A Short Proof of Moll's Minimal Conjecture

Lun Lv
School of Sciences
Hebei University of Science and Technology
Shijiazhuang 050018, P.R. China
klunlv@163.com

Submitted: Mar 1, 2017; Accepted: Sep 25, 2017; Published: Oct 6, 2017
Mathematics Subject Classifications: 05A20, 11B83, 33F99

Abstract

We give a short proof of Moll's minimal conjecture, which has been confirmed by Chen and Xia.

Keywords: Boros-Moll polynomial; Moll's minimal conjecture; spiral property

1 Introduction

The Boros-Moll polynomials, denoted by $P_{m}(a)$, arise in the evaluation of the following quartic integral, see [2-6,12]. For any $a>-1$ and any nonnegative integer m,

$$
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} d x=\frac{\pi}{2^{m+3 / 2}(a+1)^{m+1 / 2}} P_{m}(a)
$$

where

$$
\begin{equation*}
P_{m}(a)=2^{-2 m} \sum_{k} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{k}(a+1)^{k} . \tag{1.1}
\end{equation*}
$$

Let $d_{l}(m)$ be the coefficient of a^{l} in $P_{m}(a)$. Then (1.1) gives

$$
\begin{equation*}
d_{l}(m)=2^{-2 m} \sum_{k=l}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{k}\binom{k}{l} . \tag{1.2}
\end{equation*}
$$

Much progress has been made since Boros and Moll [1] proved the positivity of the coefficients of $P_{m}(a)$. Boros and Moll [4] have proved that the sequence $\left\{d_{l}(m)\right\}_{0 \leqslant l \leqslant m}$ is unimodal. The log-concavity of the sequence $\left\{d_{l}(m)\right\}_{1 \leqslant l \leqslant m-1}$ was conjectured by Moll [12], and it was proved by Kauers and Paule [11] based on recurrence relations. Chen and Xia [9] showed that the sequence $d_{l}(m)$ satisfies the strongly ratio monotone property
which implies the log-concavity and the spiral property. Chen and Gu [7] proved the reverse ultra log-concavity of the Boros-Moll polynomials. By introducing the structure of partially 2-colored permutations, Chen, Pang and $\mathrm{Qu}[8]$ found a combinatorial proof of the log-concavity of the Boros-Moll polynomials. Moll also posed a conjecture that is stronger than the log-concavity of the polynomials $P_{m}(a)$. This conjecture was called Moll's minimum conjecture, and has been confirmed by Chen and Xia [10].

The main objective of this paper is to give a short proof of the following equivalent form of Moll's minimal conjecture, which was confirmed by Chen and Xia [10].

Theorem 1.1 (Theorem $2.1[10])$. Given $m \geqslant 2$, for $1 \leqslant l \leqslant m$, $l(l+1)\left(d_{l}^{2}(m)-\right.$ $d_{l+1}(m) d_{l-1}(m)$) attains its minimum at $l=m$ with $m(m+1) d_{m}^{2}(m)$.

2 The Proof of Theorem 1.1

Chen and $\mathrm{Gu}[7]$ proved the following theorem, which gave a lower bound of $\frac{d_{l}^{2}(m)}{d_{l+1}(m) d_{l-1}(m)}$.
Theorem 2.1 (Theorem $1.2[7])$. For $m \geqslant 2$ and $1 \leqslant l \leqslant m-1$, we have

$$
\begin{equation*}
\frac{d_{l}^{2}(m)}{d_{l+1}(m) d_{l-1}(m)}>\frac{(m-l+1)(m+l)(l+1)}{l(m-l)(m+l+1)} . \tag{2.1}
\end{equation*}
$$

Multiplying both sides of (2.1) by l and then plusing $l d_{l}^{2}(m)$ to the two sides gives the following result.

Theorem 2.2. For $m \geqslant 2$ and $1 \leqslant l \leqslant m-1$, we have

$$
\begin{equation*}
l(l+1)\left(d_{l}^{2}(m)-d_{l+1}(m) d_{l-1}(m)\right)>\left(l+\frac{2 l^{3}}{(m+l)(m-l+1)}\right) d_{l}^{2}(m) \tag{2.2}
\end{equation*}
$$

On the other hand, Chen and Xia [9] have shown the spiral property of sequence $\left\{d_{l}(m)\right\}_{1 \leqslant l \leqslant m-1}$, that is

$$
\begin{equation*}
d_{m-1}(m)<d_{1}(m)<d_{m-2}(m)<d_{2}(m)<\cdots<d_{\left[\frac{m}{2}\right]}(m) . \tag{2.3}
\end{equation*}
$$

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let $f(l)=l+\frac{2 l^{3}}{(m+l)(m-l+1)}$. Then for $1 \leqslant l \leqslant m-1$,

$$
f^{\prime}(l)=1+\frac{6 l^{2}}{(m+l)(m-l+1)}+\frac{2 l^{3}(2 l-1)}{(m+l)^{2}(m-l+1)^{2}}>0 .
$$

Restricting $l \in N^{+}$, we see that the sequence $\left\{l+\frac{2 l^{3}}{(m+l)(m-l+1)}\right\}_{1 \leqslant l \leqslant m-1}$ is strictly monotone increasing.

Combining (2.2) and (2.3), we get

$$
\begin{align*}
& l(l+1)\left(d_{l}^{2}(m)-d_{l+1}(m) d_{l-1}(m)\right)>\left(l+\frac{2 l^{3}}{(m+l)(m-l+1)}\right) d_{l}^{2}(m) \\
& \quad \geqslant \min \left\{\left(1+\frac{2}{(m+1) m}\right) d_{1}^{2}(m),\left(m-1+\frac{(m-1)^{3}}{2 m-1}\right) d_{m-1}^{2}(m)\right\} \tag{2.4}
\end{align*}
$$

By direct computation we may deduce from (1.2) that

$$
\begin{aligned}
& \left(1+\frac{2}{(m+1) m}\right) d_{1}^{2}(m) \geqslant m(m+1) d_{m}^{2}(m) \\
& \left(m-1+\frac{(m-1)^{3}}{2 m-1}\right) d_{m-1}^{2}(m) \geqslant m(m+1) d_{m}^{2}(m)
\end{aligned}
$$

It follows by (2.4) that

$$
l(l+1)\left(d_{l}^{2}(m)-d_{l+1}(m) d_{l-1}(m)\right)>m(m+1) d_{m}^{2}(m), \quad 1 \leqslant l \leqslant m-1 .
$$

This completes the proof.

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the Natural Science Foundation of Hebei Province (A2014208152) and the Top Young-aged Talents Program of Hebei Province.

References

[1] T. Amdeberhan and V. Moll. A formula for a quartic integral: A survey of old proofs and some new ones. Ramanujan J., 18: 91-102, 2009.
[2] G. Boros and V. Moll. An integral hidden in Gradshteyn and Ryzhik. J. Comput. Appl. Math., 106: 361-368, 1999.
[3] G. Boros and V. Moll. A sequence of unimodal polynomials. J. Math. Anal. Appl., 237: 272-285, 1999.
[4] G. Boros and V. Moll. A criterion for unimodality. Electron. J. Combin., 6: \#R10, 1999.
[5] G. Boros and V. Moll. The double square root, Jacobi polynomials and Ramanujan's Master Theorem. J. Comput. Appl. Math., 130: 337-344, 2001.
[6] G. Boros and V. Moll. Irresistible Integrals, Cambridge University Press, Cambridge, 2004.
[7] W.Y.C. Chen and C.C.Y Gu. The reverse ultra log-concavity of the Boros-Moll polynomials. Proc. Amer. Math. Soc., 137: 3991-3998, 2009.
[8] W.Y.C. Chen, S.X.M. Pang and E.X.Y. Qu. Partially 2-colored permutations and the Boros-Moll polynomials. Ramanujan J., 27: 297-304, 2012.
[9] W.Y.C. Chen and E.X.W. Xia. The ratio monotonicity of the Boros-Moll polynomials. Math. Comput., 78: 2269-2282, 2009.
[10] W.Y.C. Chen and E.X.W. Xia. Proof of Moll's minimum conjecture. European J. Combin., 34: 787-791, 2013.
[11] M. Kauers and P. Paule. A computer proof of Moll's log-concavity conjecture. Proc. Amer. Math. Soc., 135: 3847-3856, 2007.
[12] V. Moll. The evaluation of integrals: A personal story. Notices Amer. Math. Soc., 49: 311-317, 2002.

