Nonexistence of certain singly even self-dual codes with minimal shadow

Stefka Bouyuklieva
Faculty of Mathematics and Informatics
Veliko Tarnovo University
5000 Veliko Tarnovo, Bulgaria
stefka@uni-vt.bg

Masaaki Harada Akihiro Munemasa
Research Center for Pure and Applied Mathematics
Graduate School of Information Sciences
Tohoku University
Sendai 980-8579, Japan
mharada@m.tohoku.ac.jp, munemasa@math.is.tohoku.ac.jp

Submitted: Jul 12, 2017; Accepted: Dec 28, 2017; Published: Jan 25, 2018
Mathematics Subject Classifications: 94B05

Abstract

It is known that there is no extremal singly even self-dual $[n, n / 2, d]$ code with minimal shadow for $(n, d)=(24 m+2,4 m+4),(24 m+4,4 m+4),(24 m+6,4 m+4)$, $(24 m+10,4 m+4)$ and $(24 m+22,4 m+6)$. In this paper, we study singly even self-dual codes with minimal shadow having minimum weight $d-2$ for these (n, d). For $n=24 m+2,24 m+4$ and $24 m+10$, we show that the weight enumerator of a singly even self-dual $[n, n / 2,4 m+2]$ code with minimal shadow is uniquely determined and we also show that there is no singly even self-dual $[n, n / 2,4 m+2]$ code with minimal shadow for $m \geqslant 155, m \geqslant 156$ and $m \geqslant 160$, respectively. We demonstrate that the weight enumerator of a singly even self-dual code with minimal shadow is not uniquely determined for parameters $[24 m+6,12 m+3,4 m+2]$ and $[24 m+22,12 m+11,4 m+4]$.

Keywords: self-dual code, shadow, weight enumerator

1 Introduction

A (binary) code C of length n is a vector subspace of \mathbb{F}_{2}^{n}, where \mathbb{F}_{2} denotes the finite field of order 2. The dual code C^{\perp} of C is defined as $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid x \cdot y=0\right.$ for all $\left.y \in C\right\}$,
where $x \cdot y$ is the standard inner product. A code C is called self-dual if $C=C^{\perp}$. Self-dual codes are divided into two classes. A self-dual code C is doubly even if all codewords of C have weight divisible by four, and singly even if there is at least one codeword of weight $\equiv 2(\bmod 4)$. Let C be a singly even self-dual code and let C_{0} denote the subcode of codewords having weight $\equiv 0(\bmod 4)$. Then C_{0} is a subcode of codimension 1. The shadow S of C is defined to be $C_{0}^{\perp} \backslash C$. Shadows for self-dual codes were introduced by Conway and Sloane [5] in order to derive new upper bounds for the minimum weight of singly even self-dual codes. By considering shadows, Rains [9] showed that the minimum weight d of a self-dual code of length n is bounded by $d \leqslant 4\left\lfloor\frac{n}{24}\right\rfloor+6$ if $n \equiv 22(\bmod 24)$, $d \leqslant 4\left\lfloor\frac{n}{24}\right\rfloor+4$ otherwise. A self-dual code meeting the bound is called extremal.

Let C be a singly even self-dual code of length n with shadow S. Let $d(S)$ denote the minimum weight of S. We say that C is a code with minimal shadow if $r=d(S)$, where $r=4,1,2$ and 3 if $n \equiv 0,2,4$ and $6(\bmod 8)$, respectively. The concept of self-dual codes with minimal shadow was introduced in [2]. In that paper, different types of self-dual codes with the same parameters were compared with regard to the decoding error probability. In [3], the connection between singly even self-dual codes with minimal shadow of some lengths, combinatorial designs and secret sharing schemes was considered. It was shown in [4] that there is no extremal singly even self-dual code with minimal shadow for lengths $24 m+2,24 m+4,24 m+6,24 m+10$ and $24 m+22$. In [3], it was shown that the weight enumerator of a (non-extremal) singly even self-dual [$24 m+2,12 m+1,4 m+2]$ code with minimal shadow is uniquely determined for each positive integer m. These motivate us to study singly even self-dual codes with minimal shadow having minimum weight two less than the hypothetical extremal case.

The main aim of this paper is to investigate singly even self-dual codes with minimal shadow having minimum weight $4 m+2$ for the lengths $24 m+2,24 m+4$ and $24 m+10$. We show that the weight enumerator of a singly even self-dual code with minimal shadow having minimum weight $4 m+2$ is uniquely determined for lengths $24 m+4$ and $24 m+10$. For lengths $24 m+2,24 m+4$ and $24 m+10$, nonnegativity of the coefficients of weight enumerators shows that there is no such code for m sufficiently large. We also show that the uniqueness of the weight enumerator fails for the parameters [$24 m+6,12 m+3,4 m+2$] and $[24 m+22,12 m+11,4 m+4]$.

The paper is organized as follows. In Section 2, we review the results given by Rains [9]. In Section 3, we show that there is no singly even self-dual $[24 m+2,12 m+1,4 m+2]$ code with minimal shadow for $m \geqslant 155$. In Sections 4 and 5 , for parameters $[24 m+$ $4,12 m+2,4 m+2]$ and $[24 m+10,12 m+5,4 m+2]$, we show that there is no singly even self-dual code with minimal shadow for $m \geqslant 156$ and for $m \geqslant 160$, respectively. Finally, in Section 6, we demonstrate that the weight enumerator of a singly even self-dual code with minimal shadow is not uniquely determined for parameters [$24 m+6,12 m+3,4 m+2$] and $[24 m+22,12 m+11,4 m+4]$.

All computer calculations in this paper were done with the help of the algebra software Magma [1] and the mathematical software Maple and Mathematica.

2 Preliminaries

Let C be a singly even self-dual code of length n with shadow S. Write $n=24 m+8 l+2 r$, where m is an integer, $l \in\{0,1,2\}$ and $r \in\{0,1,2,3\}$. The weight enumerators $W_{C}(y)$ and $W_{S}(y)$ of C and S are given by ($\left.[5,(10),(11)]\right)$

$$
\begin{align*}
& W_{C}(y)=\sum_{i=0}^{12 m+4 l+r} a_{i} y^{2 i}=\sum_{j=0}^{3 m+l} c_{j}\left(1+y^{2}\right)^{12 m+4 l+r-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j}, \tag{1}\\
& W_{S}(y)=\sum_{i=0}^{6 m+2 l} b_{i} y^{4 i+r}=\sum_{j=0}^{3 m+l}(-1)^{j} c_{j} 2^{12 m+4 l+r-6 j} y^{12 m+4 l+r-4 j}\left(1-y^{4}\right)^{2 j}, \tag{2}
\end{align*}
$$

respectively, for suitable integers c_{j}. Let

$$
\begin{equation*}
\left(1+y^{2}\right)^{n / 2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j}=\sum_{i=0}^{12 m+4 l+r} \alpha_{i, j}^{\prime} y^{2 i} \quad(0 \leqslant j \leqslant 3 m+l) . \tag{3}
\end{equation*}
$$

Then

$$
\alpha_{i, j}^{\prime}= \begin{cases}0 & \text { if } 0 \leqslant i<j \leqslant 3 m+l, \tag{4}\\ 1 & \text { if } 0 \leqslant i=j \leqslant 3 m+l .\end{cases}
$$

This implies that the $(3 m+l+1) \times(3 m+l+1)$ matrix $\left[\alpha_{i, j}^{\prime}\right]$ is invertible, since it is unitriangular. Let $\left[\alpha_{i, j}\right]$ be its inverse matrix. Then by (4), we have

$$
\alpha_{i, j}= \begin{cases}0 & \text { if } 0 \leqslant i<j \leqslant 3 m+l, \tag{5}\\ 1 & \text { if } 0 \leqslant i=j \leqslant 3 m+l\end{cases}
$$

and

$$
\begin{equation*}
y^{2 i}=\sum_{j=0}^{3 m+l} \alpha_{j, i}\left(1+y^{2}\right)^{n / 2-4 j}\left(y^{2}\left(1-y^{2}\right)^{2}\right)^{j} \quad(0 \leqslant i \leqslant 3 m+l) \tag{6}
\end{equation*}
$$

by (3). By (1), (5) and (6), we obtain

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{i} \alpha_{i, j} a_{j} . \tag{7}
\end{equation*}
$$

Lemma 1. For $1 \leqslant i \leqslant 3 m+l$, we have

$$
\begin{equation*}
\alpha_{i, 0}=-\frac{n}{2 i} \sum_{\substack{0 \leqslant t \leqslant n / 2+1-6 i \\ t+i}}(-1)^{t} \text { odd }\binom{\frac{n}{2}+1-6 i}{t}\binom{\frac{n-7 i-t-1}{2}}{\frac{i-t-1}{2}} . \tag{8}
\end{equation*}
$$

Proof. For $1 \leqslant i$,

$$
\alpha_{i, 0}=-\frac{n}{2 i}\left[\text { coeff. of } y^{i-1} \text { in }(1+y)^{-n / 2-1+4 i}(1-y)^{-2 i}\right],
$$

[9]. Since

$$
\begin{aligned}
& (1+y)^{-n / 2-1+4 i}(1-y)^{-2 i} \\
& =\left(1-y^{2}\right)^{-n / 2-1+4 i}(1-y)^{n / 2+1-6 i} \\
& =\left(1-y^{2}\right)^{-n / 2-1+4 i} \sum_{t=0}^{n / 2+1-6 i}(-1)^{t}\binom{\frac{n}{2}+1-6 i}{t} y^{t},
\end{aligned}
$$

we have

$$
\begin{aligned}
\alpha_{i, 0} & =-\frac{n}{2 i} \sum_{t=0}^{n / 2+1-6 i}(-1)^{t}\binom{\frac{n}{2}+1-6 i}{t}\left[\text { coeff. of } y^{i-1} \text { in }\left(1-y^{2}\right)^{-n / 2-1+4 i} y^{t}\right] \\
& =-\frac{n}{2 i} \sum_{\substack{0 \leqslant t \leqslant n / 2+1-6 i \\
t+i \text { is odd }}}(-1)^{t}\binom{\frac{n}{2}+1-6 i}{t}(-1)^{(i-t-1) / 2}\binom{-\frac{n}{2}-1+4 i}{\frac{i-t-1}{2}} .
\end{aligned}
$$

The result follows by applying the formula

$$
(-1)^{j}\binom{-n}{j}=\binom{n+j-1}{j}
$$

Write

$$
(-1)^{j} 2^{n / 2-6 j} y^{n / 2-4 j}\left(1-y^{4}\right)^{2 j}=\sum_{i=0}^{6 m+2 l} \beta_{i, j}^{\prime} y^{4 i+r} \quad(0 \leqslant j \leqslant 3 m+l) .
$$

Since $n / 2-4 j=4(3 m+l-j)+r$, we have

$$
\beta_{i, j}^{\prime}= \begin{cases}0 & \text { if } i<3 m+l-j, \\ (-1)^{j} 2^{n / 2-6 j} & \text { if } i=3 m+l-j\end{cases}
$$

This implies that the $(3 m+l+1) \times(3 m+l+1)$ matrix $\left[\beta_{i, 3 m+l-j}^{\prime}\right]$ is invertible, since it is lower triangular such that the diagonal elements are not zeros. Thus, the matrix $\left[\beta_{i, j}^{\prime}\right]$ is also invertible. Let $\left[\beta_{i, j}\right]$ be its inverse matrix. Then

$$
\begin{equation*}
y^{4 i+r}=\sum_{j=0}^{3 m+l} \beta_{j, i}(-1)^{j} 2^{n / 2-6 j} y^{n / 2-4 j}\left(1-y^{4}\right)^{2 j} \quad(0 \leqslant i \leqslant 3 m+l) . \tag{9}
\end{equation*}
$$

Moreover, $\left[\beta_{3 m+l-i, j}\right]$ is the inverse of the lower triangular matrix $\left[\beta_{i, 3 m+l-j}^{\prime}\right]$, and so lower triangular as well, and

$$
\beta_{3 m+l-j, j}=\beta_{j, 3 m+l-j}^{\prime-1} .
$$

Thus

$$
\beta_{i, j}= \begin{cases}0 & \text { if } i>3 m+l-j, \tag{10}\\ (-1)^{3 m+l-j} 2^{6(3 m+l-j)-n / 2} & \text { if } i=3 m+l-j\end{cases}
$$

By (2), (9) and (10), we obtain

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{3 m+l-i} \beta_{i, j} b_{j} . \tag{11}
\end{equation*}
$$

Lemma 2 (Rains [9]). For $1 \leqslant i \leqslant 3 m+l$ and $0 \leqslant j \leqslant 3 m+l$ with $i+j \leqslant 3 m+l$, we have

$$
\begin{equation*}
\beta_{i, j}=(-1)^{i} 2^{-n / 2+6 i} \frac{3 m+l-j}{i}\binom{3 m+l+i-j-1}{3 m+l-i-j} . \tag{12}
\end{equation*}
$$

From (7) and (11), we have

$$
\begin{equation*}
c_{i}=\sum_{j=0}^{i} \alpha_{i, j} a_{j}=\sum_{j=0}^{3 m+l-i} \beta_{i, j} b_{j} . \tag{13}
\end{equation*}
$$

Now let C be a singly even self-dual $[24 m+8 l+2 r, 12 m+4 l+r, 4 m+2]$ code with minimal shadow. Suppose that $(l, r) \in\{(0,1),(0,2),(1,1)\}$. Since the minimum weight of C is $4 m+2$, we have

$$
\begin{equation*}
a_{0}=1, a_{1}=a_{2}=\cdots=a_{2 m}=0 . \tag{14}
\end{equation*}
$$

Since the minimum weight of the shadow is 1 or 2 , we have

$$
\begin{cases}b_{0}=1 & \text { if } m=1 \tag{15}\\ b_{0}=1, b_{1}=b_{2}=\cdots=b_{m-1}=0 & \text { if } m \geqslant 2\end{cases}
$$

From (13), (14) and (15), we have

$$
c_{i}= \begin{cases}\alpha_{i, 0} & \text { if } i=0,1, \ldots, 2 m \tag{16}\\ \beta_{i, 0} & \text { if } i=2 m+l+1,2 m+l+2, \ldots, 3 m+l\end{cases}
$$

Suppose that $l=0$. From (13), (14), (15) and (16), we obtain

$$
\begin{align*}
c_{2 m} & =\alpha_{2 m, 0}=\beta_{2 m, 0}+\beta_{2 m, m} b_{m}, \tag{17}\\
c_{2 m-1} & =\alpha_{2 m-1,0}=\beta_{2 m-1,0}+\beta_{2 m-1, m} b_{m}+\beta_{2 m-1, m+1} b_{m+1} . \tag{18}
\end{align*}
$$

Suppose that $l=1$. From (13), (14), (15) and (16), we obtain

$$
\begin{align*}
c_{2 m} & =\alpha_{2 m, 0}=\beta_{2 m, 0}+\beta_{2 m, m} b_{m}+\beta_{2 m, m+1} b_{m+1}, \tag{19}\\
c_{2 m+1} & =\alpha_{2 m+1,0}+\alpha_{2 m+1,2 m+1} a_{2 m+1}=\beta_{2 m+1,0}+\beta_{2 m+1, m} b_{m} . \tag{20}
\end{align*}
$$

3 Singly even self-dual $[24 m+2,12 m+1,4 m+2]$ codes with minimal shadow

It was shown in [3] that the weight enumerator of a singly even self-dual $[24 m+2,12 m+$ $1,4 m+2$] code with minimal shadow is uniquely determined for each length. In this section, we show that there is no singly even self-dual $[24 m+2,12 m+1,4 m+2]$ code with minimal shadow for $m \geqslant 155$.

Suppose that $m \geqslant 1$. Let C be a singly even self-dual $[24 m+2,12 m+1,4 m+2]$ code with minimal shadow. The weight enumerators of C and its shadow S are written as in (1) and (2), respectively.

From (8),

$$
\alpha_{2 m, 0}=\frac{12 m+1}{m}\binom{5 m}{m-1} .
$$

From (10),

$$
\beta_{2 m, m}=\frac{1}{2} .
$$

From (12),

$$
\beta_{2 m, 0}=\frac{3}{2^{2}}\binom{5 m-1}{m}=\frac{3(4 m+1)}{5 m}\binom{5 m}{m-1}
$$

From (17),

$$
b_{m}=\frac{\alpha_{2 m, 0}-\beta_{2 m, 0}}{\beta_{2 m, m}}=\frac{4(24 m+1)}{5 m}\binom{5 m}{m-1} .
$$

Remark 3. Unfortunately, b_{m} was incorrectly reported in [12]. The correct formula for b_{m} is given in [13]. We showed that b_{m} is always a positive integer (see [13]).

From (8),

$$
\begin{aligned}
\alpha_{2 m-1,0}= & -\frac{12 m+1}{2 m-1}\left(\binom{5 m+4}{m-1}+28\binom{5 m+3}{m-2}+70\binom{5 m+2}{m-3}\right. \\
& \left.+28\binom{5 m+1}{m-4}+\binom{5 m}{m-5}\right) \\
= & -\frac{8(12 m+1)\left(376 m^{3}-4 m^{2}+5 m+1\right)}{(4 m+2)(4 m+3)(4 m+4)(4 m+5)}\binom{5 m}{m-1} .
\end{aligned}
$$

From (10),

$$
\beta_{2 m-1, m+1}=-\frac{1}{2^{7}}
$$

From (12),

$$
\begin{aligned}
& \beta_{2 m-1,0}=-\frac{1}{2^{7}} \frac{3 m}{2 m-1}\binom{5 m-2}{m+1}=-\frac{1}{2^{4}} \frac{3(4 m-1)(4 m+1)}{5(5 m-1)(m+1)}\binom{5 m}{m-1}, \\
& \beta_{2 m-1, m}=-\frac{m}{2^{5}}
\end{aligned}
$$

From (18),

$$
\begin{aligned}
b_{m+1} & =\frac{\alpha_{2 m-1,0}-\beta_{2 m-1,0}-\beta_{2 m-1, m} b_{m}}{\beta_{2 m-1, m+1}} \\
& =-\frac{64(24 m+1) f(m)}{(5 m-1)(4 m+2)(4 m+3)(4 m+4)(4 m+5)}\binom{5 m}{m-1},
\end{aligned}
$$

where

$$
f(m)=64 m^{5}-14816 m^{4}+2812 m^{3}+46 m^{2}-14 m+1 .
$$

Theorem 4. All coefficients in the weight enumerators of a singly even self-dual $[24 m+$ $2,12 m+1,4 m+2]$ code with minimal shadow and its shadow are nonnegative integers if and only if $1 \leqslant m \leqslant 154$. In particular, for $m \geqslant 155$, there is no singly even self-dual $[24 m+2,12 m+1,4 m+2]$ code with minimal shadow.

Proof. We verified that the equation $f(m)=0$ has three solutions consisting of real numbers and the largest solution is in the interval $(231,232)$. Thus, b_{m+1} is negative for $m \geqslant 232$. Using (1) and (2), we determined numerically the weight enumerators of a singly even self-dual $[24 m+2,12 m+1,4 m+2]$ code with minimal shadow and its shadow for $m \leqslant 231$. The theorem follows from this calculation.

4 Singly even self-dual $[24 m+4,12 m+2,4 m+2]$ codes with minimal shadow

Proposition 5. The weight enumerator of a singly even self-dual $[24 m+4,12 m+2,4 m+2]$ code with minimal shadow is uniquely determined for each length.

Proof. The weight enumerator of a singly even self-dual [4, 2, 2] code is uniquely determined. Suppose that $m \geqslant 1$. Let C be a singly even self-dual $[24 m+4,12 m+2,4 m+2]$ code with minimal shadow. The weight enumerators of C and its shadow S are written as using (1) and (2). Since $\alpha_{i, 0}(i=0,1, \ldots, 2 m)$ and $\beta_{i, 0}(i=2 m+1,2 m+2, \ldots, 3 m)$ are calculated by (8) and (12), respectively, from (16), $c_{i}(i=0,1, \ldots, 3 m)$ depends only on m. This means that the weight enumerator of C is uniquely determined for each length.

From (8),

$$
\begin{aligned}
\alpha_{2 m, 0} & =\frac{6 m+1}{m}\left(3\binom{5 m+1}{m-1}+\binom{5 m}{m-2}\right) \\
& =\frac{(6 m+1)(8 m+1)}{m(2 m+1)}\binom{5 m}{m-1} .
\end{aligned}
$$

From (10),

$$
\beta_{2 m, m}=\frac{1}{2^{2}}
$$

From (12),

$$
\beta_{2 m, 0}=\frac{1}{2^{2}} \frac{3}{2}\binom{5 m-1}{m}=\frac{3(4 m+1)}{10 m}\binom{5 m}{m-1} .
$$

From (17),

$$
b_{m}=\frac{\alpha_{2 m, 0}-\beta_{2 m, 0}}{\beta_{2 m, m}}=\frac{2(12 m+1)(38 m+7)}{5 m(2 m+1)}\binom{5 m}{m-1} .
$$

Remark 6. Unfortunately, b_{m} was incorrectly reported in [12]. The correct formula for b_{m} is given in [13]. We showed that b_{m} is always a positive integer (see [13]).

From (8),

$$
\begin{aligned}
\alpha_{2 m-1,0}= & -\frac{12 m+2}{2 m-1}\left(\binom{5 m+5}{m-1}+36\binom{5 m+4}{m-2}+126\binom{5 m+3}{m-3}\right. \\
& \left.+84\binom{5 m+2}{m-4}+9\binom{5 m+1}{m-5}\right) \\
= & -\frac{16(5 m+1)(6 m+1)(8 m+1)\left(68 m^{2}-m+3\right)}{(4 m+2)(4 m+3)(4 m+4)(4 m+5)(4 m+6)}\binom{5 m}{m-1} .
\end{aligned}
$$

From (10),

$$
\beta_{2 m-1, m+1}=-\frac{1}{2^{8}} .
$$

From (12),

$$
\begin{aligned}
\beta_{2 m-1,0} & =-\frac{1}{2^{8}} \frac{3 m}{2 m-1}\binom{5 m-2}{m+1}=-\frac{1}{2^{5}} \frac{3(4 m-1)(4 m+1)}{5(5 m-1)(m+1)}\binom{5 m}{m-1}, \\
\beta_{2 m-1, m} & =-\frac{m}{2^{6}} .
\end{aligned}
$$

From (18),

$$
\begin{aligned}
b_{m+1} & =\frac{\alpha_{2 m-1,0}-\beta_{2 m-1,0}-\beta_{2 m-1, m} b_{m}}{\beta_{2 m-1, m+1}} \\
& =-\frac{128(12 m+1) f(m)}{(5 m-1)(4 m+2)(4 m+3)(4 m+4)(4 m+5)(4 m+6)}\binom{5 m}{m-1},
\end{aligned}
$$

where

$$
f(m)=1216 m^{6}-212096 m^{5}-33020 m^{4}+5440 m^{3}+1171 m^{2}+88 m+6 .
$$

Theorem 7. All coefficients in the weight enumerators of a singly even self-dual $[24 m+$ $4,12 m+2,4 m+2]$ code with minimal shadow and its shadow are nonnegative integers if and only if $1 \leqslant m \leqslant 155$. In particular, for $m \geqslant 156$, there is no singly even self-dual $[24 m+4,12 m+2,4 m+2]$ code with minimal shadow.

Proof. We verified that the equation $f(m)=0$ has two solutions consisting of real numbers and the largest solution is in the interval $(174,175)$. Thus, b_{m+1} is negative for $m \geqslant 175$. Using (1) and (2), we determined numerically the weight enumerators of a singly even self-dual $[24 m+4,12 m+2,4 m+2]$ code with minimal shadow and its shadow for $m \leqslant 174$. The theorem follows from this calculation.

5 Singly even self-dual [$24 m+10,12 m+5,4 m+2]$ codes with minimal shadow

Lemma 8 (Harada $[7])$. Suppose that $n \equiv 2(\bmod 8)$. Let C be a singly even self-dual $[n, n / 2, d]$ code with minimal shadow. If $d \equiv 2(\bmod 4)$, then $a_{d / 2}=b_{(d-2) / 4}$.

As a consequence, the weight enumerator of a singly even self-dual [58, 29, 10] code with minimal shadow was uniquely determined in [7].

Proposition 9. The weight enumerator of a singly even self-dual $[24 m+10,12 m+5,4 m+$ 2] code with minimal shadow is uniquely determined for each length.

Proof. The weight enumerator of a singly even self-dual [10,5,2] code with minimal shadow is uniquely determined. Suppose that $m \geqslant 1$. Let C be a singly even selfdual $[24 m+10,12 m+5,4 m+2]$ code with minimal shadow. The weight enumerators of C and its shadow S are written as in (1) and (2), respectively. Since $\alpha_{i, 0}(i=0,1, \ldots, 2 m)$ and $\beta_{i, 0}(i=2 m+2,2 m+3, \ldots, 3 m+1)$ are calculated by (8) and (12), respectively, from (16), $c_{i}(i=0,1, \ldots, 2 m, 2 m+2, \ldots, 3 m+1)$ depends only on m.

From (5) and (10), we have

$$
\alpha_{2 m+1,2 m+1}=1 \text { and } \beta_{2 m+1, m}=-2,
$$

respectively. By Lemma 8, it holds that $a_{2 m+1}=b_{m}$. From (20), we obtain

$$
\begin{equation*}
a_{2 m+1}=\frac{\beta_{2 m+1,0}-\alpha_{2 m+1,0}}{3} . \tag{21}
\end{equation*}
$$

Therefore, from (20), $c_{2 m+1}$ depends only on m. This means that the weight enumerator of C is uniquely determined for each length.

From (8), we have

$$
\alpha_{2 m+1,0}=-\frac{12 m+5}{2 m+1}\binom{5 m+1}{m} .
$$

From (12), we have

$$
\beta_{2 m+1,0}=-2 \frac{3 m+1}{2 m+1}\binom{5 m+1}{m} .
$$

Since $a_{2 m+1}=b_{m}$, from (21), we have

$$
b_{m}=\binom{5 m+1}{m}=\frac{5 m+1}{4 m+1}\binom{5 m}{m} .
$$

From (8),

$$
\begin{aligned}
\alpha_{2 m, 0} & =\frac{12 m+5}{2 m}\left(6\binom{5 m+4}{m-1}+20\binom{5 m+3}{m-2}+6\binom{5 m+2}{m-3}\right) \\
& =\frac{4(12 m+5)(5 m+1)(5 m+2)\left(32 m^{2}+19 m+3\right)}{(4 m+1)(4 m+2)(4 m+3)(4 m+4)(4 m+5)}\binom{5 m}{m} .
\end{aligned}
$$

From (10),

$$
\beta_{2 m, m+1}=\frac{1}{2^{5}} .
$$

From (12),

$$
\begin{aligned}
& \beta_{2 m, 0}=\frac{1}{2^{5}} \frac{3 m+1}{2 m}\binom{5 m}{m+1}=\frac{1}{2^{4}} \frac{3 m+1}{m+1}\binom{5 m}{m}, \\
& \beta_{2 m, m}=\frac{1}{2^{5}} \frac{2 m+1}{2 m} 4 m=\frac{2 m+1}{2^{4}} .
\end{aligned}
$$

From (19),

$$
\begin{aligned}
b_{m+1} & =\frac{\alpha_{2 m, 0}-\beta_{2 m, 0}-\beta_{2 m, m} b_{m}}{\beta_{2 m, m+1}} \\
& =-\frac{16(5 m+2) f(m)}{(4 m+1)(4 m+2)(4 m+3)(4 m+4)(4 m+5)}\binom{5 m}{m},
\end{aligned}
$$

where

$$
f(m)=64 m^{5}-15040 m^{4}-18036 m^{3}-7924 m^{2}-1511 m-105 .
$$

Theorem 10. All coefficients in the weight enumerators of a singly even self-dual $[24 m+$ $10,12 m+5,4 m+2]$ code with minimal shadow and its shadow are nonnegative integers if and only if $1 \leqslant m \leqslant 159$. In particular, for $m \geqslant 160$, there is no singly even self-dual $[24 m+10,12 m+5,4 m+2]$ code with minimal shadow.

Proof. We verified that the equation $f(m)=0$ has three solutions consisting of real numbers and the largest solution is in the interval $(236,237)$. Thus, b_{m+1} is negative for $m \geqslant 237$. Using (1) and (2), we determined numerically the weight enumerators of a singly even self-dual $[24 m+10,12 m+5,4 m+2]$ code with minimal shadow and its shadow for $m \leqslant 236$. The theorem follows from this calculation.

6 Remaining cases

For the remaining cases, we demonstrate that the weight enumerator of a singly even self-dual code with minimal shadow is not uniquely determined.

6.1 Singly even self-dual $[24 m+6,12 m+3,4 m+2]$ codes with minimal shadow

Using (1) and (2), the possible weight enumerators of a singly even self-dual [30, 15, 6] code with minimal shadow and its shadow are given by

$$
\begin{aligned}
& 1+(35-8 \beta) y^{6}+(345+24 \beta) y^{8}+1848 y^{10}+\cdots, \\
& \beta y^{3}+(240-6 \beta) y^{7}+(6720+15 \beta) y^{11}+\cdots,
\end{aligned}
$$

respectively, where β is an integer with $1 \leqslant \beta \leqslant 4$. It is known that there is a singly even self-dual $[30,15,6]$ code with minimal shadow for $\beta \in\{1,2\}$ (see [5]).

Using (1) and (2), the possible weight enumerators of a singly even self-dual [54, 27, 10] code with minimal shadow and its shadow are given by

$$
\begin{aligned}
& 1+(351-8 \beta) y^{10}+(5543+24 \beta) y^{12}+(43884+32 \beta) y^{14}+\cdots \\
& y^{3}+(-12+\beta) y^{7}+(2874-10 \beta) y^{11}+(258404+45 \beta) y^{15}+\cdots
\end{aligned}
$$

respectively, where β is an integer with $12 \leqslant \beta \leqslant 43$. It is known that there is a singly even self-dual $[54,27,10]$ code with minimal shadow for $\beta \in\{12,13, \ldots, 20,21,22,24,26\}$ (see [10]).

6.2 Singly even self-dual [$24 m+22,12 m+11,4 m+4]$ codes with minimal shadow

Using (1) and (2), the possible weight enumerators of a singly even self-dual [22, 11, 4] code with minimal shadow and its shadow are given by

$$
\begin{aligned}
& 1+2 \beta y^{4}+(77-2 \beta) y^{6}+(330-6 \beta) y^{8}+(616+6 \beta) y^{10}+\cdots, \\
& \beta y^{3}+(352-4 \beta) y^{7}+(1344+6 \beta) y^{11}+\cdots,
\end{aligned}
$$

respectively, where β is an integer with $1 \leqslant \beta \leqslant 38$. It is known that there is a singly even self-dual $[22,11,4]$ code with minimal shadow for $\beta \in\{2,4,6,8,10,14\}$ (see [8]).

Using (1) and (2), the possible weight enumerators of a singly even self-dual $[46,23,8]$ code with minimal shadow and its shadow are given by

$$
\begin{aligned}
& 1+2 \beta y^{8}+(884-2 \beta) y^{10}+(10556-14 \beta) y^{12}+(54621+14 \beta) y^{14}+\cdots \\
& y^{3}+(-10+\beta) y^{7}+(6669-8 \beta) y^{11}+(242760+28 \beta) y^{15}+\cdots
\end{aligned}
$$

respectively, where β is an integer with $10 \leqslant \beta \leqslant 442$. Let C_{46} be the code with generator matrix $\left[\begin{array}{ll}I_{23} & R\end{array}\right]$, where I_{23} denotes the identity matrix of order 23 and R is the 23×23 circulant matrix with first row
(01011101011100000111110).

We verified that C_{46} is a singly even self-dual $[46,23,8]$ code. By considering self-dual neighbors of C_{46}, we found singly even self-dual $[46,23,8]$ codes $N_{46, i}$ with minimal shadow

Codes	$\operatorname{supp}(x)$	β
$N_{46,1}$	$\{1,24,26,27,29,30,31,32,33,34,36,37,42,43,45,46\}$	36
$N_{46,2}$	$\{1,27,28,31,33,35,36,37,42,43,45,46\}$	42
$N_{46,3}$	$\{10,11,20,27,29,34,38,41,42,45\}$	44
$N_{46,4}$	$\{5,6,25,29,30,32,33,36,40,41,44,45\}$	46
$N_{46,5}$	$\{1,23,28,29,30,31,32,37,40,41,44,45\}$	48
$N_{46,6}$	$\{1,26,27,28,30,32,35,36,37,42,43,45\}$	50
$N_{46,7}$	$\{2,3,24,25,26,28,29,33,34,36,37,41,42,44\}$	52
$N_{46,8}$	$\{1,25,28,29,32,33,34,36,38,42,43,45\}$	54
$N_{46,9}$	$\{1,23,24,27,30,36,40,41,44,45\}$	56
$N_{46,10}$	$\{1,2,25,29,30,33,35,38,44,46\}$	58

Table 1: Singly even self-dual $[46,23,8]$ codes $N_{46, i}$ with minimal shadows.
$(i=1,2, \ldots, 10)$. These codes are constructed as $\left\langle C_{46} \cap\langle x\rangle^{\perp}, x\right\rangle$, where the supports $\operatorname{supp}(x)$ of x are listed in Table 1. The values β in the weight enumerators of $N_{46, i}$ are also listed in the table.

The possible weight enumerators of a singly even self-dual [70,35,12] code with minimal shadow and its shadow are given by

$$
\begin{aligned}
& 1+2 \beta y^{12}+(9682-2 \beta) y^{14}+(173063-22 \beta) y^{16}+\cdots \\
& y^{3}+(-104+\beta) y^{11}+(88480-12 \beta) y^{15}+\cdots
\end{aligned}
$$

respectively, where β is an integer $104 \leqslant \beta \leqslant 4841$ [6]. It is known that there is a singly even self-dual $[70,35,12]$ code with minimal shadow for many different β [11, p. 1191].

Acknowledgements

The first author is supported by Grant DN 02/2/13.12.2016 of the Bulgarian National Science Fund. The second author is supported by JSPS KAKENHI Grant Number 15H03633.

References

[1] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. J. Symbolic Comput., 24:235-265, 1997.
[2] S. Bouyuklieva, A. Malevich, and W. Willems. On the performance of binary extremal self-dual codes. Adv. Math. Commun., 5:267-274, 2011.
[3] S. Bouyuklieva and Z. Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Adv. Math. Commun., 5:191-198, 2011.
[4] S. Bouyuklieva and W. Willems. Singly even self-dual codes with minimal shadow. IEEE Trans. Inform. Theory, 58:3856-3860, 2012.
[5] J. H. Conway and N. J. A. Sloane. A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inform. Theory, 36:1319-1333, 1990.
[6] M. Harada. The existence of a self-dual [70, 35, 12] code and formally self-dual codes. Finite Fields Appl., 3:131-139, 1997.
[7] M. Harada. Binary extremal self-dual codes of length 60 and related codes. Des. Codes Cryptogr., (to appear), arXiv:1706.01694.
[8] V. Pless and N. J. A. Sloane. On the classification and enumeration of self-dual codes. J. Combin. Theory Ser. A, 18:313-335, 1975.
[9] E. M. Rains. Shadow bounds for self-dual codes. IEEE Trans. Inform. Theory, 44:134-139, 1998.
[10] N. Yankov and M. H. Lee. New binary self-dual codes of lengths 50-60. Des. Codes Cryptogr., 73:983-996, 2014.
[11] N. Yankov, M. H. Lee, Gürel, and M. Ivanova. Self-dual codes with an automorphism of order 11. IEEE Trans. Inform. Theory, 61:1188-1193, 2015.
[12] T. Zhang, J. Michel, T. Feng, and G. Ge. On the existence of certain optimal self-dual codes with lengths between 74 and 116. Electron. J. Combin., 22:\#P4.33, 2015.
[13] T. Zhang, J. Michel, T. Feng, and G. Ge. Erratum to "On the existence of certain optimal self-dual codes with lengths between 74 and 116". (submitted).

