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Abstract

We outline the progress made so far on the search for the complete set of torus
obstructions and also consider practical algorithms for torus embedding and their
implementations. We present the set of obstructions that are known to-date and give
a brief history of how these graphs were found. We also describe a nice algorithm
for embedding graphs on the torus which we used to verify previous results and add
to the set of torus obstructions. Although it is still exponential in the order of the
graph, the algorithm presented here is relatively simple to describe and implement
and fast-in-practice for small graphs. It parallels the popular quadratic planar
embedding algorithm of Demoucron, Malgrange, and Pertuiset.

Keywords: Embedding graphs on surfaces, obstructions for surfaces, torus embed-
ding.

1 Introduction

A (topological) obstruction for a surface S is a graph G with minimum degree at least
three that is not embeddable on S but for every edge e of G, G —e (G with edge e deleted)
is embeddable on S. A minor-order obstruction G has the additional property that for
every edge e of G, G - e (G with edge e contracted) is embeddable on S.

There is a finite set of obstructions for every surface of fixed genus ([5, 2, 29]), yet to
date the only complete sets known are for the plane ([23, 30]) and the projective plane
([17, 1]). Characterizing the complete set of torus obstructions is a natural next step in
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topological graph theory. The progress that has been made to date is summarized later
in Section 4.
In this paper, we accomplish three things:

1. describe a conceptually simple and fast-in-practice torus embedding algorithm which
has been used to push the exhaustive search boundaries and improve upon previous
results, and

2. highlight the major research thus far toward defining the complete set of obstructions
to the torus,

3. make our database of torus obstructions available to the research community:.

2 Notation

We use n to denote the order, or number of vertices, in a graph, and m to denote the
size, or number of edges. When speaking of genus and embeddings we refer implicitly
to the orientable variety, and we omit the term torus when referring to embeddings and
obstructions where it is implied by context. We also limit our consideration to simple,
2-connected graphs unless otherwise implied or specified.

A graph H is homeomorphic to a graph G if H can be obtained from G by a series of
edge subdivisions. A Kuratowski subgraph is a subgraph that is homeomorphic to either
K5 or K3’3.

A bridge B with respect to a subgraph H of a graph G is either

Type 1: a connected component C' of G—H along with the edges (u, v) such that u € V(C)
and v € V(H) and the vertices v € V(H) that are endpoints of these edges, or

Type 2: an edge (u,v) and its endpoints where (u,v) € F(G) and v € V(H) and v €
V(H) but (u,v) ¢ E(H).

The vertices that are in both B and H are called attachment vertices of B. The vertices
that are in B but not in H (i.e. the vertices in B that are not attachment vertices) are
called internal vertices of B. A bisecting path in a bridge B is a path P that contains
only vertices and edges in B, and where v € V(P) is an attachment vertex of B if and
only if v is an endpoint of P, and also the two ends of the path are distict vertices of B
(the path cannot be a cycle).

Given a surface S and an embedding I1(G) of a graph G on S, a face boundary of 11 is
a closed walk of G that bounds a maximal contiguous region of S — G. A face boundary
might not be a cycle, as it may have repeated vertices. We call the faces with repeated
vertices challenging faces. A face f is admissible for a bridge B if all of the attachment
vertices of B are on f.
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3 An Elegant and Simple Torus Embedding Algorithm

There can be a large gap separating theory and practice when it comes to the study of
algorithms (see for example [10]). There are many linear time algorithms for embedding
graphs on the plane ([18, 6, 11, 32, 33, 7, 8]). For small enough graphs in small enough
numbers, it can be worthwhile to sacrifice asymptotic speed for simplicity and elegance,
and thus the quadratic algorithms of Klotz [22] and of Demoucron, Malgrange, and Per-
tuiset [12] still have relevance. For the torus, Chambers, Myrvold and Neufeld designed
an exponential embedding algorithm [28, 27, 9] which, although slow in general, was prac-
tical for small graphs. Kocay and Myrvold discuss critical design concerns for designing
embedding algorithms for the torus and show that several purported polynomial-time
algorithms are incorrect [26]. Mohar gave an outline for a linear time torus embedding
algorithm [21] (reference to some of his other papers would be required to fill in enough
detail for implementation) and, with Juvan, a simplified O(n?) variant [20]. The com-
plexity of these algorithms and in some cases, large constant factors in the running time
formula are of concern in terms of correctly implementing them and it seems likely that for
small graphs, a simpler yet asymptotically slower algorithm might be more appropriate
in practice.

Our new Torus Embedding Algorithm is conceptually simpler and faster in practice
than that of Myrvold and Neufeld [28, 27]. It is a natural extension to the torus of
the quadratic planar embedding algorithm of Demoucron, Malgrange, and Pertuiset [12],
hereafter referred to as the DMP Algorithm, which we introduce first.

3.1 Quadratic Planar Embedding: the DMP Algorithm

The quadratic (O(n?)) algorithm of Demoucron, Malgrange, and Pertuiset [12], while not
the fastest planar embedding algorithm, is elegant, simple, and easy to implement which
allows it to retain its viability as an option for planar embedding tasks. The proof of
correctness is not trivial and sometimes the details are glossed over or, in the case of [16],
are not correct as explained in [26] where a counterexample is given.

The algorithm’s foundation relies on the facts that a graph with no cycles is obviously
planar and that a cycle has exactly one embedding (up to isomorphism) on the plane. It
first finds an embedding II(C') for some cycle C' in G and proceeds methodically to add
paths from G — C' into II(C'). The DMP algorithm is given in pseudocode in Algorithms
3.1 and 3.2.

Algorithm 3.1 StartDMP(graph G)

1: if G does not contain any cycles then

2:  halt G is trivially planar.

3: end if

4: Choose a cycle C'in G.

: Let II(C') be an embedding of C' on the plane.

: DMP(G, C, II(C")) //Pseudocode in Algorithm 3.2

Sy Ut
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Algorithm 3.2 DMP(graph G, graph H, embedding II(H))
if there are no bridges remaining then
halt II(H) is an embedding of G.
else if there is a bridge with no admissible faces then
halt G is not planar.
end if
Choose a bridge B of G with a minimum number of admissible faces.
Choose a bisecting path P of B.
Embed P in II(H) and set H = HU P.
DMP(G, H, II(H))

A bridge B is admissable for a face f if all of its points of attachments lie on f.
Demoucron, Malgrange, and Pertuiset proved that for a planar graph, as long as bridges
with only one admissible face are chosen first, any face can be chosen in which to embed
each bridge, and this algorithm will yield a planar embedding if and only if the input
graph is planar ([12], this is also presented in English on pp. 266-267 in this text book
[25]).

For simplicity, Algorithm 3.2 does not discuss computing the faces and bridges. It is
easy to update both of these in O(n) time each time II(H) is modified - B is no longer
a bridge, new bridges arise but only originating from the removal of P from B, the face
f that P is embedded into is split into two faces f; and f, and for the new bridges and
the old bridges admissable for f, it is necessary to determine if they are admissable for

f1 and/or f.

3.2 Exponential Torus Embedding: DMP-Style

The data structure used to store embeddings in the computer is a rotation system: for
each vertex, the neighbours are stored in cyclic order according to their clockwise order
in the embedding. There are standard algorithms for walking the faces, and determining
the genus from a rotation system. The embeddings represented are 2-cell embeddings.

Our new torus embedding algorithm, initially described in [34], follows a similar struc-
ture to the DMP algorithm just described with two caveats which we will explore in the
next sections.

1. We assume that our input graph is not planar and begin by choosing a Kuratowski
subgraph.

2. After choosing a bridge we must try all possible placements for our chosen bisecting
path.

3.3 Finding a Kuratowski Subgraph

The goal is to find a 2-cell embedding of the graph on the torus. By Euler’s formula, any
simple toroidal graph has at most 3n edges. So any graph with more than 3n edges can
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be rejected as non-toroidal. We assume that our input graph is not planar (otherwise, a
planarity tester can be used to embed it).

The Demoucron et al. [12] approach on the plane starts with an embedding of a cycle.
But embedding a cycle on the torus does not give faces that are homeomorphic to planar
disks. Therefore, the algorithm starts by choosing a Kuratowski subgraph, K, which can
be found in O(n?) time (assuming a O(n?) planarity testing algorithm and taking into
account that the graph has at most 3n edges) by removing each edge in turn and replacing
it only if the resulting graph is planar. More efficient algorithms are given in [22, 33, §].

Once we have found K, our algorithm must consider all labelled embeddings of K.
This step is hidden in the DMP algorithm because a cycle has only one embedding on
the plane up to isomorphism.

The flip of an embedding is obtained by reversing the sense of clockwise of the neig-
bours of each vertex. For an embedding and its flip, either both extend to an embedding
for the whole graph or neither one does. Hence an embedding and its flip are considered
to be equivalent to each other.

Up to isomorphism, there are six different unlabelled embeddings of K5 and two differ-
ent unlabelled embeddings of K33 as pictured in Figure 1. The number of unique labelled
embeddings is 231 for K5 and 20 for K3 3.

An easy approach to computing the different labelled embeddings for K (equal to
K5 or K33) on the computer is to generate all the different rotation systems for K, and
then to use a face walking algorithm to count the faces and compute the genus in order
to choose the ones that are torus embeddings. When generating the different rotation
systems, the only cases considered are those such that the neighbour list for every vertex
lists the smallest numbered neighbour first (since the neighbour list represents a cyclic
order for the neighbours). To avoid creating both an embedding and its flip, the order of
the neighbours of the first vertex also has the additional property that the vertex number
for the second neighbour is smaller than that of its last neighbour.

Figure 1: Unlabelled embeddings of K5 and K33 on the torus.
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Note that all of these embeddings divide the torus into faces that are homeomorphic to
a planar disk. Unfortunately, it is not possible to proceed as with Demoucron’s algorithm
and find out whether the graph is embeddable on the torus in O(n?) time. There are two
reasons why this does not work on the torus, which we discuss next.

3.4 Where to Embed a Bisecting Path

Recall that in the DMP algorithm, if there are bridges with only one admissible face, we
embed a bisecting path from these first. Otherwise, we arbitrarily choose a bridge and
one of its admissible faces in which to embed a bisecting path. For embedding a graph
on the plane, we do not need to try all of the admissible faces because, as Demoucron,
Malgrange, and Pertuiset proved, if a graph is planar every choice of admissible face for
a bridge leads to an embedding ([12], p. 266 of [31]). Their theorem does not extend to
the torus and thus we must try to embed a bisecting path in each admissible face in turn.

Further, some embeddings of K5 and K3 3 have challenging faces with repeated vertices.
Four of the unlabelled K5 embeddings and one of the unlabelled K33 embeddings yield
labelled embeddings with challenging faces. Figure 2 illustrates the K33 case which has
a ten-face which has four repeated vertices (1, 3, 4, and 6) and two repeated edges ((1,6)
and (3,4)).

w O——0m

Figure 2: Challenging face of one of the K33 embeddings.

Although K5 and K33 have a maximum of four repeated vertices on a challenging
face, we may need to consider more repeated vertices than this due to our initially chosen
subgraph being homeomorphic and not necessarily equal to K5 or K3 3. It is clear, however,
that a vertex cannot appear more than twice on a challenging face. This is because no
embedding of K5 or K33 on the torus has the same edge appearing more than twice on a
face. It is also obvious that after embedding a path across a face, the number of times a
vertex repeats on a face cannot increase. Thus there can be at most four possible ways
to embed a bisecting path across a face.

3.5 DBridge Penalties

The caveats described in Section 3.4 lend our algorithm nicely to the use of recursion to
explore all of the faces and all placements within each face of the bisecting path from our
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chosen bridge. To make a sensible choice of bridge and bisecting path and thus minimize
the number of recursive calls, we define a penalty P(B) for each bridge B as follows. For
each admissible face f for B:

e let x; be the number of times attachment vertex ¢ of B appears on f, and

e choose two different attachment vertices u; and vy of B such that z, ; * Ty, 18 mini-
mized.

Now,

P(B) = Z Ty * Ty
f is admissible for B
If there is a bridge B with P(B) = 0, our algorithm must backtrack as there is a bridge
that has no admissible faces. Otherwise, it chooses a bridge B with minimum penalty
and, for each admissible face f for B, a bisecting path between u; and vy.

3.6 Pseudocode

Our torus embedding algorithm, is given in pseudocode in Algorithms 3.3 and 3.4. It
proceeds by choosing a Kuratowski subgraph and, for each embedding of that subgraph,
taking a backtracking approach to embedding bisecting paths from the bridges in all
possible ways, and using the penalty just described to choose which bridge to embed first.
As with the DMP Algorithm, for simplicity, we make no mention of finding or updating
the faces and bridges at each step, or of calculating the penalty for the bridges. Again,
these can be found initially in O(n?) time and maintained in O(n) time per recursive call.

Algorithm 3.3 StartTorusEmbed(graph G)
1: if G is planar then
2:  halt a planar embedding of GG is also a torus embedding of G.
3: else
4:  Choose a subgraph H of G that is homeomorphic to either K5 or Kj .
5. for all non-isomorphic, nonequivalent labelled embeddings 7(H), of H do
6
7
8:

TorusEmbed(G, H, 7(H)) //Pseudocode given in Algorithm 3.4
end for
end if

3.7 Improving the Running Time

Initial timing studies of our algorithm led us to discover graphs which caused our algorithm
to be very slow. Analysis of the structure of such graphs revealed that the slowness was
a result of having multiple ways to embed some bridges when the graph had one or more
2-vertex cuts. It is possible, however, because of Theorem 3.1 below (which generalizes
Lemma 2.4 of [13]) to preprocess these graphs to avoid the slow running time when they
are given as input to our algorithm.
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Algorithm 3.4 TorusEmbed(graph G, graph G’, embedding 7(G"))
1: if there are no bridges remaining then

2:  halt 7(G’) is an embedding of G.

3: end if

4: if there is a bridge B with P(B) = 0 then

5. return 7(G’) cannot lead to an embedding of G (backtrack).

6: end if

7. Choose a bridge B with minimum P(B).

8: for all admissible faces, f, for B do

9:  Choose a bisecting path P from B with endpoints uy and vy (see Section 3.5).
10:  Let U and V' be the sets of all copies of uy and vy on f, respectively.

11:  for all pairs (u,v) in U x V do

12: Set 7(G") = 7(G' U P) with P embedded in 7(G’) using endpoints u and v.
13: Set G' = G'UP.

14: TorusEmbed(G, G', 7(G"))

15: Remove P from 7(G’) and from G'.

16: end for

17: end for

Theorem 3.1. Let B be a bridge of a graph G with respect to the subgraph consisting
of the two vertices a and b (and no edges) of a 2-vertex cut {a,b} in G. If B + (a,b) is
planar, then GG embeds on S if and only if

G — {v | v is an internal vertex of B} + (a,b)
embeds on S.

Proof. Given an embedding of
G — {v | v is an internal vertex of B} + (a,b),

we can replace (a,b) with a planar embedding of B or, if (a,b) is an edge in G, replace
(a,b) with a planar embedding of B + (a,b). O

We created a preprocessor to reduce to a single edge (a,b) any bridge B with respect
to some 2-vertex cut {a, b} such that B + (a,b) is planar. This significantly reduced the
running time on input graphs containing such bridges.

Another improvement can come from the fact that Kj 3 has fewer labelled embeddings
on the torus than K5 does by a factor of almost twelve. If our algorithm finds a subgraph
homeomorphic to K3, then either there is a subgraph homeomorphic to K33 and it can
be found in linear time [14, 3], or if the graph does not contain a K33 subgraph, the
algorithm of Gagarin and Kocay [14] could be used to test for toroidality in linear time.
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Figure 3: Plots of average running time for checking obstructions.

3.8 Results

Timing comparisons of an implementation in C of our DMP-style torus embedding al-
gorithm as compared to the exponential algorithm of Myrvold and Neufeld ([28]) show
significant improvements on all tested inputs. The first chart in Figure 3 shows the
comparison of the time it took to confirm that the 239,451 torus obstructions found by
Chamber [9] are in fact obstructions using the two algorithms and to determine if they are
minor order obstructions or not. This involves checking if the original graph is toroidal,
and then removing and contracting each edge in turn to check if the resulting graph is
toroidal.

We also generated random toroidal graphs by randomly choosing an embedding of K
or K33 on the torus and then randomly subdividing and/or adding edges to the embedding
until the desired order is reached (See [34] for more details). The times for these are shown
in Figure 4. To generate random non-toroidal graphs, we used the same process, and then
added random edges until the resulting graph was not toroidal. Figure 5 shows the results
of timing the two algorithms on these randomly generated non-toroidal graphs. The last
chart shows quite impressive timing improvements for large graphs.

4 The Known Torus Obstructions

It should be noted that some of the work on finding obstructions [9, 19, 20, 27, 34]
has been presented in theses or preprints and as a result, was not subject to the usual
refereeing standards of journals. Myrvold and Neufeld found all torus obstructions on
up to ten vertices by exhaustive search. They also found some larger ones bringing the
total number of torus obstructions to 3884 topological obstructions, 2249 of which are also
minor-order obstructions [28, 27]. Almost ten years later, in 2002, Chambers found all
torus obstructions on up to eleven vertices and all (206) 3-regular torus obstructions on
up to 24 vertices by exhaustive search [9] using an improved version of the same program
as Myrvold and Neufeld. Chambers also used a “split-delete” approach and brought the
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Figure 4: Plots of average running time for random toroidal graphs.

total to 239,451 obstructions, 16,682 of which are minor-order.

In 2006, an implementation of the algorithm described in this paper was used by
Woodcock to confirm the previous exhaustive search results [34]. Shortly after this, we
used it in an effort to confirm Chambers’ “split-delete” results [9], and discovered that
many obstructions had been missed due to an oversight when examining the output.
Chambers was running his software on many different machines without automated soft-
ware to collate results together and to ensure that all cases completed correctly. Further,
we used it to augment the exhaustive search from 11-vertex graphs to 12-vertex graphs
and from 24-vertex 3-regular graphs to 26-vertex 3-regular graphs (none of the latter are
obstructions).

At the moment, our database contains 250,815 torus obstructions, 17,523 of which
are minor-order. See Tables 1 and 2, respectively, for a breakdown of the obstructions
by order and size. An exhaustive search was possible for n < 12 and hence the counts
in the tables include all of these small obstructions. The counts in these cases were
verified computationally by at least two different computer implementations of obstruction
checking algorithms. The larger ones were obtained either by taking the smaller ones and
applying split/delete as per Chambers [9], by non-exhaustive search of the larger graphs,
or by random search in triangulations of the 2-handled torus.

Juvan described the 270 projective planar torus obstructions [19]. These are all ob-
tainable from a 4 by 4 projective planar grid using A — Y and Y — A transformations.
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Figure 5: Plots of average running time for random non-toroidal graphs.

These 270 obstructions correspond to five torus obstructions that are split-delete minimal
(one with eleven vertices, one with 12 vertices and three with 13 vertices).

Chambers, Gagarin and Myrvold characterized the torus obstructions which do not
contain a subgraph homeomorphic to K33 [15] (there are eleven) and gave a proof that
this set is complete. We know that there are exactly three disconnected obstructions and
exactly ten obstructions which have a cut-vertex [4] (see Figures 6 and 7).

We conjecture that our database contains the complete set of 3-regular obstructions
(based on the evidence that exhaustive search was done up to 26 vertices and no 26-
vertex obstructions were found). The obstructions we have with a 2-vertex cut match the
theoretical characterization of the complete set of these given by Mohar and Skoda [24].

Our suspicion is that the set of obstructions that we have is not complete. The reason
for this suspicion is because it was not difficult to find some new obstructions using a
randomized search.

A torus obstruction G is split-delete minimal if G cannot be obtained from an ob-
struction that has one less vertex by splitting at some vertex and then deleting some
subset of the edges. All of the 250,815 obstructions than we have correspond to a set
of 402 split-delete minimal obstructions. Table 3 gives a breakdown of the split-delete
minimal obstructions by order and size. Up to n = 12, the table includes all split-delete
minimal obstructions. One strategy that seems plausible for getting a complete set of
torus obstructions is to characterize the obstructions that are split-delete minimal. Since
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the total number of these is probably going to be reasonably small (it appears as though
the maximum number for a value for n occurs when n = 10 and that for each subsequent
value of n > 10 the number is decreasing). A characterization done by hand might be

feasible.

Figure 6: 3 Disconnected Obstructions.

REp By EXX

Figure 7: 10 Obstructions with a cut-vertex.
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Edges [181920 21 22 23 24 25 26 27 28293031 | total

Vertices
8 e | - 1 1 - - - - - 3
9 - 25 2 9 13 6 2 4 - - - - 43
10 -15 3 18 31 117 90 92 72 17 1 - 1 457
11 5 2 - 46131 569 998 745 287 45 8 3 1 2840
12 1 - - 52238121825191841 505 91 23 2 1 6492
13 - - - 5 98 83619851924 512 84 46 2 1 5493
14 - - - - 9 068 463 943 251 43 8 1 - 1864
15 - - - - - - 21 118 45 12 8 - - 281
16 - - - - - - - 4 3 5 41 - - 53
17 - - - - - - - - - - 8 - - 8
18 - - - - - - - - - -1 - - 1
total 619 81235172821 6083 5670 1679 297299 8 4 17535

Table 2: The 17,535 known minor order torus obstructions.

Edges (2021222324 25 262728293031 |total

Vertices
8 - -1 -1 1 - - - - - - 3
9 2 -233 1 4 - - - - - 15
10 -1 - 116 40 5417 1 - 1 -| 131
11 - - - -4 44 3615 7 3 1 -| 110
12 - - - - 231 4117 3111 97
13 - - - -2 62453 - - - 40
14 - - - - - 2 4 - - - - - 6
total 2 1 3 4281251635414 4 3 1| 402

Table 3: The 402 known split-delete minimal torus obstructions.
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5 Conclusions and Future Work

As evidenced by the number of authors mentioned in Section 4 as well as the span of years
over which the papers and theses have been published, this is a large research problem,
which is being explored in a piecemeal fashion. We are hopeful that it will soon be
completed so that new chapters in the field of graph embedding can be explored.

To this end, we are investigating the completeness of obstruction sets for several sub-
classes of graphs. Having such a large database of obstructions proves incredibly helpful
in finding and proving theorems about the structure of these graphs. Eventually, we hope
that these theorems will provide a comprehensive categorization of the complete set of
torus obstructions.

From an algorithmic perspective, one approach would be to implement the O(n) torus
embedding algorithm of Juvan, Marincek and Mohar [21] or Juvan and Mohar’s simplified
O(n?®) variant [20]. Alternatively, perhaps some of their techniques could be applied
to make the DMP-style torus embedding algorithm more efficient. For small graphs
such as the obstructions for the torus, however, we believe it is likely that the DMP-
style algorithm presented here will be faster than one promising a better Big-Oh time
complexity. Regardless, our algorithm has value because of its simplicity and readability.

6 The Torus Obstructions

The torus obstruction described in the paper are available from:
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i1p16/html
and

http://webhome.cs.uvic.ca/~wendym/torus/torus_obstructions.html
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