t + 1)
monochromatic components.
Remark 9. In a recent manuscript [7], Bustamante and Stein formulated independently
the same conjecture (we are thankful for the reviewer who raised our attention to it).
They proved that the conjecture is true if r − 1 > t > r−2

2 . We note that our theorem
is stronger (except that their result contains the well-known case r = 4, t = 1 while our
result does not).

Proof of Theorem 7. We assume [r] = {1, 2, . . . , r} is the set of colors, and if x is a
vertex and I ⊆ [r] is a set of colors, then we denote by C(x, I) the set of monochromatic
components containing x and having a color in I.
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The proof goes by induction on the number vertices. If |V (G)| 6 2, we can cover V (G)
by 1 monochromatic component. If there are x 6= y ∈ V (G) where |Col(xy)| = r, then
contract the edge xy to a vertex x∗ (by color-transitivity, for any vertex z 6= x, y we have
Col(zx) = Col(zy), so we define Col(zx∗) = Col(zx)). By induction, the graph obtained
can be covered by at most r − t monochromatic components. It is easy to see that the
preimages of these components are monochromatic and cover V (G). So from this point
we may (and will) suppose that |Col(xy)| < r for every pair x 6= y.

First we prove some special cases.
Lemma 10. Let G be a multi r-edge-colored complete graph, where each edge has exactly
t different colors. If t + 1 6 r 6 4t − 2, then V (G) can be covered by at most r − t
monochromatic components.

Proof. Take any edge xy. Without loss of generality, we can suppose that Col(xy) = I =
[t].

First consider the case r 6 2t. Let J = [r − t]. Now J ⊆ I since r − t 6 t. We
claim that C(x, J) = C(y, J) covers V (G). If a vertex z is not covered, then Col(xz) =
Col(yz) = {r − t+ 1, . . . , r}. However, since each monochromatic component is a clique,
we get {r − t+ 1, . . . , r} ⊆ Col(xy) = I, so t = r contradicting the assumption t < r.

Thus it remains to prove the case r > 2t. Let j = b r2c − t and J = {t + 1, . . . , t + j}
if j > 0, and J = ∅ otherwise. Take C(x, I) ∪ C(x, J) ∪ C(y, J). We claim that these
t + 2j 6 r − t monochromatic components cover the vertices of G. If a vertex z is not
covered, then Col(xz) ⊆ {t + j + 1, . . . , r} and Col(yz) ⊆ {t + j + 1, . . . , r} and, as
the coloring is transitive, Col(xz) ∩ Col(yz) ⊆ I, thus Col(xz) ∩ Col(yz) = ∅. However,
|Col(xz)| = |Col(yz)| = t, so 2t 6 r − t − j, i.e., 2t 6 d r2e or equivalently r > 4t − 1, a
contradiction.

Lemma 11. Let G be a multi r-edge-colored complete graph where each edge has at least
t different colors. If t + 1 6 r 6 4t − 1 and there is an edge xy with t < |Col(xy)| < r,
then V (G) can be covered by at most r − t monochromatic components.

Proof. Take an edge xy with |Col(xy)| > t. Without loss of generality, we can suppose
that Col(xy) = I = [`] where t < ` < r.

First consider the case r 6 t + `. Let J = [r − t]. Now J ⊆ I. We claim that
C(x, J) = C(y, J) covers V (G). If a vertex z is not covered, then Col(xz) = Col(yz) =
{r− t+ 1, . . . , r}. However, since the coloring is transitive, we get {r− t+ 1, . . . , r} ⊆ I,
so ` = |I| = r contradicting the assumption ` < r.

Thus it remains to prove the case r > t+ `. Let j = b r−t−`2 c and J = {`+ 1, . . . , `+ j}
if j > 0, and J = ∅ otherwise. Take C(x, I) ∪ C(x, J) ∪ C(y, J). We claim that these
` + 2j 6 r − t monochromatic components cover the vertices of G. If a vertex z is not
covered, then Col(xz) ⊆ {`+ j + 1, . . . , r} and Col(yz) ⊆ {`+ j + 1, . . . , r} and, as each
monochromatic component is a clique, Col(xz) ∩ Col(yz) = ∅. However, |Col(xz)| > t
and |Col(yz)| > t, so 2t 6 r − `− j, i.e., t 6 d r−t−`2 e or equivalently r > 3t+ `− 1 > 4t,
a contradiction.
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It remains to prove the case r = 4t − 1 and |Col(xy)| = t for each x 6= y. Let k be
the largest integer j such that there is a triangle in G with j colors occurring on all three
edges. Let xyz be a triangle with k common colors on its edges. Let us introduce some
further notations.

Let K = Col(xy) ∩ Col(yz) ∩ Col(zx) and X = Col(yz) − K and Y = Col(xz) − K
and Z = Col(xy)−K, finally let S = [r]− (K ∪X ∪ Y ∪ Z).
For a set A, A′ always denotes a subset of A. Moreover, we denote A − A′ by A′′. Note
that |K| = k and |X| = |Y | = |Z| = t− k.

Case 0: k = 0.
Now |V (G)| 6 r + 1 as no two incident edges may have the same color. Let V (G) =

{u1, . . . , un}, where n 6 r+1, and let ci ∈ Col(u2i−1u2i) for 1 6 i 6 n/2. If n is even, then
consider C(u1, c1)∪C(u3, c2)∪ . . .∪C(un−1, cn/2), otherwise consider C(u1, c1)∪C(u3, c2)∪
. . . ∪ C(un−2, c(n−1)/2) ∪ C(un, c), where c is an arbitrary color of an edge incident to un.
These (at most b(n + 1)/2c 6 b(r + 2)/2c) monochromatic components obviously cover
V (G), and b(r + 2)/2c 6 r − t as r = 4t− 1.

Case 1: 0 < 3k 6 t.
Choose Y ′ ⊆ Y and Z ′ ⊆ Z so that |Y ′| + |Z ′| = t + k − 1. This is possible, since

|Y |+ |Z| = 2t− 2k > t+ k because t > 3k.
Take the following monochromatic components: C(x,K ∪ Y ∪Z)∪C(y, Y ′)∪C(z, Z ′).

The number of components chosen is at most (2t− k) + (t+ k − 1) = 3t− 1 = r − t.
Claim 12. The components C(x,K ∪ Y ∪ Z) ∪ C(y, Y ′) ∪ C(z, Z ′) cover each vertex.

Proof. Suppose that a vertex w is not covered. Then
(
Col(xw)∪Col(yw)∪Col(zw)

)
∩K =

∅. Similarly, Col(xw) ∩ Y = ∅ and Col(yw) ∩ Y ′ = ∅.
We claim that also Col(zw) ∩ Y = ∅. Indeed, as Y ⊆ Col(xz), if zw had a color from

Y , then xw would also have that color (since the coloring is transitive), a contradiction.
By the same reasoning, Col(xw) ∩ Z = ∅, Col(yw) ∩ Z = ∅ and Col(zw) ∩ Z ′ = ∅.
As a consequence, Col(xw) ⊆ X∪S, Col(yw) ⊆ X∪Y ′′∪S and Col(zw) ⊆ X∪Z ′′∪S.
Next we claim that the colors in X can occur altogether (counting with multiplicity)

at most t times on the edges xw, yw and zw. Let c ∈ X be a color. If it occurs more than
once on edges xw, yw and zw, then it is in Col(yw) ∩ Col(zw) but c 6∈ Col(xw). To see
this, note that if c ∈ Col(xw)∩Col(yw), then c ∈ Col(xy) contradicting X ∩Col(xy) = ∅;
similarly c 6∈ Col(xw)∩Col(zw). By the choice of k, |Col(yw)∩Col(zw)| 6 k. Hence the
colors in X occur at most |X|+ k 6 t times on the edges xw, yw and zw.

Each color in S can only occur once on xw, yw and zw, since by color-transitivity, a
color occurring on at least two of the edges xw, yw and zw would also occur on one of
the edges xy, yz and zx, and that would contradict the definition of S.

Hence counting the colors of the edges xw, yw and zw: 3t 6 |S| + |Z ′′| + |Y ′′| + t =
|S|+ (|Y |+ |Z| − (|Y ′|+ |Z ′|)) + t = (4t− 1− (3t− 2k)) + (2t− 2k − (t+ k − 1)) + t =
(t+ 2k − 1) + (t− 3k + 1) + t = 3t− k, which is a contradiction.
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Case 2: 3k > t.
If |X| + |Y | + |Z| = 3t − 3k > 2k − 1, then choose X ′ ⊆ X, Y ′ ⊆ Y and Z ′ ⊆ Z so

that |X ′|+ |Y ′|+ |Z ′| = 2k − 1. If |X|+ |Y |+ |Z| = 3t− 3k < 2k − 1, then let X ′ = X,
Y ′ = Y and Z ′ = Z.

Take the following monochromatic components: C(x,K∪X ′∪Y ∪Z)∪C(y, Y ′)∪C(z,X∪
Z ′). The number of components chosen is at most |K|+|X|+|Y |+|Z|+|X ′|+|Y ′|+|Z ′| 6
k + 3(t− k) + 2k − 1 = 3t− 1 = r − t.

We claim that the components chosen cover each vertex. Suppose that there is a
vertex w which is not covered. Similarly to the previous case, it is easy to prove that the
colors of xw, yw and zw are all from S ∪ X ′′ ∪ Y ′′ ∪ Z ′′, and each color is used at most
once altogether on these three edges. Hence 3t 6 |S|+ |X ′′|+ |Y ′′|+ |Z ′′|.

If 3t−3k > 2k−1, then 3t 6 |S|+|X ′′|+|Y ′′|+|Z ′′| = 4t−1−(|K|+|X ′|+|Y ′|+|Z ′|) =
4t− 1− (k + 2k − 1) = 4t− 3k < 3t since t < 3k. This is a contradiction.

If 3t−3k < 2k−1, then 3t 6 |S∪X ′′∪Y ′′∪Z ′′| = |S| = 4t−1− (3t−2k) = t+2k−1.
But this implies 2t 6 2k − 1, hence k > t, which contradicts the assumption that each
edge has exactly t colors. This finishes the proof of Theorem 7.

Remark 13. We think that with a more diversified case analysis, Theorem 7 can be ex-
tended to the case t > r/5. Note however, that the case t = r/6 would include the first
unsolved case of Ryser’s conjecture for intersecting hypergraphs.

3 Covering large fraction by few monochromatic components

In this section, we give a sharp bound for the ratio of vertices that can be covered by
r−1 monochromatic components of pairwise different colors in an r-edge colored complete
graph. By Remark 4, we can assume that the monochromatic components of the graph are
cliques, since in the color-transitive closure of a graph, the monochromatic components
have the same vertex sets as in the original graph.

Theorem 14. Let G be a multi r-edge-colored complete graph on n vertices. Then at least(
1− r−2

(r−1)2

)
·n vertices of G can be covered by r−1 monochromatic components of pairwise

different colors, and this bound is sharp for infinitely many values of r. Moreover, the
r − 1 monochromatic components can be chosen so that their intersection is nonempty.

Applying the construction of Gyárfás (Definition 1), we get the following equivalent
statement for hypergraphs.

Theorem 15. Let H be an r-partite r-uniform intersecting hypergraph. Then at least(
1 − r−2

(r−1)2

)
· |E(H)| hyperedges of H can be covered by a multi-colored set of size r − 1,

and this bound is sharp for infinitely many values of r. Moreover, the cover can be chosen
so that it is a subset of some hyperedge of H.

The following strengthening of Ryser’s conjecture was phrased by Aharoni et al. [4,
Conjecture 3.1]: “In an intersecting r-partite r-uniform hypergraph H, there exists a class
of size r − 1 or less, or a cover of the form e − {x} for some e ∈ E and x ∈ e.” This
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conjecture was disproved in [8]. Note however, that by Theorem 15, if we require the
cover to be multi-colored, then additionally requiring it to be a subset of a hyperedge
does not decrease the number of coverable hyperedges in the worst case.

We call the reader’s attention to the fact that, although our result is sharp for infinitely
many values of r, in all our examples showing sharpness every class has exactly r − 1
vertices, thus they are far from exhibiting a counterexample to Ryser’s conjecture.

Proof of Theorem 14. We call an edge-coloring of G spanning if for every color c and
vertex u there is an edge uv of G such that c ∈ Col(uv). If the edge-coloring of G is not
spanning, then we can cover all the vertices of G by r − 1 monochromatic components
of pairwise different colors. Indeed, if there is a vertex v and a color i such that no edge
incident to v has color i, then C(v, [r]− {i}) covers the vertices of G.

Now suppose that the coloring of G is spanning. For r = 2 we can cover the vertex
set by one monochromatic component by a well-known folklore observation, so we may
assume r > 3. Let the number of monochromatic components of color i be ki. Let us
denote the set of monochromatic components of color i by Ci. We may suppose that
k1 > k2 > . . . > kr > 2, otherwise (if kr = 1) we are done. In the following proof, we
will think of monochromatic components as vertex sets, hence when we write C ∈ Ci, we
mean that C is the vertex set of a monochromatic component of color i.
Case 1: k1 > r − 1. We have∑

C∈C1, C′∈Cr

|C − C ′| = (kr − 1) · n, (1)

since each vertex occurs in exactly one component of color r and one component of color
1. Hence each vertex is counted kr − 1 times for the kr − 1 components of color r that
does not contain it.

From (1) it follows that among the k1 · kr sets {C −C ′ : C ∈ C1, C
′ ∈ Cr}, there is one

which has size at most kr−1
k1·kr
· n. Let C1 −C ′r be such a set with minimum cardinality. As

k1 > kr we have kr−1
kr

6 k1−1
k1

, so kr−1
k1·kr
· n 6 k1−1

k2
1
· n. Using 2 6 r − 1 6 k1 we also have

k1−1
k2

1
6 r−2

(r−1)2 , so kr−1
k1·kr
· n 6 r−2

(r−1)2 · n.
We claim that C1 ∩ C ′r 6= ∅. Indeed, take a vertex x ∈ C1. If C1 ∩ C ′r = ∅, then

|C1 − C(x, {r})| < |C1| = |C1 − C ′r| which contradicts the minimality of C1 − C ′r. Thus
we can choose a vertex x in C1 ∩ C ′r. Take C(x, [r]− {1}). These components cover each
vertex outside C1 − C ′r, hence at least (1− r−2

(r−1)2 ) · n vertices.

Case 2: k1 6 r − 1 (i.e., ki 6 r − 1 for all i).
Notice that Case 1 and Case 2 overlap. However, this overlapping categorization will

be convenient when examining sharpness.
For a vertex v and a color i ∈ [r], let di(v) = |{u ∈ V (G) : Col(uv) = {i}}|, i.e., the

number of neighbors of v that are connected to v by an edge having only color i. It is
enough to show that there exists v ∈ V and i ∈ {1, . . . , r} such that di(v) 6 r−2

(r−1)2 · n.
Indeed, in this case C(v, [r]− {i}) cover each vertex except those that are connected to v
by an edge of unique color i, that is, at most r−2

(r−1)2 · n vertices are uncovered.
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Let mi = |{uv ∈ E(G) : Col(uv) = {i}}|, and Mi = |{uv ∈ E(G) : i ∈ Col(uv)}|.
Since ∑v∈V di(v) = 2mi, it is enough to show that there exists a color i such that mi 6
r−2

2(r−1)2 · n2. For this, it is enough to show that ∑r
i=1mi 6

r(r−2)
2(r−1)2 · n2. We have ∑r

i=1mi =(
n
2

)
− t where t denotes the number of edges having multiple colors.
It is not hard to see that t > 1

r−1 ·
[∑r

i=1Mi −
(
n
2

)]
, since each edge has at most r

colors.
Claim 16. If ` = ki 6 r − 1, then Mi > n2

2` −
n
2 > n2

2(r−1) −
n
2 .

Proof. Let the cardinalities of the components of color i be γ1, . . . , γ`. Then Mi =
(
γ1
2

)
+

· · ·+
(
γ`

2

)
= γ2

1+···+γ2
`

2 − γ1+···+γ`

2 = γ2
1+···+γ2

`

2 − n
2 .

Now it is enough to show that γ2
1+···+γ2

`

2 > n2

2` but this follows from the Arithmetic
Mean–Quadratic Mean Inequality.

Using the claim, we get that t > 1
r−1 ·

[∑r
i=1Mi −

(
n
2

)]
> 1

r−1 ·
[
r(n2−(r−1)n)

2(r−1) −
(
n
2

)]
=

rn2−r(r−1)n−(r−1)n2+(r−1)n
2(r−1)2 = n2

2(r−1)2 − n
2 .

So ∑r
i=1mi =

(
n
2

)
− t 6

(
n
2

)
− n2

2(r−1)2 + n
2 = (r−1)2n2−(r−1)2n−n2+(r−1)2n

2(r−1)2 = r(r−2)n2

2(r−1)2 .
For the proof of sharpness see Theorem 19.

3.1 Characterization of sharp examples

In this subsection we characterize the sharp examples for Theorem 14. For this, we will
need the definition of an affine plane of order r − 1.

Definition 17. An incidence structure A = (P ,L), where the elements of P are referred
to as the points, and the elements of L are referred to as the lines is called an affine plane
of order r − 1 if the following five conditions hold.

(i) Every pair of points are connected by exactly one line.

(ii) For each point x and line L such that x /∈ L, there exists exactly one line L′ such
that x ∈ L′, but L′ is disjoint from L.

(iii) Each line contains at least 2 points.

(iv) Each point is incident with at least 3 lines.

(v) The maximum number of pairwise parallel lines is r − 1.

We also need the following definition.

Definition 18. We call a multi edge-colored complete graph G the blowup of an affine
plane if there exists an affine plane A = (P ,L), a positive integer b and a function
f : V (G)→ P such that
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• the lines of A are colored such that two lines have the same color if and only if they
are disjoint (i.e., parallel),

• for each point p ∈ P , |{v ∈ V (G) : f(v) = p}| = b

• i ∈ Col(uv) if and only if f(u) and f(v) are incident to a common line of color i
(note that this includes the case if f(u) = f(v)).

Theorem 19. For a multi r-edge-colored complete graph G on n vertices, the maximum
number of vertices coverable by r − 1 monochromatic components of pairwise different
colors equals

(
1− r−2

(r−1)2

)
· n if and only if G is a blowup of an affine plane.

Proof. Suppose G is a sharp example, i.e., no r−1 monochromatic components of pairwise
different colors can cover more than

(
1− r−2

(r−1)2

)
·n vertices and

(
1− r−2

(r−1)2

)
·n is an integer.

As noted in the beginning of the proof of Theorem 14, if the edge-coloring of G is
not spanning or r = 2, then all the vertices of G can be colored by r − 1 monochromatic
components of pairwise different colors, hence in these cases, there is no sharp example.

Now suppose that the coloring of G is spanning, and r > 3. We examine the proof of
Theorem 14 to see how the inequalities can be equalities. In Case 1, k1 = · · · = kr = r−1
for a sharp example, since otherwise kr−1

k1·kr
· n would be strictly smaller than r−2

(r−1)2 · n.
Also in Case 2, k1 = · · · = kr = r−1 for a sharp example, since we need Mi = n2

2(r−1)−
n
2

for each i. But if ki < r − 1 for some i, then Mi > n2

2ki
− n

2 >
n2

2(r−1) −
n
2 .

Hence a sharp example is necessarily in the intersection of Case 1 and Case 2, and the
bounds in both cases are sharp for it.

We claim that the intersection of any two components of different colors must have
cardinality exactly n

(r−1)2 (and consequently, the cardinality of any monochromatic com-
ponent is exactly n

r−1). Let i, j ∈ [r] be two different colors. We know ki = kj = r − 1
and by (1) ∑

Ci∈Ci, Cj∈Cj

|Ci − Cj| = (r − 2) · n. (2)

Choose C ′i ∈ Ci and C ′j ∈ Cj such that s = |C ′i−C ′j| is minimum and recall from the proof
of Case 1 that in this case C ′i ∩ C ′j 6= ∅. If s < r−2

(r−1)2n, then for any x ∈ C ′i ∩ C ′j, the
components C(x, [r] − {i}) cover each vertex outside C ′i − C ′j, hence strictly more than(
1 − r−2

(r−1)2

)
· n vertices but this contradicts the assumption. Since s is the minimum, it

cannot be bigger than the average, thus for any Ci ∈ Ci and Cj ∈ Cj we have |Ci −Cj| =
r−2

(r−1)2n. Now take any Ci ∈ Ci and Cj, C
′
j ∈ Cj. As |Ci − Cj| = |Ci − C ′j|, we also have

|Ci ∩Cj| = |Ci ∩C ′j|. By symmetry we also get |Ci ∩Cj| = |C ′i ∩Cj| for any Cj ∈ Cj and
Ci, C

′
i ∈ Ci, proving the claim.

Moreover, from t = 1
r−1 ·

[∑r
i=1Mi−

(
n
2

)]
, for each edge uv ∈ E(G) either |Col(uv)| = 1

or |Col(uv)| = r. From this, the following useful property follows:
Claim 20. If C1 ∩ · · · ∩ Cr 6= ∅ where C1 ∈ C1, . . . , Cr ∈ Cr, then for arbitrary 1 6 i <
j 6 r, we have Ci ∩ Cj = C1 ∩ · · · ∩ Cr.
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Proof. If there were a vertex x ∈ C1 ∩ · · · ∩ Cr and a vertex y ∈ Ci ∩ Cj − C` for some
`, then the edge xy would have color i and j but not color `, which would contradict the
fact that either |Col(xy)| = 1 or |Col(xy)| = r.

Now let us take the following incidence structure A: Let the points of A be the
nonempty intersections C1 ∩ · · · ∩ Cr 6= ∅, where C1 ∈ C1, . . . , Cr ∈ Cr. Let the lines of A
be the monochromatic components of G. Let a point corresponding to C1 ∩ · · · ∩ Cr 6= ∅
be incident with the lines corresponding to C1, . . . , Cr. Since each vertex of G is incident
with edges of each color, this way each vertex of G is mapped to a point of A. Also, for
a nonempty intersection, C1 ∩ · · · ∩ Cr = C1 ∩ C2. Since |C1 ∩ C2| = n

(r−1)2 , each point of
A corresponds exactly to n

(r−1)2 =: b vertices of G.
We claim that A is an affine plane of order r − 1. Moreover, we claim that two lines

are disjoint if and only if the corresponding monochromatic components have the same
color. Note that if we prove these statements, it follows that G is the blowup of an affine
plane.

We have already proved that two components of G of different colors have a nonempty
intersection. On the other hand, two monochromatic components of the same color are
disjoint by the definition of a component. Hence indeed two lines in A are disjoint if and
only if the corresponding monochromatic components have the same color. To prove that
A is an affine plane of order r−1, we need to check the five conditions given in Definition
17.

(i) We claim that the points corresponding to C1 ∩ · · · ∩Cr 6= ∅ and C ′1 ∩ · · · ∩C ′r 6= ∅
where C1, C

′
1 ∈ C1, . . . , Cr, C

′
r ∈ Cr have at least one common monochromatic component.

Indeed, take x ∈ C1∩· · ·∩Cr and y ∈ C ′1∩· · ·∩C ′r. Since G is complete, xy ∈ E(G). This
edge has at least one color, hence x and y have a common monochromatic component.

Now we claim that these two points have at most one common monochromatic com-
ponent. Indeed, by Claim 20, if Ci = C ′i and Cj = C ′j for some i 6= j, then C1∩ · · · ∩Cr =
Ci ∩ Cj = C ′i ∩ C ′j = C ′1 ∩ · · · ∩ C ′r.

(ii) Let C be the monochromatic component of G corresponding to the line L. As we
noted before, two monochromatic components in G are disjoint if and only if they have
the same color. Suppose that C has color i. Let C ′ be the component of color i that
contains x. The line corresponding to C ′ satisfies the requirements of (ii).

(iii) If there is a line containing only one point, let the monochromatic component of
G corresponding to the line be Ci ∈ Ci and the intersection corresponding to the point be
C1 ∩ · · · ∩ Cr 6= ∅ where C1 ∈ C1, . . . , Cr ∈ Cr. From the fact that the line has only one
point, Ci ⊆ C1 ∩ · · · ∩Ci−1 ∩Ci+1 ∩ · · · ∩Cr. But then C1, . . . Ci−1, Ci+1, . . . , Cr cover all
the vertices of G since G is complete. Thus, the example is not sharp.

(iv) It can be seen from the definition that each point of A is incident with r > 3 lines.
(v) This follows from the fact that two lines are parallel if and only if they correspond

to monochromatic components of the same color, and for each color, there are exactly
r − 1 monochromatic components.

With this, we have proved that any sharp example needs to be a blowup of an affine
plane. Now we prove that the blowup of an affine plane is always a sharp example.
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We claim that r − 1 monochromatic components of pairwise different colors cover at
most

(
1− r−2

(r−1)2

)
·n =

(
1− r−2

(r−1)2

)
· b(r− 1)2 = b · ((r− 1)2− r+ 2) vertices. Indeed, take

the first component. This covers b(r− 1) vertices. The second component has a different
color from the first, hence they have an intersection of size n

(r−1)2 = b. Hence the two
components together cover at most b(2(r − 1)− 1) vertices. And so on, each subsequent
component needs to have an intersection of size at least b with the union of the previous
ones, hence altogether, they cover at most b((r − 1)2 − r + 2) vertices. We can also see,
that for covering exactly b((r−1)2− r+ 2) vertices, we need to take r−1 monochromatic
components having a common intersection of b points.

Remark 21. In the case if
(
1− r−2

(r−1)2

)
·n is not an integer, it would be reasonable to call the

multi r-edge-colored G sharp if the number of vertices coverable by r− 1 monochromatic
components of pairwise different colors is the minimum possible, i.e.,⌈(

1− r − 2
(r − 1)2

)
· n
⌉
.

We do not know the structure of the sharp examples in this sense.
Recall the definition of a truncated projective plane:

Definition 22. Take a projective plane of order r − 1. The truncated projective plane of
order r− 1 is the following hypergraph: Remove a point and the lines incident to it from
the projective plane. Let the vertices of the hypergraph be the remaining points, and the
hyperedges be the remaining lines.

Note that this is an r-partite r-uniform hypergraph (the partite classes correspond to
the unremoved points that were contained by a removed line). Truncated projective planes
play an important role in the study of Ryser’s conjecture. They give a family of sharp
examples. Moreover, the only other known family of extremals [1] is also constructed using
truncated projective planes. In [12] it is shown that the truncated Fano-plane is the main
building block in the characterization of the sharp hypergraphs for Ryser’s conjecture in
the case r = 3. In addition, the near-extremal family recently constructed by Haxell and
Scott [13] is also based on truncated projective planes.

Note that if one switches the role of vertices and hyperedges, an affine plane becomes a
truncated projective plane. Hence Theorem 19 gives the following result for hypergraphs:
Theorem 23. Let H be an r-partite r-uniform intersecting hypergraph. The maximum
number of hyperedges coverable by a multi-colored set of size r− 1 equals to

(
1− r−2

(r−1)2

)
·

|E(H)| if and only if H can be obtained from a truncated projective plane by taking b
parallel copies of each hyperedge for some fixed integer b.

4 Ryser’s conjecture in the case ∆(H) = 2

For r = 2, Ryser’s conjecture follows from Kőnig’s theorem. In this section, we prove
Ryser’s conjecture for the very special case ∆(H) = 2 and r > 3. We note, that in this
special case, the hypergraph does not even need to be r-partite for Ryser’s bound to hold.

the electronic journal of combinatorics 24(4) (2017), #P4.40 12



Theorem 24. Let H be an r-uniform hypergraph with r > 3 and ∆(H) = 2. Then
τ(H) 6 (r − 1) · ν(H).

Proof. Let the dual of a hypergraph H be the following hypergraph H∗, with multiple
hyperedges possible:

V (H∗) = E(H)

E(H∗) = {{e ∈ E(H) : e 3 v} : v ∈ V (H)} taken as a multiset.

We have H∗∗ = H, hence vertices of H correspond exactly to hyperedges in H∗ and
hyperedges of H correspond exactly to vertices in H∗.

Note that a set of vertices T ⊆ V (H) covers the hyperedges of H if and only if the
corresponding hyperedge set in H∗ covers the vertices of H∗, so τ(H) = %(H∗).

The degree of a vertex of H∗ is the cardinality of the corresponding hyperedge of
H. Hence H is r-uniform if and only if H∗ is r-regular, consequently ∆(H∗) = r. By
definition, α′(H∗) = ν(H).

If ∆(H) = 2, then H∗ is a hypergraph with hyperedge cardinalities one or two, and
the statement of the theorem is equivalent to %(H∗) 6 (∆(H∗)− 1)α′(H∗).

We can suppose that there are no hyperedges of cardinality one in H∗. Indeed, if
a hyperedge of cardinality one is contained by a hyperedge of cardinality two, then we
can remove the hyperedge of cardinality one. This does not change the value of α′, and
∆ = ∆(H∗) can only decrease. Moreover, the value of % can only increase by removing a
hyperedge, since a covering hyperedge set of the modified hypergraph is also a covering
hyperedge set in the original hypergraph. Hence if the statement is true for the hypergraph
after removing a hyperedge, then the statement is also true for the original hypergraph.

If a hyperedge of cardinality one is not contained by a hyperedge of cardinality two,
then this hyperedge (or a parallel copy of it) needs to occur in each hyperedge cover.
Hence leaving this vertex and the cardinality one hyperedges incident to it, % decreases
by one. On the other hand, α′ also decreases by one and ∆ can only decrease. Hence if the
statement is true to the modified hypergraph, it is also true for the original hypergraph.

The following lemma proves the theorem if the cardinality two hyperedges form a
graph which is not a cycle.
Lemma 25. If G is a graph which is not a cycle, then %(G) 6 (∆(G)− 1) · α(G).

Proof. We will denote by G[X] the subgraph of G induced by the vertex set X. For a set
of vertices U ⊆ V , we denote by Γ(U) the set of neighbors of U .

The statement is easily seen to be true for complete graphs with at least four vertices,
hence we can suppose that G is not complete.

Let n = |V (G)|. Since G is not a cycle, using Brooks’ theorem, G is colorable by ∆(G)
colors. As consequence, α(G) > n

∆ .
Take an independent vertex set I ⊆ V (G) of maximum size, and take a maximum

matching M in G[V (G)−I]. Let X = V (M) and Y = V −I−X. Since M is a maximum
matching in G[V (G) − I], it follows that Y is an independent set. Hence G[Y ∪ I] is a
bipartite graph.
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We show that in G[Y ∪ I] there is a matching covering Y . Suppose for contradiction
that the condition of Hall’s theorem is not satisfied, i.e., ∃U ⊆ Y such that |Γ(U)| < |U |.
Then (I−Γ(U))∪U is an independent set, whose size is greater than |I|, which contradicts
the choice of I.

Now take the following set of edges: the edges of M , the edges of a matching covering
Y in G[Y ∪I], and for each thus uncovered vertex in I, an edge covering it. This is an edge
cover of G of cardinality at most |M |+ |Y |+ (|I| − |Y |) = |M |+ |I|. Thus % 6 |M |+ |I|.

We show that |M |+ |I| 6 (∆(G)− 1)α(G). Indeed, since |X| 6 n− |I| = n−α(G) 6
n(1− 1/∆), we have |M | 6 bn(1−1/∆)

2 c = b(∆− 1) n
2∆c 6 b

(∆−1)α
2 c. Thus % 6 |M |+ |I| 6

b (∆−1)α
2 c+ α 6 (∆− 1)α.

Now the only remaining case is if the cardinality two hyperedges of H∗ form a cycle,
that is, H∗ is a cycle with some additional cardinality one hyperedges. Suppose that the
cycle has l vertices, plus there are k isolated vertices. Then the vertex set of H∗ can be
covered by d l2e+ k hyperedges, and α′(H∗) = b l2c+ k. Since r = ∆(H∗) > 2, this means
%(H∗) 6 (∆(H∗)− 1)α′(H∗).
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