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Abstract

We give a short proof of Moll’s minimal conjecture, which has been confirmed
by Chen and Xia.

Keywords: Boros-Moll polynomial; Moll’s minimal conjecture; spiral property

1 Introduction

The Boros-Moll polynomials, denoted by Pm(a), arise in the evaluation of the following
quartic integral, see [2–6,12]. For any a > −1 and any nonnegative integer m,∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx =

π

2m+3/2(a+ 1)m+1/2
Pm(a),

where

Pm(a) = 2−2m
∑
k

2k

(
2m− 2k

m− k

)(
m+ k

k

)
(a+ 1)k. (1.1)

Let dl(m) be the coefficient of al in Pm(a). Then (1.1) gives

dl(m) = 2−2m
m∑
k=l

2k

(
2m− 2k

m− k

)(
m+ k

k

)(
k

l

)
. (1.2)

Much progress has been made since Boros and Moll [1] proved the positivity of the
coefficients of Pm(a). Boros and Moll [4] have proved that the sequence {dl(m)}06l6m is
unimodal. The log-concavity of the sequence {dl(m)}16l6m−1 was conjectured by Moll [12],
and it was proved by Kauers and Paule [11] based on recurrence relations. Chen and
Xia [9] showed that the sequence dl(m) satisfies the strongly ratio monotone property
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which implies the log-concavity and the spiral property. Chen and Gu [7] proved the
reverse ultra log-concavity of the Boros-Moll polynomials. By introducing the structure
of partially 2-colored permutations, Chen, Pang and Qu [8] found a combinatorial proof
of the log-concavity of the Boros-Moll polynomials. Moll also posed a conjecture that
is stronger than the log-concavity of the polynomials Pm(a). This conjecture was called
Moll’s minimum conjecture, and has been confirmed by Chen and Xia [10].

The main objective of this paper is to give a short proof of the following equivalent
form of Moll’s minimal conjecture, which was confirmed by Chen and Xia [10].

Theorem 1.1 (Theorem 2.1 [10]). Given m > 2, for 1 6 l 6 m, l(l + 1)(d2l (m) −
dl+1(m)dl−1(m)) attains its minimum at l = m with m(m+ 1)d2m(m).

2 The Proof of Theorem 1.1

Chen and Gu [7] proved the following theorem, which gave a lower bound of
d2l (m)

dl+1(m)dl−1(m)
.

Theorem 2.1 (Theorem 1.2 [7]). For m > 2 and 1 6 l 6 m− 1, we have

d2l (m)

dl+1(m)dl−1(m)
>

(m− l + 1)(m+ l)(l + 1)

l(m− l)(m+ l + 1)
. (2.1)

Multiplying both sides of (2.1) by l and then plusing ld2l (m) to the two sides gives the
following result.

Theorem 2.2. For m > 2 and 1 6 l 6 m− 1, we have

l(l + 1)
(
d2l (m)− dl+1(m)dl−1(m)

)
>

(
l +

2l3

(m+ l)(m− l + 1)

)
d2l (m). (2.2)

On the other hand, Chen and Xia [9] have shown the spiral property of sequence
{dl(m)}16l6m−1, that is

dm−1(m) < d1(m) < dm−2(m) < d2(m) < · · · < d[m
2
](m). (2.3)

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let f(l) = l + 2l3

(m+l)(m−l+1)
. Then for 1 6 l 6 m− 1,

f ′(l) = 1 +
6l2

(m+ l)(m− l + 1)
+

2l3(2l − 1)

(m+ l)2(m− l + 1)2
> 0.

Restricting l ∈ N+, we see that the sequence {l+ 2l3

(m+l)(m−l+1)
}16l6m−1 is strictly monotone

increasing.
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Combining (2.2) and (2.3), we get

l(l + 1)(d2l (m)− dl+1(m)dl−1(m)) > (l +
2l3

(m+ l)(m− l + 1)
)d2l (m)

> min{(1 +
2

(m+ 1)m
)d21(m), (m− 1 +

(m− 1)3

2m− 1
)d2m−1(m)}. (2.4)

By direct computation we may deduce from (1.2) that

(1 +
2

(m+ 1)m
)d21(m) > m(m+ 1)d2m(m),

(m− 1 +
(m− 1)3

2m− 1
)d2m−1(m) > m(m+ 1)d2m(m).

It follows by (2.4) that

l(l + 1)(d2l (m)− dl+1(m)dl−1(m)) > m(m+ 1)d2m(m), 1 6 l 6 m− 1.

This completes the proof.
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