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Abstract

We give necessary and sufficient conditions under which the Jacobian of a graph
is generated by a divisor that is the difference of two vertices. This answers a
question posed by Becker and Glass and allows us to prove various other propositions
about the order of divisors that are the difference of two vertices. We conclude with
some conjectures about these divisors on random graphs and support them with
empirical evidence.
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1 Introduction

Given a finite, undirected, connected multigraph G without loops, a divisor is an assign-
ment of integer values to the vertices. The degree of a divisor is the sum of these values.
The Jacobian of G, denoted Jac(G), is a finite abelian group defined as the quotient of the
degree zero divisors by an equivalence relation determined by chip-firing on the graph (see
Section 2.1). Recent work of several authors [6, 5, 17] considers the likelihood that a ran-
dom graph has cyclic Jacobian. It has been conjectured in [5] based on a Cohen-Lenstra
heuristic and empirical evidence that the probability of cyclic Jacobian in an Erdős-Rényi
random graph goes to

∏∞
i=1 ζ(2i+ 1)−1 ≈ 0.79 as the number of vertices goes to infinity.

Indeed, Wood in [17] proved this to be an upper bound, but no nontrivial lower bound
on this probability is known.

The central object of study in this paper is the divisor δxy which is -1 at vertex x, 1 at
vertex y, and 0 elsewhere. The collection of all δxy together generate the whole Jacobian
because they generate the group of degree zero divisors, and the Jacobian is a quotient of
that group. Thus δxy presents an ideal candidate for a generator of Jac(G).

In [12, 5.1], Lorenzini constructs a graph G′ by removing a preexisting edge (x, y) from
G and proves that the condition gcd(|Jac(G)|, |Jac(G′)|) = 1 implies that the Jacobians of
G and G′ are both cyclic. Lorenzini’s proof does not establish explicit generators for these
Jacobians, however. More recently, Becker and Glass [3, Open Question 2.8] ask whether
δxy generates Jac(G) under the same assumption that gcd(|Jac(G)|, |Jac(G′)|) = 1.

In this paper we resolve the question of [3] with an affirmative answer, provide a
stronger result, and also prove its converse. The approach we take allows us to treat the
cases of adding and removing an edge between x and y similarly. Our work strengthens
the original theorem of Lorenzini [12, 5.1] and the question of Becker-Glass in two ways: 1)
we consider the gcd of |Jac(G)| and |Jac(G′)| in general rather than only in the relatively
prime case, and 2) we show that δxy is an explicit generator of the Jacobian under certain
conditions.

Theorem 1.1. Fix vertices x, y in G. Let G1 be G with an edge added between x and y.
Then

[Jac(G) : 〈δxy〉]
∣∣ gcd(|Jac(G)|, |Jac(G1)|)

and

gcd(|Jac(G)|, |Jac(G1)|)
∣∣ [Jac(G) : 〈δxy〉]2.

Moreover, the same results hold for G1, namely

[Jac(G1) : 〈δxy〉]
∣∣ gcd(|Jac(G)|, |Jac(G1)|)

and

gcd(|Jac(G)|, |Jac(G1)|)
∣∣ [Jac(G1) : 〈δxy〉]2.
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Notice that because the same result holds for G1, we can get an analogous result for
G with an edge removed by exchanging the roles of G and G1 and applying this theorem.
Also, note that δxy is used to represent an element of Jac(G) and an element of Jac(G1),
this is a somewhat abusive notation.

For more general and precise statements of this theorem, see Theorems 3.3 and 3.4.
Theorem 1.1 implies the following corollary.

Corollary 1.2. Let G, x, y, and G1 be as in Theorem 1.1. The following are equivalent:

• δxy generates Jac(G).

• δxy generates Jac(G1).

• gcd(|Jac(G)|, |Jac(G1)|) = 1.

These results relate the order of δxy to deleting and inserting edges in G. Our main
theorem is proven in Section 3. In Section 4 we show that similar results hold under edge
contraction. In Section 5 we move on to considering lower bounds on the order of δxy.
Finally, with the hope of eventually extending statements about δxy to random graphs we
provide some conjectures and empirical evidence in Section 6 relating to the probability
that some δxy generates the Jacobian.

2 Background

2.1 Chip-firing and the Jacobian of graphs

Unless specified otherwise, throughout this paper we will assume that any graph G is a
connected, undirected multigraph without loops. Let V (G) and E(G) denote the vertex
and edge sets of G respectively, and let n = |V (G)| be the number of vertices. For a
vertex v ∈ V (G), let val(v) denote the valency of v — i.e. the number of edges incident
to v.

Following [1], a divisor D ∈ Zn on G is a formal Z-linear combination of the vertices
of G. Divisors are often interpreted as assignments of an integer number of “chips” to
each of the vertices of G. The degree of a divisor deg(D) =

∑
v∈V (G)D(v) is the divisor’s

total number of chips. Div(G) denotes the group of all divisors on G where the group
law is addition of divisors as vectors in Zn, and Div0(G) denotes the subgroup of divisors
with degree zero.

There is an equivalence relation on the elements of Div(G) based on the well-known
chip-firing game, which is defined as follows. Given any divisor D ∈ Div(G), let Kv,w

denote the number of edges between two vertices v, w ∈ V (G). We can fire a vertex v
by sending one chip from v along each of its incident edges to adjacent vertices. This
operation produces a new divisor D′, given by:

D′(w) =


D(v)− val(v) if w = v

D(w) +Kv,w if w is adjacent to v

D(w) otherwise.
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Note that any chip-firing move at a given vertex can be reversed by firing at all of the
other vertices. We define a firing script to be a vector σ ∈ Zn whose entries specify the
number of times each vertex in G should be fired. We say that two divisors D1 and D2 are
equivalent if there exists a firing script taking one to the other. We denote this relation
by ∼. Note that the degree of a divisor is invariant under chip-firing. The set of principal
divisors Prin(G) is the set of divisors equivalent to the divisor with zero chips on every
vertex, which we will call the zero divisor.

The Jacobian Jac(G) := Div0(G)/Prin(G) is the group of equivalence classes of divi-
sors on G with degree zero. The Jacobian is sometimes also referred to as the sandpile
group or the critical group. If D ∈ Div0(G), we denote the equivalence class containing
D by [D]. Jac(G) is always finite for a connected graph, and its order is equal to the
number of spanning trees on G by the matrix-tree theorem (see [1], or [7]).

The Jacobian of a graph is equal to the torsion subgroup of the cokernel of the graph’s
Laplacian, which is an n × n integer matrix denoted by L and defined as follows. Let
∆ be the diagonal matrix with (i, i)–entry equal to val(vi), and let A be the adjacency
matrix of G. Then L = ∆−A. L gives a map from the space of firing scripts to the space
of principal divisors: if σ is a firing script, then Lσ is the principal divisor obtained by
applying σ to the zero divisor (again, see [1] or [7]).

For a given choice of i ∈ {1, . . . , n} the reduced Laplacian L̃ is L with the ith row and
ith column removed. L̃ is invertible if G is connected, regardless of the choice of i, and
furthermore we have det(L̃) = |Jac(G)|.

In similar fashion, if D ∈ Div0(G) ⊂ Zn then we define the reduced divisor D̃ ∈ Zn−1

to be D with the ith entry deleted. If D ∈ Div0(G), then D is uniquely specified by n− 1
of its entries, since the final entry must be the negative sum of the other n− 1 entries.

Likewise, since the all-ones vector generates the kernel of L, for any firing script σ
there is a unique firing script σ0 such that the ith entry of σ0 is zero and Lσ = Lσ0. We
define the reduced firing script σ̃ ∈ Zn−1 of σ to be σ0 with the ith entry deleted. Unless
specified otherwise, we will always let i = n be the index deleted when referring to a
reduced Laplacian, divisor, or firing script. Note that L̃σ = L̃σ̃ as expected.

Notation 2.1. Throughout this paper, we will let m denote |Jac(G)|. Because we are
interested in when Jac(G) is cyclic we will compare Jac(G) with Z/mZ. When we use
the name m as opposed to |Jac(G)| or det L̃, we are thinking about m as the modulus of
Z/mZ.

Notation 2.2. There is a bijection φ between the degree zero divisors and the reduced
divisors which we denote φ(D) = D̃ and a bijection ρ between the firing scripts mod the
all-ones vector and the reduced firing scripts which we denote ρ(σ) = σ̃.

2.2 Monodromy weights

In [15], Shokrieh considers a symmetric, bilinear map from Jac(G) × Jac(G) to Q/Z
known as the monodromy pairing. To prove our main results, we will utilize related maps
from Jac(G) to Z/mZ that we will call monodromy weights. The relationship between
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monodromy weights and Shokrieh’s monodromy pairing will be made explicit in section
2.3.

Since Div0(G) is a subgroup of Div(G), which is isomorphic to Zn, any homomorphism
φ : Div0(G)→ Z/mZ can be written as a dot product φ(D) = w ·D (mod m) of integral
vectors, where D ∈ Div0(G) and w ∈ Zn. The entries of w correspond to an assignment
of integer weights to vertices of G; hence, we call w a weight vector on G. There are
many possible weight vectors w representing a given homomorphism φ: we can add any
multiple of m to the weight on a given vertex without changing φ, and we can also add a
constant vector to w without changing φ.

While any arbitrary weight vector w ∈ Zn represents a homomorphism

φ : Div0(G)→ Z/mZ,

this homomorphism descends to a well-defined map from Jac(G) to Z/mZ if and only if
w ·D ≡ 0 (mod m) for all D ∈ Prin(G). We call such a weight vector a monodromy weight
on G. The following proposition provides a method of finding monodromy weights.

Proposition 2.3. Given a graph G with Laplacian L, a vector w satisfies

Lw ≡ 0 (mod m)

if and only if it is a monodromy weight.

Proof. The principal divisors are exactly the divisors that are of the form Lσ for some
firing script σ. Thus w is a monodromy weight if and only if w · Lσ ≡ 0 (mod m) for
all σ. Because L is symmetric this is equivalent to saying Lw · σ ≡ 0 (mod m) for all σ.
This happens exactly if Lw ≡ 0 (mod m).

Proposition 2.3 gives us an idea of how to find monodromy weights. However, actually
solving the equation is not as simple, since L is singular over the integers. Furthermore,
infinitely many monodromy weights represent the same homomorphism from Jac(G) to
Z/mZ; we would like to identify a set of representatives among the monodromy weights,
one for each homomorphism.

If w is a monodromy weight representing a homomorphism φ, then by adding a con-
stant vector to w we can make its nth entry zero without changing the homomorphism w
represents, obtaining a new monodromy weight w0. Let w̃ denote the first n−1 entries of
w0; we call w̃ a reduced monodromy weight representing φ. The following two propositions
address the first of the problems mentioned above, providing a means of solving for the
monodromy weights.

Proposition 2.4. Let w ∈ Zn be a weight vector. Then w is a monodromy weight if and
only if L̃w̃ ≡ 0 (mod m).

Proof. Observe that since w and w0 represent the same homomorphism, Lw ≡ 0 (mod m)
if and only if Lw0 ≡ 0 (mod m). The first n− 1 entries of Lw0 are simply L̃w̃0. The last
row of L is the negative sum of the first n − 1 rows by the definition of the Laplacian;
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hence, if the dot product of w0 with each of the first n−1 rows of L is zero modulo m, the
dot product of w0 with the nth row must also be zero, implying that Lw0 ≡ 0 (mod m).
Thus we see that Lw0 ≡ 0 (mod m) if and only if L̃w̃0 ≡ 0 (mod m).

Proposition 2.5. Any reduced monodromy weight w̃ is a solution to the equation L̃w̃ =
mD̃ for w̃ over the integers for some D ∈ Div0(G).

Proof. First note that L̃ is invertible over the rationals, so there is a unique solution
w̃ = mL̃−1D̃ for w̃. We have L̃w̃ = L̃mL̃−1D̃ = mD̃ ≡ 0 (mod m), so by Proposition 2.4
w̃ is a reduced monodromy weight.

Proposition 2.5 gives us a concrete way of finding reduced monodromy weights. We
now address the second problem mentioned earlier by showing that if we consider reduced
monodromy weights modulo m, they correspond bijectively with the elements of Jac(G).

Proposition 2.6. Let D1, D2 ∈ Div0(G) and let w̃1, w̃2 be derived from D1, D2 as de-
scribed in Proposition 2.5. Then w̃1 ≡ w̃2 (mod m) if and only if D1 ∼ D2.

Proof. If D1 ∼ D2, then D̃1 = L̃σ̃+D̃2 for some reduced firing script σ̃. It is easy to check
that w̃1 = w̃2 + mσ̃, which gives w̃1 ≡ w̃2 (mod m). Conversely, if w̃1 ≡ w̃2 (mod m)
then w̃1 = w̃2 + mv for some v ∈ Zn−1. By the derivation of w̃1 and w̃2, this means that
mL̃−1(D̃1 − D̃2) = mv, so we have D̃1 − D̃2 = L̃v, which implies that D1 ∼ D2.

Notation 2.7. For any square integer matrix A we let CA be the integer matrix of co-
factors of A. In the case of A = L̃ we know that det(L̃) = m 6= 0 and so CL̃ = mL̃−1.

Let Hom(Jac(G),Z/mZ) be the group of homomorphisms φ : Jac(G)→ Z/mZ, let K
be the group of reduced monodromy weights taken modulom. Propositions 2.5 and 2.6 tell
us that there is an isomorphsim F : Jac(G) → K given by [D] 7→ CL̃D̃ (mod m), which
suggests that Hom(Jac(G),Z/mZ) may also be isomorphic to Jac(G). This is indeed the
case, and is in fact a manifestation of a far more general and well-known result: any finite
abelian group is (non-canonically) isomorphic to its Pontryagin dual.

We now highlight a particular isomorphism from Jac(G) to Hom(Jac(G),Z/mZ).
Given w̃ ∈ K, let φw̃ ∈ Hom(Jac(G),Z/mZ) be the associated homomorphism mapping

[D] 7→ w̃ · D̃ (mod m);

let Φ : K → Hom(Jac(G),Z/mZ) be the map w̃ 7→ φw̃.

Proposition 2.8. The composition Φ ◦ F : Jac(G) → K → Hom(Jac(G),Z/mZ) is an
isomorphism between Jac(G) and Hom(Jac(G),Z/mZ).

Proof. We already know that F is an isomorphism, so we only need to show that Φ is an
isomorphism. The discussion from the beginning of this subsection through Proposition
2.4 shows that Φ is surjective. Towards seeing that Φ is injective, suppose that φw̃1 = φw̃2 .
Then (w̃1 − w̃2) · D̃ ≡ 0 (mod m) for all D̃ ∈ Zn−1. Since D̃ can be chosen arbitrarily,
this implies that w̃1 − w̃2 ≡ 0 (mod m).
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Note that the uniqueness of the reduced monodromy weight in K representing a given
homomorphism φ ∈ Hom(Jac(G),Z/mZ) implies that any two monodromy weights repre-
sent the same homomorphism if and only if their difference taken modulo m is a constant
vector. Proposition 2.8 can also be used to obtain information about the cardinality of a
minimum generating set for Jac(G). For any abelian group Γ we let rk(Γ) denote the mini-
mum cardinality of a generating set for Γ. For any integer matrix A let rkm(A) := rk(Im(A
reduced modulo m)), which is the “rank of A over Z/mZ”, and let nulm(A) := rk(Ker(A
reduced modulo m)), which is the “nullity of A over Z/mZ”. Then we can derive the
following corollary.

Corollary 2.9. Over Z/mZ, we have nulm(L̃) = rkm(CL̃) = rk(Jac(G)).

Proof. In the context of this proof, we will consider all matrices and vectors to be taken
modulo m. We know that F : Jac(G) → K given by [D] 7→ CL̃D̃ (mod m) is an

isomorphism, so rk(Jac(G)) = rk(K) = rk(Im(F )) = rkm(CL̃). If ũ ∈ ker L̃, then by

Proposition 2.4 ũ ∈ K, so by Proposition 2.8 ũ ∈ ImCL̃. Conversely, if ũ ∈ ImCL̃, then
over Zn−1 we have ũ + mṽ = mL̃−1w̃ for some ṽ, w̃ ∈ Zn−1. Thus L̃ũ = m(w̃ − L̃ṽ) ≡
0 (mod m), so ũ ∈ ker L̃. Consequently, we have ker L̃ = ImCL̃, which implies that

nulm(L̃) = rkm(CL̃).

Example 2.10. Let G be the cycle graph on six vertices. Note that Jac(G) ∼= Z/6Z, so

m = 6. L̃ and CL̃ are the following over Z/6Z:

L̃ =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 CL̃ =


5 4 3 2 1
4 2 0 4 2
3 0 3 0 3
2 4 0 2 4
1 2 3 4 5


Let coli denote the ith column of CL̃. Observe that modulo 6, we have coli = i ·col1, which
implies that rkm(CL̃) = 1. Since Jac(G) is cyclic, it has a generating set of cardinality
1, so likewise rk(Jac(G)) = 1. Finally, it can easily be verified that the kernel of L̃ over
Z/6Z is generated by the vector v = (1, 2, 3, 4, 5), so nulm(L̃) = 1 as well.

2.3 Relationship to the monodromy pairing

We now make the relationship between monodromy weights and the monodromy pairing
explicit. Let M be any generalized inverse of the Laplacian matrix. Shokrieh’s pairing is
given by 〈· , · 〉 : Jac(G)× Jac(G)→ Q/Z, evaluated as follows:

〈D1, D2〉 = DT
1MD2.

Using the isomorphism Φ ◦ F : Jac(G) → Hom(Jac(G),Z/mZ) we can define a map ϕ :
Jac(G)×Jac(G)→ Z/mZ by ([D1], [D2]) 7→ Φ◦F ([D1])([D2]). The map can be computed
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as follows. Let D1, D2 be representatives of elements of Jac(G). Then ϕ([D1], [D2]) is given
by

D̃T
1 C

L̃D̃2 (mod m).

In this computation, the reduction modulo m of CL̃D̃2 is F ([D2]), and multiplying by
D̃T

1 , i.e. taking the dot product with D̃1, is then just the application of the corresponding
homomorphism to [D1].

This map is, in essence, the same as the map defined by Shokrieh, differing only by
a multiplicative factor of m and the use of any generalized inverse in the monodromy
pairing instead of L̃−1. Since the matrix obtained from L̃−1 by making the nth row and
columns all 0 is a generalized inverse of L, we see that the two pairings are really the
same.

3 Edge deletion and insertion

In this section, we provide the proofs of the two main theorems from the introduction.
Recall from section 2 that m = |Jac(G)| = det L̃. First we provide a lemma relating the
order of a divisor to the monodromy weights.

Lemma 3.1. Let D ∈ Div0(G) be a divisor, w̃ = CL̃D̃ ∈ Zn−1 with each component
taking a value at least 0 and less than m. Let φ : Zn−1 → Z/mZ be the map induced by
inner product with w̃. Then

|[D]|Jac(G) = |Im(φ)| = m/ gcd(m, w̃) = det L̃/ gcd(det L̃, CL̃D̃)

where gcd(m, w̃) denotes the gcd of m and the entries of the vector w̃, and | · |Jac(G) gives
the order of an element of Jac(G).

Proof. The order of [D] is the smallest integer k such that the divisor kD is linearly
equivalent to the zero divisor 0. Thus we have kD − Lσ = 0 for some firing script σ.
Thus L̃σ̃ = kD̃, and multiplying both sides by L̃−1 gives kL̃−1D̃ = σ̃. Since σ is a firing
script, it must be an integer vector, thus k is the smallest integer such that kL̃−1D̃ is an
integer vector.

Then since k is minimal, the gcd of the entries of σ̃ and k is 1. Since w̃ = CL̃D̃, we
can write w̃ = (m/k)σ̃, and thus gcd(m, w̃) = m/k. So, Im(φ) is the subgroup of Z/mZ
generated by (m/k) since we can write any multiple of m/k as an inner product of a
reduced divisor with w̃ by Bezout’s identity, where the reduced divisor defines a linear
combination of the entries of w̃. Therefore, |Im(φ)| = m/(m/k) = k = m/ gcd(m, w̃).

The last equality follows because w̃ = CL̃D̃.

Before proving our first main theorem, we provide one last lemma.

Lemma 3.2. Let G be a multigraph with at least three vertices and with an edge e between
the vertices x and y. Let L̃ be the Laplacian of G reduced by the vertex x. Then CL̃

yy is
the number of spanning trees of G that include the edge e between x and y.

the electronic journal of combinatorics 15(1) (2018), #P1.15 8



Lemma 3.2 is an immediate consequence of Theorem 4.7 in [2], which is a generalization
of Kirchhoff’s Matrix Tree Theorem [10]. Note that if there is no edge between vertices x

and y in G, then CL̃
yy is equal to the number of new spanning trees which G would gain

if an edge were added between x and y.
We can use these lemmas to answer the question of when a divisor supported on only

two vertices is a generator. The following theorem provides and generalizes an affirmative
answer to a question by Becker and Glass [3, Open Question 2.8] based off of a theorem
of Lorenzini [12, 5.1].

Theorem 3.3. Let G be a connected multigraph, and G1 the multigraph obtained by
deleting any integer kxy of the edges between the vertices x and y (where negative kxy
represents adding edges). Let S be the subgroup of Jac(G) generated by [δxy]. Then

[Jac(G) : S]
∣∣ gcd(|Jac(G)|, |Jac(G1)|).

Note that since we allow kxy to be positive or negative, the result would be the same
if we took S to be the subgroup of Jac(G1) generated by [δxy].

Proof. First suppose that kxy is non-negative so that G1 is obtained by deleting edges
from G. As in Lemma 3.2, let x correspond to the row and column in our definition of
the reduced Laplacian of both G denoted L̃ and G1 denoted L̃1. By Lemma 3.2, we have
that CL̃

yy is the number of spanning trees using a specific x, y edge. So, kxyC
L̃
yy gives the

number of spanning trees using any of the kxy edges that are removed to form G1. The
number of spanning trees of G is the sum of the number of spanning trees of G1 and the
number of spanning trees including any one of the kxy edges removed from G to form G1.
Thus, by the matrix tree theorem:

det L̃ = det L̃1 + kxyC
L̃
yy.

If kxy is negative, then we can view G as obtained from G1 by removing −kxy edges. So

the above computation shows that det L̃1 = det L̃ + (−kxy)CL̃1
yy . Since L̃1 and L̃ differ

only in the (y, y)th entry, we have CL̃1
yy = CL̃

yy. Putting these together we see that det L̃ =

det L̃1 + kxyC
L̃
yy. So we have shown that for any integer kxy, det L̃ = det L̃1 + kxyC

L̃1
yy .

Moreover, gcd(|Jac(G)|, |Jac(G1)|) = gcd(det L̃, det L̃1), so that

gcd(det L̃, CL̃
yy)
∣∣ gcd(|Jac(G)|, |Jac(G1)|).

Note that this statement would be equality if kxy = ±1, which is guaranteed if we
force G to be simple.

Now let w = CL̃δ̃xy = CL̃
yy δ̃xy, noting that the reduced δxy is just the indicator vector

of vertex y. Then, by Lemma 3.1 we have that

|[δxy]|Jac(G) = det L̃/ gcd(det L̃, CL̃δ̃xy).
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Putting these facts together, we get that

[Jac(G) : S] =
det L̃

|[δxy]|Jac(G)

= gcd(det L̃, CL̃δ̃xy)
∣∣ gcd(det L̃, CL̃

yy)∣∣ gcd(|Jac(G)|, |Jac(G1)|).

Following the statement of this theorem, it is natural to ask if the converse is also
true. That is, if [δxy] is a generator of the Jacobian, are the orders of the Jacobians of G
and G1 relatively prime? The following theorem answers this question.

Theorem 3.4. Let G be a connected multigraph, and G1 the graph obtained by removing
kxy edges between x and y, where a negative value of kxy corresponds to adding edges. Let S
be the subgroup of Jac(G) generated by [δxy]. Moreover, assume that gcd(|Jac(G)|, kxy) = 1
(which is guaranteed if G is simple, since kxy = ±1). Then

gcd(|Jac(G)|, |Jac(G1)|)
∣∣ [Jac(G) : S]2.

Proof. As in Theorem 3.3 we choose L̃ to be the reduced Laplacian, reducing at vertex
x. Recall that m = |Jac(G)|.

Note that since gcd(m, kxy) = 1 and det L̃ = det L̃1 + kxyC
L̃
yy as in the proof of the

previous theorem, we have that

gcd(|Jac(G)|, |Jac(G1)|) = gcd(m, |CL̃
yy|). (1)

Let w̃ = CL̃δ̃xy, where CL̃ is the cofactor matrix of the reduced Laplacian. Then let
φ : Jac(G)→ Z/mZ be the map induced by inner product with w. Now, note that φ is a
group homomorphism, so m = |Im(φ)| · | ker(φ)|. So, we also have that

| ker(φ)| = m/|Im(φ)|. (2)

Now, let φS : S → Z/mZ be the map φ restricted to the subgroup generated by [δxy].

Note that since w = CL̃δ̃xy, we have that the weight on the yth vertex is exactly CL̃
yy. Thus

the image of S (the subgroup consisting of multiples of δxy, ie multiples with weight only
on y in the reduced Laplacian) under the map φ is the subgroup consisting of multiples of

gcd(m, |CL̃
yy|) in Z/mZ. The order of this subgroup is m/ gcd(m, |CL̃

yy|) = |Im(φS)|, and
thus

gcd(m, |CL̃
yy|) = m/|Im(φS)|. (3)

Observe that this is similar to but not the same as Lemma 3.1, since now we have
gcd(m, |CL̃

yy|) in the denominator rather than gcd(m, w̃).
Since ϕ is also a homomorphism, we have |S| = |Im(φS)| · | ker(φS)|. This gives us that

|Im(φS)| = |S|/| ker(φS)|. (4)
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The last fact we need is that ker(φS) is a subgroup of ker(φ). Thus, we have that for
some integer c that

| ker(φS)| = | ker(φ)|/c. (5)

Now we have that by (1), (3), and (4)

gcd(|Jac(G)|, |Jac(G1)|) = gcd(m, |CL̃
yy|) =

m

|Im(φS)|
=

m

|S|/| ker(φS)|
.

By lemma 3.1 we have that |S| = |Im(φ)|. So, with (5) and (2) we conclude that

gcd(|Jac(G)|, |Jac(G1)|) =
m

|Im(φ)|/| ker(φS)|
=

m

|Im(φ)|
| ker(φS)|

=
m

|Im(φ)|

(
| ker(φ)|

c

)
=

m

|Im(φ)|

(
m/|Im(φ)|

c

)
=

(m/|Im(φ)|)2

c
=

[Jac(G) : S]2

c
.

This proves the theorem for G and S, and in addition, the multiplicative factor is the
index of ker(φ|S) in ker(φ).

From the above theorems we can now give a precise condition for when [δxy] is a
generator of Jac(G) by considering the case when gcd(|Jac(G)|, |Jac(G1)|) = 1, proving
Corollary 1.2 from the introduction.

4 Edge contraction

Theorems 3.3 and 3.4 shed some light on the behavior of the Jacobian when an edge
is removed from the graph. It would be natural to ask what happens when a vertex is
removed. This is the subject of the following corollary and proposition resulting from our
main theorem.

Corollary 4.1. Let G be a simple graph and let e = (x, y) be an edge. Let G/e denote
the graph obtained by identifying the vertices x and y. Let S be as defined in Theorem
3.3. Then [Jac(G) : S]

∣∣ gcd(|Jac(G)|, |Jac(G/e)|).

Proof. Let T (G) denote the number of spanning trees of G. As explained in [11], T (G)
obeys the following recurrence: T (G) = T (G − e) + T (G/e), where G − e denotes the
graph obtained from G upon removal of the edge e. Thus gcd(|Jac(G)|, |Jac(G/e)|) =
gcd(|Jac(G)|, |Jac(G− e)|), and the result follows by Theorem 3.3.

Remark 4.2. This corollary essentially is saying that T (G/(x, y)) = CL̃
yy where L̃ is L

with the x row and column deleted. This can be seen by comparing the above recurrence
with the equation for det L̃ in the proof of Theorem 3.3.
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It would then be natural to ask whether Jac(G/e) is cyclic if the orders of the Jacobians
of G and G/e are relatively prime. Theorem 5.1 of [12] proves that in this case Jac(G) is
cyclic, and in Lemma 6.2 of [13] this result is extended to show that Jac(G− e) is cyclic.
We now apply Theorem 3.3 to show that on an undirected graph, Jac(G/e) must be cyclic
as well.

Proposition 4.3. Let G be a simple graph, and e, G/e defined as above. Let z be the
vertex obtained by identifying x and y. If |Jac(G)| and |Jac(G/e)| are relatively prime
and

Dx(v) =


0 (v, x) /∈ E(G)

(valG(x)− 1) v = z

−1 (v, x) ∈ E(G), v 6= z,

then Jac(G/e) is cyclic and [Dx] generates it.

Proof. Consider some arbitrary D′ ∈ Div0(G/e) and let D ∈ Div0(G) such that ∀v 6= x, y,
D(v) = D′(v). Then since the values sum to 0, we have D′(z) = D(x) + D(y). Consider
the firing script σ taking D to an equivalent multiple of δxy, and let σ(v) denote the
number of times the vertex v is fired. Without loss of generality let σ(x) = 0. Now let σ′

be a set of firing moves on G/e such that σ′(z) = σ(y) and σ′(v) = σ(v) otherwise. Let
D′1 be the divisor obtained from D′ after the firing of σ′. Then we have

D′1(v) = D′(v)− valG/e(v)σ′(v) +
∑

(u,v)∈G/e

σ′(u)

=


0 (v, x) /∈ G
−σ′(z)(valG(x)− 1) v = z

σ′(z) (v, x) ∈ G, v 6= z.

Thus D′1 = −σ′(z)Dx, where Dx is as defined in the statement of the proposition.
Thus every D′ ∈ Div0(G/e) is a equivalent to a multiple of Dx. Hence Jac(G/e) is

generated by [Dx], thus it is cyclic.

Note that the form of Dx depends on a choice of ordering of x and y. The following
remark gives the relation between the generators if the ordering is reversed.

Remark 4.4. Let Dy be the divisor obtained by reversing the ordering of x and y such
that [Dy] generates Jac(G). Then Dx ∼ −Dy. To see this, note that

Dy(v) =


0 (v, y) /∈ E(G)

(valG(y)− 1) v = z

−1 (v, y) ∈ E(G), v 6= z.

Firing once at z gives us

D′y(v) =


0 (v, x) /∈ E(G)

−(valG(x)− 1) v = z

1 (v, x) ∈ E(G), v 6= z,
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which is exactly −Dx(v).

5 Bounding the order of [δxy] below

The following proposition bounds the maximal order of some [δxy].

Proposition 5.1. Let G be a connected multigraph with n = |V (G)| vertices and ε =
|E(G)| edges.

1. There exist vertices x, y connected by an edge e such that |[δxy]|Jac(G) > ε/(n− 1).

2. Moreover, if G is 2-edge-connected, then there exist vertices x, y connected by an
edge e such that |[δxy]|Jac(G) > ε/(ε− n+ 1).

Note that in the first inequality the bound is tight for a spanning tree on n vertices,
and in the second the bound is tight for an n-cycle.

Proof. Recall from Lemma 3.2 that CL̃
yy gives exactly the number of spanning trees of G

containing the edge e. There are det L̃ spanning trees, each containing n− 1 edges, thus
there are a total of (n − 1) det L̃ instances of edges over all spanning trees of G. Since
there are ε edges in total, using the pigeonhole principle, we obtain the following bound:
there exists an edge e = (x, y) such that CL̃

yy 6 (det L̃)(n − 1)/ε. By Theorem 3.3, we

have |Jac(G)|/|[δxy]|Jac(G) 6 gcd(det L̃, CL̃
yy) 6 CL̃

yy 6 (det L̃)(n − 1)/ε. The first of the
above inequalities follows.

For the second, since G is 2-edge-connected, for all vertices x, y connected by an
edge e we have det L̃ > CL̃

yy since there exists some spanning tree not containing the

edge e. Using the pigeonhole principle again, we can bound CL̃
yy from below: there are

some vertices x, y connected by an egde e such that det L̃ > C L̃
yy > (det L̃)(n − 1)/ε.

Thus gcd(det L̃, CL̃
yy) 6 det L̃− CL̃

yy 6 det L̃− (det L̃)(n− 1)/ε and the second inequality
follows.

With stronger assumptions on G we can find better bounds on the order of [δxy]. A
graph is biconnected if any vertex can be removed while leaving a connected graph on
n − 1 vertices, which is equivalent to saying the graph cannot be decomposed into the
wedge product of two proper subgraphs that are not just vertices. Lemma 27 of [8] gives a
lower bound for |[δxy]|Jac(G) in a biconnected graph as val(x), and the maximum valency of
any vertex is bounded from below by 2ε/n. This is almost always better than the bounds
of Corollary 5.1, but ours hold more generally. In fact, for a biconnected graph we are
able to strengthen the result of [8].

Proposition 5.2. Given a biconnected simple graph G and an edge (x, y),

|[δxy]|Jac(G) > val(x) +
val(x)− 1

val(y)− 1
.
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This is always stronger than the result of [8], and equality is attained when G is a complete
graph.

Proof. Let a be a positive integer such that aδxy ∼ 0, and let σ be the firing script taking
aδxy to 0. Let S be the set of vertices s such that σ(s) is minimum. Without loss of
generality by Convention 2.2, we can set σ(s) = 0 for all s ∈ S. We have 3 cases:
Case 1: y ∈ S
This case is not possible since the initial value on y is a. If σ(y) = 0, σ can only increase
the value of the divisor on y, thus in this case we cannot have that aδxy + Lσ = 0.
Case 2: ∃ z ∈ S, z 6= x, y.
In this case z does not fire, and hence for the value of the divisor to remain at 0 we require
that all neighbors of z do not fire as well. We repeat this argument for all neighbors of z
that are not x or y. Since G is biconnected there exists a path from each vertex z to y not
passing through x. Thus we eventually conclude that σ(y) = 0. This is a contradiction
since we initially assumed that σ(y) > 0.
Case 3: S = {x}.
We can assume that for all v 6= x, σ(v) > 0, since otherwise this would reduce to one
of the earlier cases. Thus each neighbor of x fires at least once. For the value on y
to be zero after firing, y must fire at least a/val(y) times. In fact, each neighbor of
y that is not x must fire at least once (else we have Case 2), thus y needs to fire at
least (a + val(y) − 1)/val(y) times. Since a =

∑
σ(v) over all neighbors v of x, we have

a > val(x)− 1 + (a+ val(y)− 1)/val(y) = val(x) + (a− 1)/val(y). Further manipulation
gives the result.

Remark 5.3. Much of this proof follows immediately from the fact that σ is an integer-
valued harmonic function on the graph G with source y and sink x. This necessarily
implies that y and x are the unique maximum and minimum of σ respectively. The bound
follows soon after.

We have a similar result for multigraphs.

Proposition 5.4. Given a biconnected multigraph G and vertices x, y connected by an
edge,

|[δxy]|Jac(G) > (val(x)− 1)
val(y)

val(y)− 1
.

Proof. The proof proceeds similarly, except this time we can only bound the number of
times y fires by a/val(y). The earlier bound does not hold, since firing on other vertices
may not increase the number of chips on y. This occurs when all of y’s edges are connected
to x, such as on a multigraph with two vertices x and y and multiple edges between them.
Thus we have a > val(x)− 1 + a/val(y). Solving this gives the result.

Note that as long as x is chosen to be the vertex with higher valency, this result is
always stronger than that of [8].
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6 Conjectures and experimental results on random graphs

6.1 Random graph conjectures

As in the introduction, we consider Erdős-Rényi random graphs Gn,p on n vertices where
each edge occurs with probability p. One of the original motivations of our research was to
use facts about generators to find a lower bound on the probability that the Jacobian of a
graph is cyclic. As mentioned previously, it has been proven in [17] that

∏∞
i=1 ζ(2i+1)−1 is

an upper bound on the probability. However, no lower bound is known. It is conceivable
that better understanding of when [δxy] generates the Jacobian will shed light on a lower
bound.

By Corollary 1.2 we have that [δxy] is a generator of Jac(G) exactly when |Jac(G)| and
|Jac(G1)| are relatively prime. The question then becomes how the orders of these two
groups depend on each other. Two positive integers chosen uniformly at random from
the integers less than n are coprime with probability ζ(2)−1 as n goes to infinity [9]. We
know that |Jac(G)| and |Jac(G1)| are not independent. For example, if Jac(G) is not
cyclic, Corollary 1.2 tells us that the orders cannot be relatively prime. However, when
Jac(G) is cyclic, there is no obvious relationship between |Jac(G)| and |Jac(G1)|. So,
the question becomes whether |Jac(G)| and |Jac(G1)| behave like random integers when
Jac(G) is cyclic and we choose an edge (x, y) at random to remove (or add if it is not an
edge of the graph). Performing various simulations led us to the following conjecture.

Conjecture 6.1. Let p be fixed. For each graph, fix vertices x and y. Then

lim
n→∞

P ([δxy] generates Jac(Gn,p) | Jac(Gn,p) cyclic) = ζ(2)−1 ≈ 0.607927

If this is true and there is a reasonable amount of independence across choices of x
and y, we would expect to be able to find some edge x, y that allows us to make |Jac(G)|
and |Jac(G1)| coprime. This leads us to the following conjecture.

Conjecture 6.2. For any fixed p,

lim
n→∞

P (∃ [δxy] generator of Jac(Gn,p) | Jac(Gn,p) cyclic) = 1

Or equivalently,

lim
n→∞

P (∃ [δxy] generator of Jac(Gn,p)) = lim
n→∞

P (Jac(Gn,p) cyclic)

This conjecture says that the existence of a [δxy] generator is almost surely equivalent
to Jac(Gn,p) having a cyclic Jacobian. Interestingly, Conjecture 6.1 (if true) would seem
to imply that any fixed divisor of the form δxy is as likely to generate Jac(G) as a group
element of Jac(G) chosen uniformly at random (as experiments and heuristics suggest that
this latter probability should also converge to ζ(2)−1). Although this would mean such
divisors are not especially likely to be generators, it at least seems to assure us that if we
wanted to analyze the behavior of random elements of Jac(G), the elements of the form
δxy seem to already provide a reasonable approximation. Lastly, note that our conjectures
do not depend on p, as long as p is fixed. This follows [17], [5], and [6] which give results
about the likelihood of cyclic Jacobians in random graphs that do not depend on p.
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6.2 Experimental data

To provide some support beyond intuition for Conjectures 6.1 and 6.2, we conducted
simulations using SageMath [16] for various values of n (available on GitHub at [4]). For
each n we conducted 10,000 trials where each trial consisted of generating Gn,p with a
cyclic Jacobian and checking the desired property.

To sample G from the conditional distribution of Gn,p with cyclic Jacobian, each trial
we repeatedly generated copies of Gn,p until we found a G with cyclic Jacobian. The
desired properties were then checked by using the Smith normal form to calculate the
orders of Jac(G) and Jac(G1) and applying Corollary 1.2. In the below tables, we report
the probability that these properties held in our experiments of 10,000 trials for various
values of p and n.

P(fixed [δxy] generates Jac(G)) P(∃ [δxy] that generates Jac(G))
n p = 0.1 p = 0.5 p = 0.9
20 0.4976 0.6121 0.2927
40 0.5857 0.6092 0.5331
60 0.6089 0.6073 0.6036

n p = 0.1 p = 0.5 p = 0.9
20 0.9979 1.0 0.9600
40 1.0 1.0 0.9991
60 1.0 1.0 1.0

Here G is a graph sampled from the conditional distribution of Gn,p | Jac(Gn,p) cyclic.
Note that the values of 1.0 indicate that the property held for every trial in our sample.
So, while there are simple examples that can be constructed for every n with no [δxy]
generator, they are unlikely to be generated by Gn,p|Jac(Gn,p) cyclic and therefore did
not occur in our sample.

6.3 Conjecture on the order of [δxy]

In Section 5, we proved some lower bounds on the order of some [δxy] in the graph.
However, by experimentation these do not seem to be the best possible lower bounds.
We conjecture that a better bound can be found if we assert that a graph is biconnected.
This condition prevents the construction of pathological counterexamples using wedge
products and gives, based on computations of Dhruv Ranganathan and Jeffrey Yu [14],
the following conjecture.

Conjecture 6.3. Let G be a biconnected, simple graph with n vertices. Fix a vertex x.
Then there exists a vertex y such that |[δxy]|Jac(G) > n.

We further tested this conjecture on random graphs of varying size and on all bicon-
nected graphs with fewer than nine vertices. We could not find any counterexamples. One
way to see why the biconnected assumption is necessary is to let G be the wedge of two
triangles, a “bowtie”. Then |V (G)| = 5 but Jac(G) ∼= Z/3Z × Z/3Z, so |[δxy]|Jac(G) 6 3,
so the desired result would not hold for G.

An affirmative resolution of this conjecture could provide some leverage over finding
classes of graphs with cyclic Jacobian. Moreover, following the work of [8], this conjecture
would prove that for any positive integer n there exists an integer kn such that for all
k > kn there is no biconnected graph G with Jac(G) ∼= (Z/nZ)k.
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