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Abstract

In the study of Kostka numbers and Catalan numbers, Kirillov posed a uni-
modality conjecture for the rectangular Narayana polynomials. We prove that the
rectangular Narayana polynomials have only real zeros, and thereby confirm Kir-
illov’s unimodality conjecture. By using an equidistribution property between de-
scent numbers and ascent numbers on ballot paths due to Sulanke and a bijection
between lattice words and standard Young tableaux, we show that the rectangu-
lar Narayana polynomial is equal to the descent generating function on standard
Young tableaux of certain rectangular shape, up to a power of the indeterminate.
Then we obtain the real-rootedness of the rectangular Narayana polynomial based
on a result of Brenti which implies that the descent generating function of standard
Young tableaux has only real zeros.
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1 Introduction

The main objective of this paper is to prove a unimodality conjecture for the rectangular
Narayana polynomials in the study of Kostka numbers and Catalan numbers. This con-
jecture was first posed by Kirillov [5] in 1999, and restated by himself [6] in 2015. In this
paper we prove that the rectangular Narayana polynomials have only real zeros, an even
stronger result than Kirillov’s conjecture.

Let us begin with an overview of Kirillov’s conjecture. Throughout this paper, we
abbreviate the vector (m,m, . . . ,m) with n occurrences of m as (mn) for any positive
integers m and n. We say that a word w = w1w2 · · ·wnm in symbols 1, 2, . . . ,m is a lattice
word of weight (mn), if the following conditions hold:

(a) each i between 1 and m occurs exactly n times and

(b) for each 1 6 r 6 nm and 1 6 i 6 m− 1, the number of i’s in w1w2 · · ·wr is not less
than the number of (i+ 1)’s.

Given a word w = w1w2 · · ·wp of length p, we say that i is an ascent of w if wi < wi+1,
and a descent of w if wi > wi+1. Denote the number of ascents of w by asc(w), and
the number of descents des(w). For any m and n, the rectangular Narayana polynomial
N(n,m; t) is defined by

N(n,m; t) =
∑

w∈N (n,m)

tdes(w), (1.1)

where N (n,m) is the set of lattice words of weight (mn). Note that N(n, 2; t) is the
classical Narayana polynomial, and N(n, 2; 1) is the classical Catalan number, see [6].
For this reason, N(n,m; 1) is called the rectangular Catalan number.

Kirillov’s conjecture is concerned with the unimodality of the rectangular Narayana
polynomial N(n,m; t). Recall that a sequence {a0, a1, . . . , an} of positive real numbers is
said to be unimodal if there exists an integer i > 0 such that

a0 6 · · · 6 ai−1 6 ai > ai+1 > · · · > an,

and log-concave if, for each 1 6 i 6 n− 1, there holds

a2i > ai−1ai+1.

Clearly, for a sequence of positive numbers, its log-concavity implies unimodality. Given
a polynomial with real coefficients

f(t) =
n∑
k=0

akt
k,

it is unimodal (or log-concave) if its coefficient sequence {a0, a1, . . . , an} is unimodal (resp.
log-concave). Kirillov proposed the following conjecture.

the electronic journal of combinatorics 25(1) (2018), #P1.17 2



Conjecture 1.1 ([6, Conjecture 2.5]). For any m and n, the rectangular Narayana poly-
nomial N(n,m; t) is unimodal as a polynomial of t.

In this paper, we give an affirmative answer to the above conjecture. Instead of
directly proving its unimodality, we shall show that the rectangular Narayana polynomial
N(n,m; t) has only real zeros. By the well known Newton’s inequality, if a polynomial
with nonnegative coefficients has only real zeros, then its coefficient sequence must be
log-concave and hence unimodal. Thus, from the real-rootedness of N(n,m; t) we deduce
its log-concavity and unimodality.

The remainder of this paper is organized as follows. In Section 2, we show that the
rectangular Narayana polynomial N(n,m; t) is equal to the descent generating function
on standard Young tableaux of shape (nm), up to a power of t. We use a result of Sulanke
[9] that the ascent and descent statistics are equidistributed over the set of ballot paths.
In Section 3, we first prove the real-rootedness of the descent generating function on
standard Young tableaux, and then obtain the real-rootedness of N(n,m; t). The key
to this approach is a connection between the descent generating functions of standard
Young tableaux and the Eulerian polynomials of column-strict labeled Ferrers posets.
The latter polynomials have only real zeros, as proven by Brenti [2] in the study of the
Neggers-Stanley conjecture.

2 Tableau interpretation

The aim of this section is to interpret the rectangular Narayana polynomials as the descent
generating functions on standard Young tableaux.

Let us first recall some definitions. Given an integer partition λ = (λ1, λ2, . . . , λ`), its
Young diagram is defined to be an array of squares in the plane justified from the top left
corner with ` rows and λi squares in row i. By transposing the diagram of λ, we get the
conjugate partition of λ, denoted λ′. A cell (i, j) of λ is in the i-th row from the top and
in the j-th column from the left. A semistandard Young tableau (SSYT) of shape λ is a
filling of its diagram by positive integers such that it is weakly increasing in every row and
strictly increasing down every column. The type of T is defined to be the composition
α = (α1, α2, . . .), where αi is the number of i’s in T . Let |λ| = λ1 + · · ·+λ`. If T is of type
α with αi = 1 for 1 6 i 6 |λ| and αi = 0 for i > |λ|, then it is called a standard Young
tableau (SYT) of shape λ. Let Tλ denote the set of SYTs of shape λ. Given a standard
Young tableau, we say that i is a descent of T if i+ 1 appears in a lower row of T than i.
Define the descent set D(T ) to be the set of all descents of T , and denote by des(T ) the
number of descents of T .

The main result of this section is as follows.

Theorem 2.1. For any positive integers m and n, we have

N(n,m; t) = t1−m
∑

T∈T(nm)

tdes(T ). (2.1)
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To prove the above result, we need a bijection between the set of lattice paths and
the set of standard Young tableaux. Here we use a very natural bijection φ between the
lattice word of weight (mn) and the standard Young tableau of shape (nm), see [3, p. 92],
[4, p. 221] and [7]. To be self-contained, we shall give a description of this bijection in
the following.

Given a lattice word w = w1 · · ·wnm of weight (mn), let T = φ(w) be the tableau
of shape (nm) obtained by filling the square (i, j) with k provided that wk is the j-th
occurrence of i in w from left to right. Clearly, T is a standard Young tableau. Conversely,
given a standard Young tableau T of shape (nm), define a word w by letting wi to be j
if i is in the j-th row of T . It is easy to verify that w = φ−1(T ). Figure 2.1 gives an
illustration of this bijection, where T is of shape (43) and w is of weight (34).

w = 121113223233 7→ T = 1 3 4 5

2 7 8 10

6 9 11 12

Figure 2.1: Bijection between standard Young tableaux and lattice words

By using the above bijection φ, we obtain the following result.

Lemma 2.2. For any positive integers m and n, we have∑
T∈T(nm)

tdes(T ) =
∑

w∈N (n,m)

tasc(w). (2.2)

Proof. Suppose that T = φ(w). Note that if i is an ascent in w, i.e. wi < wi+1, then i+ 1
is filled in the wi+1-th row, which is lower than the row including i in T . Hence, i is a
descent of T . Conversely, given a tableau T , let i be a descent of T and w = φ−1(T ).
Since i + 1 appears in a lower row of T than i, it follows that wi < wi+1. Hence, i is an
ascent of w. Therefore, the bijection φ sends the set of ascents in w to the set of descents
of T = φ(w) and hence asc(w) = des(T ). This completes the proof.

To prove Theorem 2.1, it remains to show that

t1−m
∑

w∈N (n,m)

tasc(w) =
∑

w∈N (n,m)

tdes(w). (2.3)

In fact, this has been established by Sulanke [9], who stated it in terms of ballot paths.
In the following, we shall give an overview of Sulanke’s result.

Recall that a ballot path for m-candidates is an m-dimensional lattice path running
from (0, 0, . . . , 0) to (n, n, . . . , n) with the steps:

X1 = (1, 0, . . . , 0),

X2 = (0, 1, . . . , 0),

...
...

Xm = (0, 0, . . . , 1),
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and lying in the region

{(x1, x2, . . . , xm) : 0 6 x1 6 x2 6 · · · 6 xm}.

Denote by C(m,n) the set of all such paths.
For any path P = p1p2 · · · pmn ∈ C(m,n), the number of ascents of P is defined by

asc(P ) = |{i : pipi+1 = XjXl, j < l}|,

and the number of descents of P by

des(P ) = |{i : pipi+1 = XjXl, j > l}|.

Sulanke [9] obtained the following result by a nice bijection.

Lemma 2.3 ([9, Proposition 2]). For any positive integers m and n, we have∑
P∈C(m,n)

tasc(P ) =
∑

P∈C(m,n)

tdes(P )−m+1. (2.4)

Note that there is an obvious bijection between C(m,n) and N (n,m): given a path
P ∈ C(m,n), simply replace each step Xi of P by the symbol m− i+ 1, and the resulting
word w is clearly a lattice word of N (n,m). Moreover, we have asc(P ) = des(w) and
des(P ) = asc(w). With this bijection, Sulanke’s result can be restated as (2.3).

Proof of Theorem 2.1. Combining (1.1), (2.2) and (2.3), we immediately obtain the de-
sired result.

3 Real zeros

In this section, we aim to prove the real-rootedness of rectangular Narayana polynomials.
Our main result of this section is as follows.

Theorem 3.1. The rectangular Narayana polynomial N(n,m; t) has only real zeros for
any m and n.

By Theorem 2.1, we only need to show that the following polynomial∑
T∈T(nm)

tdes(T )

has only real zeros. To this end, we shall use a result due to Brenti [2] during his study
of the Neggers-Stanley Conjecture. For more information on the Neggers-Stanley Conjec-
ture, see [8] and references therein. Given a partition λ = (λ1, . . . , λ`), the corresponding
Ferrers poset Pλ is the poset

Pλ = {(i, j) ∈ P× P : 1 6 i 6 `, 1 6 j 6 λi},

ordered by the standard product ordering. Let ω be a column strict labeling of Pλ,
namely, ω(i, j) > ω(i+ 1, j) and ω(i, j) < ω(i, j + 1) for all (i, j) ∈ Pλ. Brenti [2] proved
the following result, see also Brändén [1].
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Theorem 3.2. [2, p. 60, Proof of Theorem 5.3.2] Let (Pλ, ω) be labeled column strict.
Then the (Pλ, ω) -Eulerian polynomial

W (Pλ, ω; t) =
∑

π∈L(Pλ,ω)

tdes(π) (3.1)

has only real zeros, where L(Pλ, ω) is the Jordan-Hölder set of (Pλ, ω).

Based on the above theorem, we obtain the following result.

Corollary 3.3. For any partition λ, the polynomial∑
T∈Tλ

tdes(T )

has only real zeros.

Proof. It suffices to show that

W (Pλ, ω; t) =
∑
T∈Tλ

tdes(T ). (3.2)

To this end, we need to establish a bijection ψ from L(Pλ, ω) to Tλ such that des(π) =
des(ψ(π)) for any π ∈ L(Pλ, ω). Suppose that |λ| = p. Note that, given a permutation
π = π1π2 · · · πp ∈ L(Pλ, ω), the sequence ω−1(π1)ω

−1(π2) · · ·ω−1(πp) is a linear extension
of Pλ. Let ψ(π) be the tableau of shape λ by filling the square ω−1(πk) with k. Since
ω is column strict, it is readily to see that ψ(π) is a standard Young tableau and ψ is
a bijection. Furthermore, k is a descent in π if and only if k is a descent in ψ(π). In
fact, suppose that k and k + 1 are in the square (x, y) and (x′, y′) then πk > πk+1 implies
that x < x′, that is, k + 1 appears in a lower row of ψ(π) than k. For example, taking
π = 4215673 and the labeling ω showing in the Figure 3.2, we obtain the standard Young
tableau ψ(π).

ω = 4 5 6 7

2 3

1

, π = 4215673 7→ ψ(π) = 1 4 5 6

2 7

3

Figure 3.2: Bijection between permutations in L(Pλ, ω) and standard Young tableaux of
shape λ for a given labeling ω.

Now we can give a proof of Theorem 3.1.
Proof of Theorem 3.1. This follows from Theorem 2.1 and Corollary 3.3.

As an immediate corollary of Theorem 3.1, we obtain the following result, which gives
an affirmative answer to Kirillov’s conjecture.

Corollary 3.4. The rectangular Narayana polynomial N(n,m; t) is unimodal for any m
and n.
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