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Abstract

The cycle polynomial of a finite permutation group G is the generating function
for the number of elements of G with a given number of cycles:

FG(x) =
∑
g∈G

xc(g),

where c(g) is the number of cycles of g on Ω. In the first part of the paper, we
develop basic properties of this polynomial, and give a number of examples.

In the 1970s, Richard Stanley introduced the notion of reciprocity for pairs of
combinatorial polynomials. We show that, in a considerable number of cases, there
is a polynomial in the reciprocal relation to the cycle polynomial of G; this is the
orbital chromatic polynomial of Γ and G, where Γ is a G-invariant graph, introduced
by the first author, Jackson and Rudd. We pose the general problem of finding all
such reciprocal pairs, and give a number of examples and characterisations: the
latter include the cases where Γ is a complete or null graph or a tree.

The paper concludes with some comments on other polynomials associated with
a permutation group.

1 The cycle polynomial and its properties

The cycle index of a permutation group G acting on a set Ω of size n is a polynomial
in n variables which keeps track of all the cycle lengths of elements. If the variables are
s1, . . . , sn, then the cycle index is given by

ZG(s1, . . . , sn) =
∑
g∈G

n∏
i=1

s
ci(g)
i ,
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where ci(g) is the number of cycles of length i in the cycle decomposition of G. (It is
customary to divide this polynomial by |G| but we prefer not to do so here.)

Define the cycle polynomial of a permutation group G to be FG(x) := ZG(x, x, . . . , x);
that is

FG(x) =
∑
g∈G

xc(g),

where c(g) is the number of cycles of g on Ω (including fixed points). Clearly the cycle
polynomial is a monic polynomial of degree n.

Proposition 1. If a is an integer, then FG(a) is a multiple of |G|.

Proof. Consider the set of colourings of Ω with a colours (that is, functions from Ω to
{1, . . . , a}. There is a natural action of G on this set. A colouring is fixed by an element
g ∈ G if and only if it is constant on the cycles of g; so there are ac(g) colourings fixed by
g. Now the orbit-counting Lemma shows that the number of orbits of G on colourings is

1

|G|
∑
g∈G

ac(g);

and this number is clearly a positive integer. The fact that f(a) is an integer for all a
follows from [7, Proposition 1.4.2].

Note that the combinatorial interpretation of FG(a)/|G| given in the proof of Propo-
sition 1 is the most common application of Pólya’s theorem.

Proposition 2. FG(0) = 0; FG(1) = |G|; and FG(2) > (n + 1)|G|, with equality if and
only if G is transitive on sets of size i for 0 6 i 6 n.

Proof. The first assertion is clear.
There is only one colouring with a single colour.
If there are two colours, say red and blue, then the number of orbits on colourings is

equal to the number of orbits on (red) subsets of Ω. There are n+ 1 possible cardinalities
of subsets, and so at least n + 1 orbits, with equality if and only if G is is transitive on
sets of size i for 0 6 i 6 n. (Groups with this property are called set-transitive and were
determined by Beaumont and Petersen [1]; there are only the symmetric and alternating
groups and four others with n = 5, 6, 9, 9.)

Now we consider values of FG on negative integers. Note that the sign sgn(g) of the
permutation g is (−1)n−c(g); a permutation is even or odd according as its sign is +1 or
−1. If G contains odd permutations, then the even permutations in G form a subgroup
of index 2.

Proposition 3. If G contains no odd permutations, then FG is an even or odd function
according as n is even or odd; in other words,

FG(−x) = (−1)nFG(x).
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Proof. The degrees of all terms in FG are congruent to n mod 2.

In particular, we see that if G contains no odd permutations, then FG(x) vanishes only
at x = 0. However, for permutation groups containing odd permutations, there may be
negative roots of FG.

Theorem 4. Suppose that G contains odd permutations, and let N be the subgroup of even
permutations in G. Then, for any positive integer a, we have 0 6 (−1)nFG(−a) < FG(a),
with equality if and only if G and N have the same number of orbits on colourings of Ω
with a colours.

Proof. Let ∆ denote the set of a-colourings of Ω. Say that an orbit O of G on ∆ is split if
the G- and N -orbits of ω do not coincide for some (and hence any) ω ∈ O. The number
of split orbits is the number of N -orbits on ∆ less the number of G-orbits on ∆, namely

1

|G|
∑
g∈N

2 · |Fix∆(g)| − 1

|G|
∑
g∈G

|Fix∆(g)|,

where Fix∆(g) denotes the number of fixed points of g on ∆. This, in turn, is equivalent
to

1

|G|
∑
g∈G

sgn(g)ac(g) =
1

|G|
(−1)nFG(−a),

and the result follows from this.

Proposition 5. If G is a permutation group containing odd permutations, then the set
of negative integer roots of FG consists of all integers {−1,−2, . . . ,−a} for some a > 1.

Proof. FG(−1) = 0, since G and N have equally many orbits (namely 1) on colourings
with a single colour.

Now suppose that FG(−a) = 0, so that G and N have equally many orbits on colour-
ings with a colours; thus every G-orbit is an N -orbit. Now every colouring with a − 1
colours is a colouring with a colours, in which the last colour is not used; so every G-
orbit on colourings with a− 1 colours is an N -orbit, and so FG(−a + 1) = 0. The result
follows.

The property of having a root −a is preserved by overgroups:

Proposition 6. Suppose that G1 and G2 are permutation groups on the same set, with
G1 6 G2. Suppose that FG1(−a) = 0, for some positive integer a. Then also FG2(−a) = 0.

Proof. It follows from the assumption that G1 (and hence also G2) contains odd permu-
tations. Let N1 and N2 be the subgroups of even permutations in G1 and G2 respectively.
Then N2∩G1 = N1, and so N2G1 = G2. By assumption, G1 and N1 have the same orbits
on a-colourings. Let K be an a-colouring, and g ∈ G2; write g = hg′, with h ∈ N2 and
g′ ∈ G1. Now Kh and Khg′ are in the same G1-orbit, and hence in the same N1-orbit; so
there exists h ∈ N1 with Kg = Khg′ = Khh′. Since hh′ ∈ N2, we see that the G2-orbits
and N2-orbits on a-colourings are the same. Hence FG2(−a) = 0.
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The cycle polynomial has nice behaviour under direct product, which shows that the
property of having negative integer roots is preserved by direct product.

Proposition 7. Let G1 and G2 be permutation groups on disjoint sets Ω1 and Ω2. Let
G = G1 ×G2 acting on Ω1 ∪ Ω2. Then

FG(x) = FG1(x) · FG2(x).

In particular, the set of roots of FG is the union of the sets of roots of FG1 and FG2.

Proof. This can be done by a calculation, but here is a more conceptual proof. It suffices
to prove the result when a positive integer a is substituted for x. Now a G-orbit on
a-colourings is obtained by combining a G1-orbit on colourings of Ω1 with a G2-orbit of
colourings of Ω2; so the number of orbits is the product of the numbers for G1 and G2.

The result for the wreath product, in its imprimitive action, is obtained in a similar
way.

Proposition 8.
FGoH(x) = |G|mFH(FG(x)/|G|).

Proof. Again it suffices to prove that, for any positive integer a, the equation is valid with
a substituted for x.

Let ∆ be the domain of H, with |∆| = m. An orbit of the base group Gm on a-
colourings is an m-tuple of G-orbits on a-colourings, which we can regard as a colouring
of ∆, from a set of colours whose cardinality is the number FG(a)/|G| of G-orbits on
a-colourings. Then an orbit of the wreath product on a-colourings is given by an orbit of
H on these FG(a)/|G|-colourings, and so the number of orbits is (1/|H|)FH(FG(a)/|G|).
Multiplying by |G oH| = |G|m|H| gives the result.

Corollary 9. If n is odd, m > 1, and G = Sn o Sm, then FG(x) has roots −1, . . . ,−n.

Proof. In Proposition 12 to come, we show that FSn(x) = x(x+1) · · · (x+n−1). Therefore
FSn(x) divides FG(x), so we have roots −1, . . . ,−n+ 1. Also, there is a factor

|Sn|(FSn(x)/|Sn|+ 1) = x(x+ 1) · · · (x− n+ 1) + n!.

Substituting x = −n and recalling that n is odd, this is −n! + n! = 0.

The next corollary shows that there are imprimitive groups with arbitrarily large
negative roots.

Corollary 10. Let n be odd and let G be a permutation group of degree n which contains
no odd permutations. Suppose that FG(a)/|G| = k. Then, for m > k, the polynomial
FGoSm(x) has a root −a.

Proof. By Proposition 3, FG(−a)/|G| = −k. Now for m > k, the polynomial FSm(x)
has a factor x + k; the expression for FGoSm shows that this polynomial vanishes when
x = −a.
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The main question which has not been investigated here is:

What about non-integer roots?

It is clear that FG(x) has no positive real roots; so if G contains no odd permutations,
then FG(x) has no real roots at all, by Proposition 3. When G = An we have the following
result which was communicated to us by Valentin Féray [4].

Theorem 11. If FAn(a) = 0 for some complex number a then <(a) = 0.

Proof. We show that this result is a particular case of [8, Theorem 3.2]. In the notation of
that theorem, set d := n− 1 and g(t) := td + 1 so that the hypotheses are clearly satisfied
and m = 0. Now

P (q) = (Ed + 1)
n−1∏
i=0

(q + i) =
n−1∏
i=0

(q − i) +
n−1∏
i=0

(q + i) = 2FAn(q),

where E is the backward shift operator on polynomials in q given by Ef(q) = f(q − 1).
[8, Theorem 3.2(a)] now delivers the result.

2 Some examples

Proposition 12. For each n we have,

FSn(x) =
n−1∏
i=0

(x+ i).

Proof. By induction and Proposition 6, FSn(−a) = 0 for each 0 6 a 6 n−2. Since FSn(x)
is a polynomial of degree n and the coefficient of x in FSn(x) is (n − 1)! we must have
that n− 1 is the remaining root.

Several other proofs of this result are possible. We can observe that the number of
orbits of Sn on a-colourings of {1, . . . , n} (equivalently, n-tuples chosen from the set of
colours with order unimportant and repetitions allowed) is

(
n+a−1

n

)
. Or we can use the

fact that the number of permutations of {1, . . . , n} with k cycles is the unsigned Stirling
number of the first kind u(n, k), whose generating function is well known to be

n∑
k=1

u(n, k)xk = x(x+ 1) · · · (x+ n− 1).

Proposition 13. For each n we have

FCn(x) =
∑
d|n

φ(d)xn/d,

where φ is Euler’s totient function.
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Proof. This is a consequence of the well-known formula for the cycle index of a cyclic
group.

Proposition 14. Let p be an odd prime and G be the group PGL2(p) acting on a set of
size p+ 1. Then FG(x) is given by

p(p+ 1)

2
x2FCp−1(x) +

p(p− 1)

2
FCp+1(x) + (p2 − 1)(x2 − xp+1)

Proof. Each semisimple element of GL2(p) either has eigenvalues in Fp and lies in a
torus isomorphic to F×p × F×p or else it has eigenvalues in Fp2\Fp and lies in a torus
isomorphic to F×p2 . If T is either kind of torus then NGL2(p)(T ) is generated by T and
an automorphism which inverts each element, so there are |GL2(p)|/2|T | conjugates of
T . Distinct tori intersect in the subgroup of scalar matrices Z(GL2(p)). Hence, ignoring
the identity, the images of semisimple elements of GL2(p) in G can be partitioned into
|GL2(p)|/2(p − 1)2 = p(p + 1)/2 tori of the first type, each generated by an element of
cycle type (p − 1, 12) and |GL2(p)|/2(p2 − 1) = p(p − 1)/2 tori of the second type, each
generated by an element of cycle type (p + 1). This leaves the elements of order p, all
self-centralizing and of cycle type (p, 1). Therefore

FG(x) = x2p(p+ 1)

2
FCp−1(x) +

p(p− 1)

2
FCp+1(x) + (p− 1)(p+ 1)x2 − axp+1,

where a = p2 − 1 corrects for over-counting the identity.

3 Reciprocal pairs

Richard Stanley, in a 1974 paper [6], explained (polynomial) combinatorial reciprocity
thus:

A polynomial reciprocity theorem takes the following form. Two combinatori-
ally defined sequences S1, S2, . . . and S̄1, S̄2, . . . of finite sets are given, so that
the functions f(n) = |Sn| and f̄(n) = |S̄n| are polynomials in n for all integers
n > 1. One then concludes that f̄(n) = (−1)df(−n), where d = deg f .

We will see that, in a number of cases, the cycle polynomial satisfies a reciprocity
theorem.

3.1 The orbital chromatic polynomial

First, we define the polynomial which will serve as the reciprocal polynomial in these
cases. A (proper) colouring of a graph Γ with q colours is a map from the vertices of Γ
to the set of colours having the property that adjacent vertices receive different colours.
Note that, if Γ contains a loop (an edge joining a vertex to itself), then it has no proper
colourings. Birkhoff observed that, if there are no loops, then the number of colourings
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with q colours is the evaluation at q of a monic polynomial PΓ(x) of degree equal to the
number of vertices, the chromatic polynomial of the graph.

Now suppose that G is a group of automorphisms of Γ. For g ∈ G, let Γ/g denote
the graph obtained by “contracting” each cycle of g to a single vertex; two vertices are
joined by an edge if there is an edge of Γ joining vertices in the corresponding cycles. The
chromatic polynomial PΓ/g(q) counts proper q-colourings of Γ fixed by g. If any cycle of g
contains an edge, then Γ/g has a loop, and PΓ/g = 0. Now (with a small modification of
the definition in [3]) we define the orbital chromatic polynomial of the pair (Γ, G) to be

PΓ,G(x) =
∑
g∈G

PΓ/g(x). (1)

The orbit-counting Lemma immediately shows that PΓ,G(q)/|G| is equal to the number
of G-orbits on proper q-colourings of Γ.

Now, motivated by Stanley’s definition, we say that the pair (Γ, G), where Γ is a graph
and G a group of automorphisms of Γ, is a reciprocal pair if

PΓ,G(x) = (−1)nFG(−x),

where n is the number of vertices of Γ.

Remark 15. An alternative definition of reciprocality is obtained using the polynomial

P̄Γ,G(x) =
∑
g∈G

sgn(g)P̄Γ/g(x)

where P̄∆(x) = (−1)nP (−x) is the dual chromatic polynomial, first defined by Stanley [6]
enumerating certain coloured acyclic orientations of ∆. It is a straightforward exercise to
see that reciprocality is equivalent to

P̄Γ,G(x) = FG(x).

Problem Find all reciprocal pairs.

This problem is interesting because, as we will see, there are a substantial number of
such pairs, for reasons not fully understood. In the remainder of the paper, we present
the evidence for this, and some preliminary results on the above problem.

A basic result about reciprocal pairs is the following.

Lemma 16. Suppose that (G,Γ) is a reciprocal pair. Then the number of edges of Γ is
the sum of the number of transpositions in G and the number of transpositions (i, j) in G
for which {i, j} is a non-edge.

Proof. Whitney [9] showed that the leading terms in the chromatic polynomial of a graph
Γ with n vertices and m edges are xn − mxn−1 + · · · . This follows from the inclusion-
exclusion formula for the chromatic polynomial: xn is the total number of colourings of
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the vertices of Γ, and for each edge {i, j}, the number of colourings in which i and j
have the same colour is xn−1. So in the formula (1) for PΓ,G(x), the identity element of G
contributes xn−mxn−1+· · · . The only additional contributions to the coefficient of xn−1 in
PΓ,G(x) come from elements g of G such that only a single edge of Γ is contracted to obtain
Γ/g and these are transpositions. A transposition (i, j) makes a non-zero contribution if
and only if {i, j} is a non-edge. So the coefficient of xn−1 is −m + t0(G), where t0(G) is
the number of transpositions with this property.

On the other hand, the coefficient of xn−1 in FG(x) is the number of permutations in
G with n − 1 cycles, that is, the total number t(G) of transpositions. So the coefficient
in (−1)nFG(−x) is −t(G).

Equating the two expressions gives m = t(G) + t0(G), as required.

We remark that the converse to Lemma 16 does not hold: consider the groupG = S3oS3

acting on 3 copies of K3 (see Proposition 8: but note that (3K3, S3 o C3) is a reciprocal
pair, by Proposition 21). We also observe the following corollary to Lemma 16.

Corollary 17. If Γ is not a complete graph and (Γ, G) is a reciprocal pair then Γ has at

most (n−1)2

2
edges.

Proof. If Γ has
(
n
2

)
− δ edges then by Lemma 16,(

n

2

)
− δ = t(G) + t0(G) 6 t(G) + δ.

If 0 < δ < n−1
2

then

t(G) >

(
n

2

)
− 2δ >

(
n

2

)
− (n− 1) =

(
n− 1

2

)
.

It is well-known that a permutation group of degree n containing at least
(
n−1

2

)
+ 1

transpositions must be the full symmetric group. But this implies that Γ is a complete
graph, a contradiction.

According to Lemma 16, if Γ is not a null graph and (Γ, G) is a reciprocal pair,
then G contains transpositions. Now as is well-known, if a subgroup G of Sn contains a
transposition, then the transpositions generate a normal subgroup N which is the direct
product of symmetric groups whose degrees sum to n. (Some degrees may be 1, in which
case the corresponding factor is absent.)

A G-invariant graph must induce a complete or null graph on each of these sets.
Moreover, between any two such sets, we have either all possible edges or no edges.

Suppose that n1, . . . , nr are the sizes of the N -orbits carrying complete graphs and
m1, . . . ,ms the orbits containing null graphs. Then Lemma 16 shows that the total
number of edges of the graph is

r∑
i=1

(
ni

2

)
+ 2

s∑
j=1

(
mj

2

)
.
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The first term counts edges within N -orbits, so the second term counts edges between
different N -orbits.

3.2 Examples

Proposition 18. The following hold:

(a) Let Γ be a null graph, and G a subgroup of the symmetric group Sn. Then PΓ,G(x) =
FG(x).

(b) Let Γ be a complete graph, and G a subgroup of the symmetric group Sn. Then
PΓ,G(x) = x(x− 1) · · · (x− n+ 1), independent of G.

Proof. (a) The chromatic polynomial of a null graph on n vertices is xn. So, if g ∈ G
has c(g) cycles, then Γ/g is a null graph on c(g) vertices. Thus

PΓ,G(x) =
∑
g∈G

xc(g) = FG(x).

(b) In the formula (1) for PΓ,G(x), PΓ/g(x) is 0 unless g is the identity element of G,
when it is x(x− 1) · · · (x− n+ 1).

Corollary 19. The following hold:

(a) If Γ is a null graph, then (Γ, G) is a reciprocal pair if and only if G contains no odd
permutations.

(b) If Γ is a complete graph, then (Γ, G) is a reciprocal pair if and only if G is the
symmetric group.

Proof. (a) This follows from Proposition 3.

(b) We saw in the preceding section that, if G = Sn, then FG(x) = x(x+1) · · · (x+n−1).
Thus, we see that (G,Γ) is a reciprocal pair if and only if G is the symmetric
group.

Proposition 20. Let Γ be the disjoint union of graphs Γ1, . . . ,Γr, and G the direct product
of groups G1, . . . , Gr, where Gi 6 Aut(Γi). Then

PΓ,G(x) =
r∏

i=1

PΓi,Gi
(x).

In particular, if (Γi, Gi) is a reciprocal pair for i = 1, . . . , r, then (Γ, G) is a reciprocal
pair.

The proof is straightforward; the last statement follows from Proposition 7. The result
for wreath products is similar:
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Proposition 21. Let Γ be the disjoint union of m copies of the n-vertex graph ∆. Let
G 6 Aut(∆), and H a group of permutations of degree m. Then

PΓ,GoH(x) = |G|mFH(P∆,G(x)/|G|).

In particular, if (∆, G) is a reciprocal pair and H contains no odd permutations, then
(Γ, G oH) is a reciprocal pair.

Proof. Given q colours, there are P∆,G(q)/|G| orbits on colourings of each copy of ∆; so
the overall number of orbits is the same as the number of orbits of H on an m-vertex null
graph with P∆,G(q)/|G| colours available.

For the last part, the hypotheses imply that P∆,G(q) = (−1)nFG(−q), and that the
degree of each term in FH is congruent to m mod 2. So the expression evaluates to
|G|mFH(FG(−x)/|G|) if either m or n is even, and the negative of this if both are odd;
that is, (−1)mn|G|mFH(FG(−x)/|G|).

We now give some more examples of reciprocal pairs.

Example 22. Let Γ be a 4-cycle, and G its automorphism group, the dihedral group of
order 8. There are 4 edges in Γ, and 2 transpositions in G, each of which interchanges
two non-adjacent points (an opposite pair of vertices of the 4-cycle); so the equality of
the lemma holds. Direct calculation shows that

PΓ,G(x) = x(x− 1)(x2 − x+ 2), FG(x) = x(x+ 1)(x2 + x+ 2),

so PΓ,G(x) = (−1)nFG(−x) holds in this case.
The 4-cycle is also the complete bipartite graph K2,2. We note that, for n > 2,

(Kn,n, Sn o S2) is not a reciprocal pair. This can be seen from the fact that FSnoS2(x) has
factors x, x+ 1, . . . , x+ n− 1, whereas Kn,n has chromatic number 2 and so x− 2 is not
a factor of PKn,n,G(x) for any G 6 Sn o S2.

We do not know whether other complete multipartite graphs support reciprocal pairs.

Example 23. Let Γ be a path with 3 vertices and G its automorphism group which is
cyclic of order 2. Direct calculation shows that

PΓ,G(x) = x2(x− 1), FG(x) = x2(x+ 1).

This graph is an example of a star graph, for which we give a complete analysis in the
next section.

Example 24. Write Nn for the null graph on n vertices and let Γ be the disjoint union
of Km and Nn together with all edges in between and set G = Sm × Sn 6 Aut(Γ). Then
Γ has

(
m
2

)
+ mn edges and G has

(
m
2

)
+
(
n
2

)
transpositions of which

(
n
2

)
correspond to

non-edges in Γ. Thus, according to Lemma 16 we need n = m+1. Now the only elements
g ∈ G which give non-zero contribution to PΓ,G(x) lie in the Sn component. We get:

PΓ,G(x) = x(x− 1) · · · (x− (m− 1)) ·
∑
g∈Sn

(x−m)c(g).

the electronic journal of combinatorics 25(1) (2018), #P1.14 10



Using Proposition 18(b) and m = n− 1 this becomes

(−1)mFSm(−x)FSn(−x) · (−1)n,

which is equal to −FG(−x) by Proposition 7.

4 Reciprocal pairs containing a tree

In this section we show that the only trees that can occur in a reciprocal pair are stars,
and we determine the groups that can be paired with them.

Theorem 25. Suppose Γ is a tree and (Γ, G) is a reciprocal pair. Let n be the number of
vertices in Γ and assume n > 3. The following hold:

(a) n is odd;

(b) Γ is a star;

(c) (C2)k 6 G 6 C2 o Sk where n = 2k + 1.

Conversely any pair (Γ, G) which satisfies conditions (a)-(c) is reciprocal.

In what follows we assume the following:

• Γ is a tree;

• (Γ, G) is a reciprocal pair;

• n is the number of vertices in Γ and n > 3.

Note that any two vertices interchanged by a transposition are non-adjacent. For
suppose that a transposition flips an edge {v, w}. If the tree is central, then there are
paths of the same length from the centre to v and w, creating a cycle. If it is bicentral,
then the same argument applies unless {v, w} is the central edge, in which case the tree
has only two vertices, a contradiction.

Lemma 26. If n is odd then (Γ, G) is a reciprocal pair if and only if

x(FG(x− 1) + FG(−x)) = FG(−x). (2)

Proof. The chromatic polynomial of a tree with r vertices is easily seen to be x(x−1)r−1.
Hence

P (Γ/g) = x(x− 1)c(g)−1

for each g ∈ G and then

PΓ,G(x) =
∑
g∈G

P (Γ/g) =
∑
g∈G

x(x− 1)c(g)−1 =
x

x− 1
FG(x− 1).

Rearranging (and using that n is odd) yields the Lemma.
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Lemma 27. G has n−1
2

transpositions; in particular, n is odd.

Proof. As in Lemma 16, let t(G) be the number of transpositions in G and t0(G) be the
number of transpositions (i, j) in G for which i 6∼ j in Γ. If G fixes an edge (u, v) of Γ
then (u, v) ∈ G implies n = 2, a contradiction. Thus (u, v) /∈ G, and every transposition
in G is a non-edge. Hence t0(G) = t(G) so 2t(G) = n− 1 by Lemma 16.

Lemma 28. (C2)k 6 G 6 C2 o Sk where n = 2k + 1.

Proof. The transpositions in a permutation group G generate a normal subgroup H which
is a direct product of symmetric groups. If there are two non-disjoint transpositions in
G, one of the direct factors is a symmetric group with degree at least 3, and hence FH(x)
has a root −2 by Propositions 12 and 7. Then by Proposition 6, FG(x) has a root −2.
By Lemma 26 with x = 2,

0 = FG(−2) = 2(FG(1) + FG(−2)) = 2FG(1) = 2|G|,

a contradiction. So the transpositions are pairwise disjoint, and generate a subgroup (C2)k

with n = 2k + 1 by Lemma 27. Thus the conclusion of the lemma holds.

Lemma 29. Γ is a star.

Proof. Let v be the unique fixed point of G. By Lemma 28, for each u 6= v there exists a
unique vertex u′ with (u, u′) ∈ G. This is possible only if each u has distance 1 from v.
Hence Γ is a star.

Proof of Theorem 25. (a),(b) and (c) follow from Lemmas 27, 29 and 28 respectively.
Conversely, suppose that (a),(b) and (c) hold. Then G = C2 o K for some permutation
group K of degree k. By Proposition 8, FG(x) = x · 2kFK(x(x + 1)/2). Now it is clear
that

−FG(−x)

x
= 2k · FK

(
x(x− 1)

2

)
=
FG(x− 1)

x− 1
,

so that (2) holds and we deduce from Lemma 26 that (Γ, G) is a reciprocal pair. Our
proof is complete.

Given a set of reciprocal pairs (Γ1, G1), . . . , (Γm, Gm) with each Γi a star we can take
direct products and wreath products (using Propositions 20 and 21) to obtain reciprocal
pairs (Γ, G) with Γ a forest. We do not know whether all such pairs arise in this way.
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