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Abstract

This paper explores the orbit structure and homomesy (constant averages over
orbits) properties of certain actions of toggle groups on the collection of indepen-
dent sets of a path graph. In particular we prove a generalization of a homomesy
conjecture of Propp that for the action of a “Coxeter element” of vertex toggles,
the difference of indicator functions of symmetrically-located vertices is 0-mesic.
Then we use our analysis to show facts about orbit sizes that are easy to conjecture
but nontrivial to prove. Besides its intrinsic interest, this particular combinatorial
dynamical system is valuable in providing an interesting example of (a) homomesy
in a context where large orbit sizes make a cyclic sieving phenomenon unlikely to
exist, (b) the use of Coxeter theory to greatly generalize the set of actions for which
results hold, and (c) the usefulness of Striker’s notion of generalized toggle groups.

Keywords: Burnside’s Lemma, composition, Coxeter element, homomesy, inde-
pendent set, involution, orbit, path graph, promotion, rowmotion, toggle group,
zigzag poset

1 Introduction

The past several years have seen renewed interest in the area of dynamical algebraic
combinatorics, where one considers group actions on sets of discrete combinatorial objects
and looks for interesting properties of their orbits or orders. These include such actions
as promotion (on Young tableaux or posets) and rowmotion of posets, but there are many
others. Many of these can be built up as a sequence of simple involutions, as is the main
action we study here on the collection of independent sets of a path graph.

Our goal is to understand the orbit structure and homomesy (constant averages over
orbits) of this discrete dynamical system. In particular we prove a conjecture of Propp
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that, with respect to the action “toggle once at each vertex from left to right”, the dif-
ference of indicator functions of symmetrically-located vertices is 0-mesic (Theorem 2.9).
By leveraging some basic theory of Coxeter groups, we generalize this result to apply to
any Coxeter element in the toggle group. Our analysis allows us to deduce facts about
orbit sizes that are apparent from the numerical data, but seem difficult to prove directly.

This particular combinatorial dynamical system serves as a valuable case study in sev-
eral respects. First, it provides an interesting example of the homomesy phenomenon in a
context where unwieldy orbit sizes suggest the lack of a natural cyclic sieving phenomenon
(CSP) in the sense of Reiner, Stanton, and White [RSW04]. Many combinatorial dynam-
ical systems that support a CSP also have natural homomesic statistics and vice versa,
though there appears to be no direct connection between the two (even in specific cases).

Second, by taking a Coxeter theoretic approach, we are able to greatly generalize the
set of actions for which our results hold, from the specific action of successively toggling
at each vertex to toggling once per vertex in an arbitrary order (Subsection 2.3).

Third, this combinatorial dynamical system displays the usefulness of Striker’s notion
of generalized toggle groups [Str16] to settings beyond that of posets. Although there is an
equivariant bijection (Proposition 5.6) between the action we study on independent sets
and the action of promotion on zigzag posets, it is much easier to establish the homomesy
in the former setting first, then translate it to the latter setting.

We now describe the setting and background necessary to understand the problem.

Definition 1.1. Let Pn denote the path graph with vertex set [n] := {1, 2, . . . , n} and
edge set {{i, i+ 1} : i ∈ [n− 1]}.

Example 1.2. The path graph with seven vertices is

1 2 3 4 5 6 7
.

Definition 1.3. An independent set of a graph is a subset of the vertices that does
not contain a pair of adjacent vertices. Let In denote the set of independent sets of Pn.

Example 1.4. The set of vertices {1, 4, 6} represented

1 2 3 4 5 6 7

is an independent set of P7, but {1, 4, 5, 6} represented

1 2 3 4 5 6 7

is not. In both of these examples, hollow dots refer to vertices of P7 not in the subset.

Although we sometimes write independent sets as subsets of [n] := {1, 2, . . . , n} as
above, it may not be obvious in that notation what the underlying value of n is. Another
notation that is often more convenient for an independent set is its binary representa-
tion, in which the bit in position i of S is 0 if i 6∈ S and 1 if i ∈ S. For example 0010010
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represents the independent set {3, 6} of P7. Thus In can be viewed as the set of length n
binary strings that do not contain the subsequence 11 (which would indicate the inclusion
of two adjacent vertices). It is well-known and easy to verify that the cardinality of In is
a Fibonacci number.

In Section 2, we introduce the toggle group Tn on In, which is generated by basic
involutions called toggles. The notion of toggle groups goes back to work of Cameron and
Fon-der-Flaass, who introduced toggles on order ideals of a poset [CF95]. More recently,
Striker has studied toggle groups in a more general setting [Str16]. Specifically, given a
“ground” set X and a fixed set of “allowed” subsets L ⊆ 2X , each element x ∈ X has an
associated toggle which removes or inserts x into any given set in L provided the resulting
set is still in L, and otherwise does nothing. In our situation the ground set is [n] and the
set of allowed subsets of [n] is In.

Our main results are a proof of a conjecture of Propp (Theorem 2.9) and a general-
ization of it (Corollary 2.31). These theorems give examples of the homomesy (Greek for
“same middle”) phenomenon, introduced by Propp and the second author in [PR15] and
defined as follows.

Definition 1.5. Suppose we have a set S, an invertible map w : S → S such that every
w-orbit is finite, and a function (“statistic”) f : S → K, where K is a field of characteristic
0. Then we say the triple (S, w, f) exhibits homomesy if there exists a constant c ∈ K
such that for every w-orbit O ⊆ S,

1

#O

∑
x∈O

f(x) = c.

In this case, we say that the function f is homomesic with average c, or c-mesic,
under the action of w on S.

Some early isolated examples of homomesy exist in the literature, notably a conjecture
of Panyushev [Pan09, Conjecture 2.1(iii)] for the rowmotion operator acting on antichains
in positive root posets. This was proven by Armstrong, Stump, and Thomas [AST13],
but investigation of homomesy as a widespread phenomenon is more recent. Examples
now include cyclic actions on partitions, Suter’s action on Young diagrams, rowmotion
and promotion of order ideals, Lyness 5-cycles (which has strong connections to cluster
algebra theory), and certain toggling actions for noncrossing partitions [EP13, EFGJMPR,
Had16, PR15, Rob16, SW12, Str15].

Although it is a new area of research, the homomesy phenomenon has been discovered
in a wide variety of combinatorial dynamical systems. Most of the initially proven homo-
mesy results were for systems in which the order of the map was known. In fact, in many
cyclic actions where homomesy is present, one also finds the cyclic sieving phenomenon
of Reiner, Stanton, and White [RSW04]. (See also Sagan’s more leisurely exposition of
the basic ideas and examples [Sag11].) There have long been conjectured homomesies for
maps with unpredictable orbit sizes, but the first such proven result came out of a team
(including the first author) assembled at an AIM workshop [EFGJMPR]. In this paper,
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we eventually discuss how to determine the sizes of the orbits under our maps, but they
do not divide a number that is easy to describe without listing all of them.

To prove Propp’s original conjecture (Theorem 2.9), we associate an orbit board to each
orbit, and partition the ones in the orbit board into snakes which begin in the left column
and end in the right column. Our technique was inspired by Haddadan’s proof that the
“winching” action on k-element subsets of [n] exhibits homomesy (another conjecture of
Propp) [Had16]. In addition to proving homomesy, the snake representations lead to many
other results, e.g., on the total number of orbits or the existence of orbits of certain sizes,
the latter being the focus of Section 4. We first consider a specific action ϕ ∈ Tn which
toggles left to right, but most of our results can be generalized to certain other actions in
Tn named Coxeter elements. This is the focus of Subsection 2.3. We use some theory of
Coxeter groups to explain why we can extend proven results for ϕ to other actions, and
this is why we do not start with the more general results.

In Section 5, we explain how our results can be restated in terms of toggling order
ideals of zigzag posets via an equivariant bijection η : In → J(Zn), where J(Zn) is the set
of order ideals of the zigzag poset Zn. We describe the connections with the well-studied
promotion and rowmotion operators on the set of order ideals of a poset [SW12]. However,
the proofs of our main results are much easier to obtain by working with toggles on In as
opposed to those on J(Zn), which shows the significance of considering toggle groups in
Striker’s generalized setting, instead of the original setting of toggling order ideals from
Cameron and Fon-der-Flaass. In fact, the independent sets of Pn are the antichains of Zn
in disguise. In [Str16, §3.3, 3.6], Striker discusses toggles on antichains of posets and on
independent sets of graphs. In [Jos17], the first author describes an explicit isomorphism
between the toggle groups of antichains and of order ideals for a general poset.

2 Toggle Maps on Independent Sets

In this section we state and prove our main homomesy results. Throughout this paper
we assume n > 2. While some of our results also hold for n = 1, many do not, and we
are not concerned with this trivial case.

2.1 Definitions and main results

We now define the toggles on In.

Definition 2.1. For every i ∈ [n], define τi : In → In, the toggle at vertex i, in the
following way. If i ∈ S, τi removes i from S, which still results in an independent set. If
i 6∈ S, then τi(S) adds i to S assuming the resulting set is still independent, and otherwise
does nothing. Formally,

τi(S) =


S \ {i} if i ∈ S,
S ∪ {i} if i 6∈ S and S ∪ {i} ∈ In,
S if i 6∈ S and S ∪ {i} 6∈ In.
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Since the τi operate to the left of their arguments, we use the standard convention
that a product of toggles is performed from right to left. It is clear that each τi is an
involution, i.e., τ 2

i is the identity. We characterize the order of products of two toggles in
the following propositions.

Corollary 2.2. The toggles τi and τj commute if and only if |i− j| 6= 1.

Proof. If i = j, then τi and τj clearly commute.
Suppose |i− j| > 1. Then whether or not i is in an independent set has no effect on

whether or not j can be in that set and vice versa. So τiτj = τjτi.
Suppose |i− j| = 1. Then τi(τj(Ø)) = {j} and τj(τi(Ø)) = {i}, so τiτj 6= τjτi. �

Corollary 2.3. When n > 3, the order of the map τi ◦ τj is
1 if i = j,
2 if |i− j| > 2,
6 if |i− j| = 1.

Proof. The proofs of the first two cases are straightforward since toggles are involutions.
Suppose |i−j| = 1. Since τi and τj are involutions, (τiτj)

−1 = τjτi, so τiτj has the same
order as τjτi. Thus, we may assume without loss of generality that i < j (so j = i + 1).
To show that the order of τiτi+1 is 6, we will show that there is an orbit of size 2, an orbit
of size 3, and no orbit with size greater than 3.

Note that the toggles τi and τi+1 can only affect whether i and/or i+ 1 are in a given
set, and no independent set can contain both. Thus, every orbit under the action of τiτi+1

can at the very most contain S, S ∪{i}, S ∪{i+ 1}, for some S ∈ In. Therefore all orbits
have size at most 3.

The orbit (Ø, {i+ 1}, {i}) has size 3. For i > 2, the orbit ({i− 1}, {i− 1, i+ 1}) has
size 2. If i = 1, the orbit ({3}, {1, 3}) has size 2. (This is why we needed n > 3, as the
map τ1τ2 on I2 has order 3, not 6.) �

Definition 2.4. Let SIn denote the symmetric group on In. The toggle group of In,
denoted Tn, is the subgroup of SIn generated by the τi toggles.

Definition 2.5. A particular element in Tn is ϕ := τn · · · τ2τ1, the map that toggles at
each vertex from left to right.

Example 2.6. In I5, ϕ(10010) = 01001 by the following steps:

10010
τ17−→ 00010

τ27−→ 01010
τ37−→ 01010

τ47−→ 01000
τ57−→ 01001.

Note that ϕ−1 = τ1τ2 · · · τn, which applies the toggles right to left.

Definition 2.7. Given a set S ∈ In and j ∈ [n], define χj(S) to be the indicator function
of vertex j in S. That is, χj(S) is the jth digit of the binary representation of S.

Example 2.8. χ1(10010) = 1, χ2(10010) = 0, χ3(10010) = 0, χ4(10010) = 1,
χ5(10010) = 0.
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1 2 3 4 5 6 7

S0 1 0 1 0 1 0 0

S1 0 0 0 0 0 1 0

S2 1 0 1 0 0 0 1

S3 0 0 0 1 0 0 0

S4 1 0 0 0 1 0 1

S5 0 1 0 0 0 0 0

S6 0 0 1 0 1 0 1

S7 1 0 0 0 0 0 0

S8 0 1 0 1 0 1 0

S9 0 0 0 0 0 0 1

Total 4 2 3 2 3 2 4

Figure 1: The orbit under the action ϕ on I7 containing S = 1010100.

One of our main theorems to be proven later is the following conjecture of Propp. We
will later extend this result to actions in Tn that are “Coxeter elements”, i.e., products of
every τi exactly once in some order (Corollary 2.31).

Theorem 2.9 (Propp’s conjecture). Under the action of ϕ on In, χj−χn+1−j is 0-mesic
for every 1 6 j 6 n.

Definition 2.10. Given an independent set S ∈ In and w ∈ Tn, we define the orbit
board for S and w as follows. Let Si = wi(S) for i ∈ Z and for any j ∈ [n], let
S(i, j) = 1 if j ∈ Si and S(i, j) = 0 if j 6∈ Si. (In particular, if j < 1 or j > n, then
S(i, j) = 0. These are “out-of-bounds” positions not shown when we display the orbit
board.)

Example 2.11. The orbit board for the orbit containing S = 1010100 ∈ I7 under the
action of ϕ is shown in Figure 1. This is an orbit of size 10, so S10 = ϕ10(S) = S. Tech-
nically, the orbit board is vertically infinite but periodic, so we only show S0, S1, . . . , S9

and view it as living on a cylinder. The element in row i and column j is S(i, j), with
i ∈ [0, `− 1] and j ∈ [n], where ` is the length of S’s orbit. Notice that the column-sum
vector, (4, 2, 3, 2, 3, 2, 4), is palindromic, illustrating Theorem 2.9, since χj − χn+1−j has
total 0 (and thus average 0) across this orbit for each j.

A homomesy result which is much simpler to prove is the following.

Theorem 2.12. For n > 2, under the action of ϕ on In, the statistics 2χ1 + χ2 and
χn−1 + 2χn are both 1-mesic.

The reader can easily check that this holds for the orbit in Figure 1. This result can
be obtained as a corollary of [EFGJMPR, Theorem 7.5], but we include another proof
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here. As with Theorem 2.9, we will generalize this theorem to actions by general Coxeter
elements of toggles in Subsection 2.3.

Proof. We prove that 2χ1 + χ2 is 1-mesic, as the proof for χn−1 + 2χn is analogous.
The first two bits of any independent set S are either 10, 01, or 00.
If S begins with 10, then when applying ϕ to S, the first toggle τ1 removes the first

vertex so the first digit is 0. Then τ2 can sometimes insert the second vertex and sometimes
cannot, depending on whether 3 ∈ S. Thus, ϕ(S) begins either with 01 or 00.

If S begins with 01, then when applying ϕ to S, we leave the first vertex out and then
remove the second vertex. So ϕ(S) begins with 00.

If S begins with 00, then when applying ϕ to S, we insert the first vertex and then
leave the second vertex out. So ϕ(S) begins with 10.

Thus, when repeatedly applying ϕ, the first two digits are partitioned into cyclic
patterns of 10→ 01→ 00 or 10→ 00. (An orbit may contain both types of patterns.) As
2χ1 +χ2 has average 1 across both types of patterns, it will across every orbit as well. �

2.2 Proof of Propp’s original conjecture

Our next goal is to prove Theorem 2.9 via a partitioning of the orbit board into “snakes”.
We first note what happens in the special case where symmetry of independent sets under
reversal makes the result obvious.

Definition 2.13. The reverse of a word is that word written in the reverse order. For
example, the reverse of 101000010 is 010000101. Denote the reverse of an independent
set S as Srev. Writing S as a set,

Srev = {n+ 1− i|i ∈ S}.

The following is clear because the inverse of ϕ is the function that composes toggling
in the reverse order.

Corollary 2.14. For any S, (Srev)rev = S and ϕ(Srev) = (ϕ−1(S))
rev

.

Definition 2.15. A symmetrical independent set is one that is its own reverse. For
example, 010010 is symmetrical.

Definition 2.16. A ϕ-orbit O is reversible if for some S ∈ O, Srev is also in O.

For a reversible orbit O, such as in Example 2.11, there exists one S ∈ O whose reverse
is also in O. Then by Proposition 2.14, every set in O has its reverse in O. So it is clear
that χj − χn+1−j has average zero across any reversible orbit. For n > 10, however, there
are ϕ-orbits on In that are not reversible, so it is surprising a priori that Theorem 2.9
holds in general.

Corollary 2.17. Any ϕ-orbit containing a symmetrical independent set is reversible. An
orbit contains at most two symmetrical independent sets (but even a reversible orbit may
not contain any).
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Proof. For an orbit O containing a symmetrical independent set S, Srev = S is in the
orbit, so O is reversible.

Now assume that an orbit O contains at least two different symmetrical independent
sets S and T . Then there exists m > 1 such that ϕm(S) = T and let m be the least
number that satisfies this. Then from Proposition 2.14, we have that

ϕ−m(S) = ϕ−m (Srev) = (ϕm(S))rev = T rev = T.

Thus S = ϕm(T ), which implies ϕ2m(S) = S. Therefore, O has 2m sets, since m was
chosen to be minimal. Let U 6= S, T be another set in O. Then U = ϕk(S) for some
k ∈ [2m− 1] with k 6= m, and so

ϕ−k(S) = ϕ−k (Srev) =
(
ϕk(S)

)rev
= U rev.

Since O has 2m sets, we cannot have ϕ−k(S) = ϕk(S), so U 6= U rev. Thus, by definition
U is not symmetrical, so S and T are the only symmetrical sets in O. �

Lemma 2.18. Consider the action of ϕ.

1. When S(i, j) = 1 and j 6= n, either S(i, j + 2) = 1 or S(i+ 1, j + 1) = 1, and never
both.

2. When S(i, j) = 1 and j 6= 1, either S(i, j − 2) = 1 or S(i− 1, j − 1) = 1, and never
both.

3. If S(i, j) = 1, then S(i, j − 1) = S(i, j + 1) = S(i− 1, j) = S(i+ 1, j) = 0.

4. If S(i, j) = 1, then S(i+ 1, j − 1) = S(i− 1, j + 1) = 0.

Proof. (3) is clear because each Si is an independent set, and if S(i, j) = 1, then j ∈ Si,
so j 6∈ ϕ(Si) = Si+1.

Now we prove (1). If j ∈ Si, then j 6∈ Si+1, so j + 1 ∈ Si+1 if and only if j + 2 6∈ Si.
The proof of (2) is analogous to that of (1) because ϕ−1 applies the toggles in the

reverse order.
To prove (4), assume j > 2 with S(i, j) = 1. Then j ∈ Si. Then after applying

τj−1 · · · τ1 to Si, we cannot have both j − 1 and j in the same independent set. So
S(i+ 1, j − 1) = 0. Thus if S(i− 1, j + 1) = 1, then S(i, j) = 0 which is a contradiction,
so S(i− 1, j + 1) = 0. �

From Lemma 2.18(1), given a 1 in the orbit board (outside of the rightmost column),
there is another 1 either in the position two spaces to the right, or the position one space
diagonally right and down. From Lemma 2.18(2), for any 1 in the orbit board (outside
of the leftmost column), there is another 1 either in the position two spaces to the left,
or the position one space diagonally left and up. Therefore, the ones in the orbit board
can be partitioned into sequences, called snakes, that begin in the left column and end
in the right column. For any 1 in the snake, the next 1 is located either two spaces to the
right of it, or in the position one space diagonally right and down.
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1 2 3 4 5 6 7

S0 1 0 1 0 1 0 0

S1 0 0 0 0 0 1 0

S2 1 0 1 0 0 0 1

S3 0 0 0 1 0 0 0

S4 1 0 0 0 1 0 1

S5 0 1 0 0 0 0 0

S6 0 0 1 0 1 0 1

S7 1 0 0 0 0 0 0

S8 0 1 0 1 0 1 0

S9 0 0 0 0 0 0 1

Total 4 2 3 2 3 2 4

Figure 2: The orbit from Figure 1 with colors representing the snakes

Example 2.19. The orbit board from Figure 1, with colors representing the different
snakes, is shown in Figure 2.

Therefore, to know where the ones in the orbit board are, it suffices to analyze the
snakes. To each ϕ-orbit on In, we will associate an equivalence class of compositions of
n− 1 into parts 1 and 2, with each composition representing the snakes.

Definition 2.20. A composition of n ∈ Z+ is a sequence of positive integers whose
sum is n. Two compositions of n are said to be cyclically equivalent if one is a cyclic
rotation of the other. Otherwise, the compositions are cyclically inequivalent.

Example 2.21. 21121, 11212, 12121, 21211, and 12112 are cyclically equivalent compo-
sitions of 7.

To associate a composition of n − 1 to any given snake in a ϕ-orbit of In, a step of
two positions to the right corresponds to a 2, and a step of one position diagonally right
and down corresponds to a 1. Thus, we get a composition of n − 1 because we start in
the leftmost column and end in the rightmost column.

Definition 2.22. To associate a composition of n − 1 to any given snake in a ϕ-orbit
of In, a step of two positions to the right corresponds to a 2, and a step of one position
diagonally right and down corresponds to a 1. Thus, we get a composition of n−1 because
we start in the leftmost column and end in the rightmost column. This is called the snake
composition of the snake.

In Example 2.19, the red snake has snake composition 2211, the purple snake has
snake composition 2112, the green snake has composition 1122, and the blue snake has
composition 1221.
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The following lemmata further constrain the possible pattern of ones in an orbit board.
They will be used in the proof of Theorem 2.25.

Lemma 2.23. Under the action of ϕ, suppose S(i, j) = 1 and S(i+ 2, j − 1) = 1.

1. If S(i, j + 2) = 1, then S(i+ 2, j + 1) = 1.

2. If S(i+ 1, j + 1) = 1, then S(i+ 3, j) = 1.

3. If j = n, then S(i+ 3, j) = S(i+ 3, n) = 1.

Proof. Without loss of generality we may assume i = 0, as we can start our orbit board
anywhere. This means that j ∈ S0 and j − 1 ∈ S2.

1. In this scenario, j + 2 ∈ S0, and we wish to conclude that j + 1 ∈ S2. By
Lemma 2.18(1), S(0, j) = S(0, j + 2) = 1 gives S(1, j + 1) = 0. Thus j + 1 6∈ S1.
Also, j + 2 ∈ S0 implies j + 2 6∈ S1. And j − 1 ∈ S2 implies j 6∈ S2. Therefore,
when applying toggles to S1, j + 1 gets toggled in, so j + 1 ∈ S2.

2. In this scenario, j + 1 ∈ S1, and we wish to conclude that j ∈ S3. Since j − 1 ∈ S2,
we can use Lemma 2.18(1) to determine that either j + 1 ∈ S2 or j ∈ S3. However,
j + 1 6∈ S2 because j + 1 ∈ S1. Therefore, j ∈ S3.

3. Since S(2, n − 1) = 1, either S(2, n + 1) = 1 or S(3, n) = 1 from Lemma 2.18(1).
Only the second scenario is possible so S(3, n) = 1. �

Lemma 2.24. Under the action of ϕ, suppose S(i, j) = 1 and S(i+ 2, j − 2) = 1.

1. If S(i, j + 2) = 1, then S(i+ 2, j) = 1.

2. If S(i+ 1, j + 1) = 1, then S(i+ 3, j − 1) = 1.

3. If j = n, then S(i+ 2, j) = S(i+ 2, n) = 1.

Proof. As in the proof of the previous lemma, assume i = 0 without loss of generality.
This means that j ∈ S0 and j − 2 ∈ S2.

1. In this scenario, j + 2 ∈ S0, and we wish to conclude that j ∈ S2. Since S(0, j) =
S(0, j + 2) = 1, we conclude from Lemma 2.18(1) that S(1, j + 1) = 0 and so
j + 1 6∈ S1. Note that j − 2 ∈ S2 gives j − 1 6∈ S2. Also j ∈ S0 gives j 6∈ S1. Thus,
when we apply toggles left to right starting with S1, we will be able to add vertex
j to the set. Thus, j ∈ S2.

2. In this scenario, j + 1 ∈ S1, and we wish to conclude that j − 1 ∈ S3. Since
j + 1 ∈ S1, it follows that j 6∈ S2 by Lemma 2.18(4). Since S(2, j − 2) = 1 and
S(2, j) = 0, we have S(3, j − 1) = 1 by Lemma 2.18(2).

3. Since n ∈ S, we have n 6∈ S1. Also, n− 2 ∈ S2 implies n− 1 6∈ S2. Thus, when we
reach the last vertex when applying ϕ to S1, we insert n. So n ∈ S2. �
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1 2 3 4 5 6 7 8 9 10

S0 1 1 1

S1 1

S2 1 1

S3 1

Figure 3: The ones in the orbit board are an example snake. In Example 2.26, we describe
how to generate an entire orbit from one snake.

Theorem 2.25. In a ϕ-orbit board, consider a snake starting on the Si line. Let c be the
snake’s composition. Consider the least i′ > i for which S(i′, 1) = 1. (This is where the
“next” snake begins.)

1. If c starts with 1, then i′ = i+ 3.

2. If c starts with 2, then i′ = i+ 2.

3. The composition for the snake starting on the Si
′

line is the left cyclic rotation of c.

Proof. Without loss of generality, assume i = 0. Let c′ be the composition for the snake
that starts on line Si

′
.

If c starts with 1, then S(0, 1) = S(1, 2) = 1. Then 1 6∈ τ1(S1) because 2 ∈ S1. Then
applying τ2 to S1 removes 2 from the set. Therefore 1, 2 6∈ S2, and thus we insert 1
when applying τ1 to S2. So S(3, 1) = 1, which proves (1). The part of c after the initial
1 describes the sequence of moves for the original snake from S(1, 2) to the rightmost
column. Since S(1, 2) = S(3, 1) = 1, this same sequence of moves describes the snake
that starts on line S3 from the leftmost column up to column n− 1, by Lemma 2.23(1,2).
Then the snake with composition c′ must finish with a diagonal step, so c′ ends with 1.
Thus c′ is formed from c by moving the initial 1 to the end. This proves (3) for the case
where c begins with 1.

Otherwise c starts with 2, so S(0, 1) = S(0, 3) = 1. By Lemma 2.18(3), S(1, 1) = 0
and by Lemma 2.18(1), S(1, 2) = 0. Since 1, 2 6∈ S1, we insert 1 when applying τ1 to
S1, so S(2, 1) = 1, which proves (2). The part of c after the initial 2 describes the
sequence of moves for the original snake from S(0, 3) to the rightmost column. Since
S(0, 3) = S(2, 1) = 1, this same sequence of moves describes the snake that starts on line
S2 from the leftmost column up to column n−2, by Lemma 2.24(1,2). Suppose the snake
with composition c ends on line Sk, i.e. S(k, n) = 1. Then the snake starting on line S2

contains S(k + 2, n− 2), so by Lemma 2.24(3), S(k + 2, n) = 1. Thus c′ is formed from c
by moving the initial 2 to the end. This proves (3) for the case where c begins with 2. �

Example 2.26. We show how knowing one snake determines an entire orbit. Suppose
we are working in I10 and we have a snake given by the composition 221121. Then we
immediately have the part of the orbit board shown in Figure 3.
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1 2 3 4 5 6 7 8 9 10

S0 1 0 1 0 1 0 0 1 0 1

S1 0 0 0 0 0 1 0 0 0 0

S2 1 0 1 0 0 0 1 0 1 0

S3 0 0 0 1 0 0 0 0 0 1

S4 1 0 0 0 1 0 1 0 0 0

S5 0 1 0 0 0 0 0 1 0 1

S6 0 0 1 0 1 0 0 0 0 0

S7 1 0 0 0 0 1 0 1 0 1

S8 0 1 0 1 0 0 0 0 0 0

S9 0 0 0 0 1 0 1 0 1 0

S10 1 0 1 0 0 0 0 0 0 1

S11 0 0 0 1 0 1 0 1 0 0

S12 1 0 0 0 0 0 0 0 1 0

S13 0 1 0 1 0 1 0 0 0 1

S14 0 0 0 0 0 0 1 0 0 0

Total 6 3 4 4 4 4 4 4 3 6

Red snake: 221121

Purple snake: 211212

Orange snake: 112122

Green snake: 121221

Blue snake: 212211

Brown snake: 122112

Figure 4: The unique orbit containing the snake from Figure 3 is the orbit containing
S = 1010100101 (See Example 2.26).

Using Theorem 2.25, we know that the next snake begins on the S2 line, and has snake
composition 211212. This snake is shown in purple in Figure 4. Also by Theorem 2.25,
the next four snakes start on the lines have snake compositions 112122, 121221, 212211,
and 122112 respectively and begin on lines S4, S7, S10 and S12. These are shown in
orange, green, blue, and brown respectively in Figure 4.

Then the next snake starts on the S15 line and has snake composition 221121. However,
this is the snake we started with. Therefore S0 = S15. So this orbit has size 15, and the
ones in the brown snake on the S15 line go on the S0 line. Every other empty position is
a 0 by Lemma 2.18(3). The full orbit board is shown in Figure 4. Notice that this orbit is
not reversible, so there is no simple reason for the column-sum vector to be palindromic.

The following should be clear now.

Corollary 2.27. For any ϕ-orbit, the set of snake compositions is invariant under cyclic
rotation. Thus, there is a bijection between ϕ-orbits of In and cyclically inequivalent
compositions of n− 1 into parts 1 and 2. Also, an orbit O is reversible if and only if for
each snake in the orbit with snake composition c, there is also a snake in the orbit whose
snake composition is c in the reverse order.

We are now ready to prove Propp’s original conjecture.
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Proof of Theorem 2.9. We wish to prove that for any j ∈ [n], χj − χn+1−j is 0-mesic. It
suffices to show that for any O,∑

S∈O

χj(S) =
∑
S∈O

χn+1−j(S).

Since every snake in O starts in the leftmost column and ends in the rightmost column,
the orbit has the same number of ones in the leftmost column as in the rightmost column
of the (finite version of the) orbit board Thus,∑

S∈O

χ1(S) =
∑
S∈O

χn(S).

Each entry in the snake composition refers to how many columns we move right to get to
the next 1 in the snake. Thus for j > 1, there is a 1 in column j of the orbit board for
every snake composition that has an initial segment adding to j − 1. Similarly, there is
a 1 in column n + 1 − j of the orbit board for every snake composition that has a final
segment adding to j − 1. By cyclic rotation of snake compositions, we get that there are
the same number of snake compositions in O with an initial segment that adds to j − 1
as there are with a final segment that adds to j − 1. �

Example 2.28. For the orbit board in Example 2.26, there is a 1 in column 4 whenever
an initial segment of a snake’s composition adds to 3. There are two snake compositions
associated with this orbit that begin with 12. They are 121221 (green) and 122112
(brown). For each of these, there is a cyclic rotation of the snake composition that ends
with 12. These are 122112 (brown) and 211212 (purple). These give ones in column 7
(fourth column from the right).

Also there are two snake compositions associated with this orbit that begin with 21.
They are 211212 (purple) and 212211 (blue). For each of these, there is a cyclic rotation
of the snake composition that ends with 21. These are 121221 (green) and 221121 (red).
These give ones in column 7 (fourth column from the right).

If there were snake compositions for this orbit that began with 111 (the other way to
have an initial segment adding to 3), then by cyclic rotation, there would be just as many
that end in 111.

2.3 Coxeter groups and extending Propp’s conjecture

Theorems 2.9 and 2.12 are for orbits of the specific action ϕ = τn · · · τ2τ1. In this subsec-
tion, we describe how these homomesy results can be generalized to some other actions
in Tn, namely Coxeter elements.

Definition 2.29. An element w ∈ Tn is called a Coxeter element if it is a product of
τ1, τ2, . . . , τn, each used exactly once, in some order.

Theorem 2.30. Let w,w′ ∈ Tn be two Coxeter elements. Any statistic which is a linear
combination of the indicator functions χj is c-mesic under the action of w if and only if
it is c-mesic under the action of w′.
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Since ϕ is a Coxeter element in Tn, we use Theorem 2.30 to generalize Theorems 2.9
and 2.12 to the action of any Coxeter element. This is the following corollary.

Corollary 2.31. Let w ∈ Tn be a Coxeter element, and consider the action of w on In.

1. The statistic χj − χn+1−j is 0-mesic for every 1 6 j 6 n.

2. The statistics 2χ1 + χ2 and χn−1 + 2χn are both 1-mesic.

The rest of this section leads up to the proof of Theorem 2.30, which is near the end.
As Tn is generated by finitely many involutions, it is the quotient of a Coxeter group.

See [BB05] and [Pet15, Ch. 11–14] to learn about Coxeter groups and their connections
to combinatorics. The Coxeter group with presentation〈

τ1, τ2, . . . , τn|τ 2
i = 1, (τiτi+1)6 = 1, (τiτj)

2 = 1 for j > i+ 2
〉
,

for n > 3, is well known to be infinite. However, the toggle group Tn is a subgroup of
SIn and thus finite. Therefore Tn has extra relations in addition to the Coxeter relations
(τ 2
i = 1, (τiτi + 1)6 = 1, (τiτj)

2 = 1 for j > i + 2), so it is not a true Coxeter group.
Knowledge of Coxeter groups is not necessary to understand the rest of the paper, as we
explain the theory necessary to describe why we can extend the homomesy results for ϕ
to orbits of any Coxeter element w ∈ Tn. Even though Tn is not a true Coxeter group, we
borrow the term “Coxeter element” from Coxeter group theory.

The following is a brief summary of material in [EFGJMPR, §3,6], which describes
in detail how Coxeter group theory can be applied to toggle groups, and the connections
between conjugation of elements and homomesy. We discuss it in the context of Tn.

To each Coxeter element w ∈ Tn, we define an orientation of Pn. That is, we direct
each edge of the path graph in such a way that corresponds to our Coxeter element. To
do this, we direct the edge connecting i and i+ 1 in the direction of i if τi appears to the
right of τi+1 in an expression of w, and in the direction of i+ 1 if τi+1 appears to the right
of τi in an expression of w.

Example 2.32. The Coxeter element w = τ3τ4τ2τ6τ7τ5τ1 ∈ T7 corresponds to the follow-
ing orientation of P7.

1 2 3 4 5 6 7

While w has other representations as a product of toggles, each used exactly once,
they are all found by taking the expression τ3τ4τ2τ6τ7τ5τ1 and applying the commutativity
relations τiτj = τjτi if |i− j| > 2. For example, w = τ3τ2τ6τ4τ5τ7τ1, found by moving τ4 to
the right of τ2τ6 and swapping the order of τ5 and τ7. Since applying the commutativity
relations does not change the relative order of any pair τi, τi+1, this does not change the
orientation of any edge. Thus, the orientation of Pn corresponds uniquely to the Coxeter
element, and this orientation is well-defined.
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Shi showed that Coxeter elements correspond uniquely to acyclic orientations of the
graph associated with a Coxeter group, where the vertices of the graph are the invo-
lution generators, and the edges of the graph are between pairs of noncommuting gen-
erators [Shi97, Proposition 1.3]. Since Pn already has no cycles, any orientation of it
corresponds to a unique Coxeter element in Tn, even though Tn is only the quotient of
a Coxeter group. Toggle maps corresponding to source vertices are called initial in w
because they can be brought to the left by the commutativity relations. Toggle maps cor-
responding to sink vertices are called final in w because they can be brought to the right
by the commutativity relations. Vertices that are neither sources nor sinks correspond to
toggles that can neither be brought to the left nor right in an expression of w (while using
every toggle exactly once).

Since the toggles are involutions, conjugating by an final (resp. initial) toggle τi of w
corresponds to moving it to the left (resp. right) of an expression for w. For example, τ5

is final in w = τ3τ2τ6τ4τ5τ7τ1, so conjugating by τ5 gives

τ5wτ5 = τ5(τ3τ2τ6τ4τ5τ7τ1)τ5

= τ5(τ3τ2τ6τ4τ7τ1τ5)τ5

= τ5τ3τ2τ6τ4τ7τ1.

This conjugation by a final element of w corresponds to changing a sink into a source in
the corresponding orientation of Pn. Conjugation by an initial element would correspond
to changing a source into a sink. If we were to conjugate w by τ4, which is neither initial
nor final, we would get τ4τ3τ2τ6τ4τ5τ7τ1τ4 which is not a Coxeter element.

H. and K. Eriksson showed that two Coxeter elements are conjugate if and only if we
can transform the orientation for one of them into the other by a sequence that changes
sinks into sources or vice versa [EE09]. This corresponds to a sequence of conjugations
by generators that are either initial or final; we call such conjugations admissible.

In the case of Tn, any two Coxeter elements are conjugate. This is because Tn has
generators τ1, τ2, . . . , τn satisfying τ 2

i = 1 and (τiτj)
2 = 1 when |i − j| > 1. Thus, any

Coxeter elements in Tn are conjugate [SW12, Lemma 5.1]. Not only that, but the proof
given by Striker and Williams shows that we can get from any Coxeter element to any other
one by a sequence of admissible conjugations. We describe their method for conjugating by
toggles to transform any Coxeter element w into ϕ = τn · · · τ2τ1. The method is slightly
modified here because we wish to transform w into τn · · · τ2τ1 not τ1τ2 · · · τn. Starting
with w, find the largest number k such that τk is final in w, then push τk to the right and
conjugate by τk. Repeat this until we arrive at ϕ = τn · · · τ2τ1.

Example 2.33. Let w = τ3τ4τ2τ6τ7τ5τ1 as in Example 2.32. Refer to Figure 5 for a
sequence of conjugations to transform w into ϕ and the corresponding orientations of Pn
at each step. By the process described above, ϕ = u−1wu where u = τ7τ5τ6τ7τ4τ5τ6τ7.

We are now ready for the proof of Theorem 2.30.

Proof of Theorem 2.30. As w and w′ differ by a sequence of admissible conjugations, it
suffices to consider the case where w′ differs from w by a single conjugation. Let w ∈ Tn
be a Coxeter element, τk initial or final in w, and w′ = τkwτk.
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τ3τ4τ2τ6τ7τ5τ1

= τ3τ4τ2τ6τ5τ1τ7
1 2 3 4 5 6 7

conj τ7

τ7τ3τ4τ2τ6τ5τ1

= τ7τ3τ4τ2τ6τ1τ5
1 2 3 4 5 6 7

conj τ5

τ5τ7τ3τ4τ2τ6τ1

= τ5τ7τ3τ4τ2τ1τ6
1 2 3 4 5 6 7

conj τ6

τ6τ5τ7τ3τ4τ2τ1

= τ6τ5τ3τ4τ2τ1τ7
1 2 3 4 5 6 7

conj τ7

τ7τ6τ5τ3τ4τ2τ1

= τ7τ6τ5τ3τ2τ1τ4
1 2 3 4 5 6 7

conj τ4

τ4τ7τ6τ5τ3τ2τ1

= τ4τ7τ6τ3τ2τ1τ5
1 2 3 4 5 6 7

conj τ5

τ5τ4τ7τ6τ3τ2τ1

= τ5τ4τ7τ3τ2τ1τ6
1 2 3 4 5 6 7

conj τ6

τ6τ5τ4τ7τ3τ2τ1

= τ6τ5τ4τ3τ2τ1τ7
1 2 3 4 5 6 7

conj τ7

τ7τ6τ5τ4τ3τ2τ1
1 2 3 4 5 6 7

Figure 5: A demonstration of how to write τ7τ6τ5τ4τ3τ2τ1 as a conjugation of τ3τ4τ2τ6τ7τ5τ1,
with the corresponding orientations of P7 at every step.
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We have the following commutative diagram.

S

τk(S)

w(S)

τk(w(S))

τk

w′

w

τk

Write a w-orbit O = (S0, S1, . . . , Sm−1), where as with the orbit board, Si = w(Si−1).
Consider the superscripts to be mod m, the size of the orbit, so S0 = Sm = w(Sm−1).
Then, via the commutative diagram above, O′ = (τk(S

0), τk(S
1), . . . , τk(S

m−1)) is a w′-
orbit. This creates a bijection between w-orbits and w′-orbits that preserves the orbit
sizes.

When j 6= k, χj(S
i) = χj(τk(S

i)) as τk can only change the value of χk, so∑
S∈O

χj(S) =
∑
S′∈O′

χj(S
′).

If τk is final in w, then it is the first toggle applied when performing w. Also τk
only appears once when applying w, since w is a Coxeter element. Thus, in this scenario
χk(τk(S

i)) = χk(S
i+1). So∑

S′∈O′
χk(S

′) = χk(S
1) + χk(S

2) + · · ·+ χk(S
m−1) + χk(S

0) =
∑
S∈O

χk(S).

Analogously, if τk is initial in w, then χk(τk(S
j)) = χk(S

j−1). Thus,∑
S′∈O′

χk(S
′) = χk(S

m−1) + χk(S
0) + χk(S

1) · · ·+ χk(S
m−2) =

∑
S∈O

χk(S).

Therefore, the sum of any χj is the same in O and O′. As these orbits have the same
size, the average of any χj is also the same across them. See Example 2.35. �

Remark 2.34. In general, conjugation does not preserve homomesy of statistics under the
respective maps. Theorem 2.30 describes only a specific scenario in which homomesy is
preserved, namely when the conjugation is admissible (as is the case for any two Coxeter
elements) and the statistic is a linear combination of the indicator functions χj. If we
were to find other types of homomesic statistics for orbits under one Coxeter element,
they would not necessarily remain homomesic under a different Coxeter element.

Example 2.35. Figure 6 contains an orbit under the action w = τ3τ4τ2τ6τ7τ5τ1 starting
with 1010010 and an orbit under the action of ϕ starting with 1010100. Notice that in
the sequence of admissible conjugations to go from w to ϕ, we conjugate by τ4 once, τ5

and τ6 each twice, and τ7 thrice, and each conjugation is by a final toggle, as described in
Example 2.33. As in the proof of Theorem 2.30, in the w-orbit board, if we slide columns
4, 5, 6, and 7 up by 1 row, 2 rows, 2 rows, and 3 rows respectively, we get the ϕ-orbit
board.
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1 2 3 4 5 6 7

S 1 0 1 0 0 1 0

w(S) 0 0 0 0 0 0 0

w2(S) 1 0 1 0 1 0 1

w3(S) 0 0 0 0 0 1 0

w4(S) 1 0 0 1 0 0 0

w5(S) 0 1 0 0 0 0 1

w6(S) 0 0 1 0 1 0 0

w7(S) 1 0 0 0 0 0 1

w8(S) 0 1 0 0 1 0 0

w9(S) 0 0 0 1 0 0 1

1 2 3 4 5 6 7

S ′ 1 0 1 0 1 0 0

ϕ(S ′) 0 0 0 0 0 1 0

ϕ2(S ′) 1 0 1 0 0 0 1

ϕ3(S ′) 0 0 0 1 0 0 0

ϕ4(S ′) 1 0 0 0 1 0 1

ϕ5(S ′) 0 1 0 0 0 0 0

ϕ6(S ′) 0 0 1 0 1 0 1

ϕ7(S ′) 1 0 0 0 0 0 0

ϕ8(S ′) 0 1 0 1 0 1 0

ϕ9(S ′) 0 0 0 0 0 0 1

Figure 6: Left: the orbit under the action of w = τ3τ4τ2τ6τ7τ5τ1 containing S = 1010010.
Right: the orbit under the action of ϕ containing S ′ = 1010100. See Example 2.35.

Remark 2.36. Notice that while conjugation in the toggle group preserves the correspond-
ing orbit structures (total number of orbits and multiset of orbit sizes) and that a sequence
of admissible conjugations preserves the homomesic property of any statistic that is a lin-
ear combination of the χj statistics, many other propositions we have made along the
way do not hold for generic Coxeter elements. In particular, any statement about which
independent sets are in a given orbit does not extend to general Coxeter elements. In the
orbit on the left in Figure 6, notice that parts 1, 2, and 4 of Lemma 2.18 are violated,
though part 3 holds for orbits under any Coxeter element by the same proof. Also no-
tice that the orbit contains four symmetrical independent sets, but contains independent
sets whose reverses are not also in the orbit. This shows that Proposition 2.17 does not
hold for arbitrary Coxeter elements. In fact, when n is odd, it can be shown that any
given orbit under the map τ2τ4 · · · τn−1τ1τ3τ5 · · · τn always either consists entirely of sym-
metrical independent sets or contains no symmetrical independent sets. This is because
τ1τ3τ5 · · · τn consists of entirely commuting toggles, as does τ2τ4 · · · τn−1. So by symmetry
τ1 acts as τn, and τ3 acts as τn−2, and so on.

3 Enumerating Independent Sets and ϕ-Orbits

In this section we present enumerative formulas for the numbers of ϕ-orbits and reversible
ϕ-orbits of In. Numerical data and the Online Encyclopedia of Integer Sequences led us
to a conjectured formula for the number of ϕ-orbits and connected them with binary
necklaces and bracelets. This also helped point us towards the snake-partition of orbit
boards used in the proof of Propp’s original conjecture in Section 2. Our main tools are
Burnside’s Lemma and some bijections.

The first proposition is well-known and easy to see directly from the defining recursion.
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Proposition 3.1. The number of independent sets in In is Fn+2, the (n+ 2)nd Fibonacci
number, with F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n > 2.

Proposition 3.2. Let k ∈ Z+.
(a) The number of symmetrical independent sets in I2k is Fk+1.
(b) The number of symmetrical independent sets in I2k−1 is Fk+2.

Proof. (a) By symmetry, k ∈ S if and only if k+1 ∈ S. This means neither k nor k+1 can
be in S, since S is independent. Therefore, the first k−1 vertices can be any independent
set, and the last k − 1 vertices is its reverse. Thus, the symmetrical sets in I2k are in
bijection with Ik−1, so the number of them is Fk+1.
(b) If the middle vertex k is not in the set, then the first k − 1 vertices can be any
independent set, and the last k − 1 vertices is its reverse. Therefore, there are #Ik−1 =
Fk+1 symmetrical independent sets of this type. If vertex k is in the set, then neither
k− 1 nor k+ 1 can be. Then the first k− 2 vertices can be any independent set, and the
last k − 2 vertices is its reverse. There are #Ik−2 = Fk symmetrical independent sets of
this type. Thus, the total number of symmetrical sets in I2k−1 is Fk + Fk+1 = Fk+2. �

To count the number of ϕ-orbits, there is a connection with binary necklaces, which
we now introduce.

Definition 3.3. As with compositions, two binary strings of length n are said to be
cyclically equivalent if one is a cyclic rotation of the other. Otherwise, the strings
are cyclically inequivalent. A binary necklace is an equivalence class of binary
strings under cyclic equivalence (i.e., under the action of the cyclic group Cn). A binary
bracelet of length n is an equivalence class of length n binary strings under the action of
the dihedral group Dn generated by cyclic rotation and reversal. The length of a binary
necklace or bracelet is the length of the any string in the equivalence class.

Example 3.4. There are six binary necklaces of length 4:
{0000},
{1000,0100,0010,0001},
{1100,1001,0011,0110},
{1010,0101},
{1110,1101,1011,0111}, and
{1111},
all of which are also binary bracelets. For n 6 5, we get the same equivalence classes
under Cn and Dn. For n = 6, there are 14 binary necklaces, but only 13 binary bracelets,
with the (distinct) C6-classes of 101100 and of 001101, which are reversals of one another,
combining into a single class under the D6-action [Slo16, Seq. A000029, A000031].

Now we use Burnside’s Lemma [Sta99, Lemma 7.24.5], to count length n binary neck-
laces and bracelets with no subsequence 11. For this we first need to count binary strings
that will contain no subsequence 11 even when the group action makes the first and last
elements adjacent.
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Lemma 3.5. The number of binary strings of length n with no subsequence 11 that do
not both start and end with 1 is Fn−1 + Fn+1, for n > 1.

Proof. This formula can be easily confirmed for n = 1 and n = 2, so assume n > 3. There
are two types of binary strings s:

Case 1: If s begins with 1, then it has the form 10 0, where the blank space
represents an independent set of Pn−3. So there are Fn−1 strings of this form.

Case 2: If s begins with 0, then it has the form 0 , where the blank space
represents an independent set of Pn−1. So there are Fn+1 strings of this form. �

Lemma 3.6 (Burnside’s Lemma). Let Y be a finite set and G a subgroup of SY . For
each w ∈ G, let Fix(w) = {y ∈ Y : w(y) = y} be the set of elements of Y fixed by w. Let
Y/G be the set of orbits of G. Then

#(Y/G) =
1

#G

∑
w∈G

# Fix(w).

Corollary 3.7. The number of binary necklaces of length n with no subsequence 11 is
given by [Slo16, Seq. A000358]:

1

n

∑
d|n

φ(n/d)(Fd−1 + Fd+1), (1)

where φ represents Euler’s totient function.

Proof. In the context of Burnside’s Lemma, G is the cyclic group Cn of order n and Y is
the set of binary strings of length n with no subsequence 11 that also do not both start
and end with 11. For any d|n, the number of elements of Y fixed by a group element of
order n/d in Cn is Fd−1 + Fd+1 by Lemma 3.5. By elementary group theory, there are
φ(n/d) elements of order n/d, and the result follows. �

Corollary 3.8. The number of binary bracelets of length n with no subsequence 11 is
given by

1

2

Fbn/2c+2 +
1

n

∑
d|n

φ(n/d)(Fd−1 + Fd+1)

 . (2)

This sequence appears as [Slo16, Seq. A129526].

Proof. The cases of n 6 4 can be computed case by case, so we assume n > 5. As above,
Y is the set of binary strings of length n with no subsequence 11 that also do not both
start and end with 1, but now G = Dn. By Burnside’s Lemma, the number of binary
bracelets with no subsequence 11 is

1

2n

∑
w∈Dn

# Fix(w) =
1

2n

( ∑
w reflection in Dn

# Fix(w) +
∑

w rotation in Dn

# Fix(w)

)

=
1

2n

 ∑
w reflection in Dn

# Fix(w) +
∑
d|n

φ(n/d)(Fd−1 + Fd+1)

 .
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The question now is what is fixed by a reflection? We split this into two cases.
Case 1: n odd. Here each reflection leaves exactly one point fixed. Without loss of

generality, assume that we are working with the reflection that reverses a string, which
fixes exactly the palindromic strings. Since our binary strings cannot both start and end
with 1, any palindromic string both begins and ends with 0.

Similar to the proof of Lemma 3.5, it is easy to show that there are F(n+1)/2 palindromic
strings with 0 in the center, and F(n−1)/2 with 1 in the center. Thus, there are F(n+1)/2 +
F(n−1)/2 = F(n+3)/2 strings fixed by a reflection.

Thus, in the odd n case, the number of binary bracelets with no subsequence 11 is

1

2n

nF(n+3)/2 +
∑
d|n

φ(n/d)(Fd−1 + Fd+1)

 =
1

2

F(n+3)/2 +
1

n

∑
d|n

φ(n/d)(Fd−1 + Fd+1)

 .

Case 2: n even. Here there are two types of reflections of a regular n-gon, those
that fix no vertices and those that fix two vertices.

For the n/2 reflections that fix no vertices, we assume without loss of generality that we
are working with the reflection that reverses a string, which fixes exactly the palindromic
strings. It is straightforward to show there are Fn/2 such strings.

For the n/2 reflections that fix two vertices, we assume without loss of generality that
we are working with the reflection that fixes the digits in positions 1 and n/2 + 1. There
are four possibilities, because the digits in positions 1 and n/2 + 1 can each be 0 or 1. It
is easy to show that there are Fn/2+1 such strings with 0 in both fixed positions, Fn/2−1

with 1 in both fixed positions, and 2Fn/2 with different values in the fixed positions.
Adding together the four possibilities, there are

Fn/2−1 + Fn/2 + Fn/2 + Fn/2+1 = Fn/2+1 + Fn/2 + Fn/2+1

= Fn/2+1 + Fn/2+2

such strings.
Thus, in the even n case, the number of binary bracelets with no subsequence 11 is

1

2n

n
2

(
Fn/2 + Fn/2+1 + Fn/2+2

)
+
∑
d|n

φ(n/d)(Fd−1 + Fd+1)


=

1

2

Fn/2+2 +
1

n

∑
d|n

φ(n/d)(Fd−1 + Fd+1)

 .

In both the odd and even cases, the formula holds. �

Corollary 3.9. The number of length n binary necklaces with no subsequence 11 which
are the same under reversal is Fbn/2c+2.

Proof. Let S be this number, and D the number of such necklaces which are not equal to
their reversals. Then S + D = (1) and S + 1

2
D = (2) (equations above). Eliminating D

gives the result. �
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Example 3.10. There are 10 binary necklaces of length 9 without the subsequence 11.
One representative from each of them is as follows: 000000000, 100000000, 101000000,
100100000, 100010000, 101010000, 100100100, 101010100, 101001000, 000100101. For
each of the last two, the reverse is not a cyclic rotation of itself, and thus not the same
necklace. These are the necklaces that do not count in Corollary 3.9. There are 8 = F6

other necklaces.

Theorem 3.11. There is a bijection between the set of binary necklaces of length n with
no subsequence 11, and cyclically inequivalent compositions of n with each part equal to 1
or 2. Therefore, by Proposition 3.7, the number of cyclically inequivalent compositions of
n with each part equal to 1 or 2 is 1

n

∑
d|n
ϕ(n/d)(Fd−1 + Fd+1) [Slo16, Seq. A000358].

Proof. Take a binary necklace of length n with no subsequence 11, and write it in the
form of a string s so the first character is 0, which exists because there is no subsequence
11. Then create a composition of n into parts 1 and 2, by replacing each occurrence of
01 in s with 2, and each occurrence of 0 in s not followed by 1 with a 1. For example

010010001 ←→ 212112.

To show that this bijection is well-defined, if we cyclically rotate the composition to
the left, we get a cyclically equivalent composition, but this corresponds to rotating the
string s to the left once or twice depending on if the first part of the composition is 1 or
2. Therefore, the new string is part of the same necklace. An example of this is shown
below. The strings in the necklace that begin with 1 have no corresponding composition.

010010001 ←→ 212112
100100010 ←→
001000101 ←→ 121122
010001010 ←→ 211221
100010100 ←→
000101001 ←→ 112212
001010010 ←→ 122121
010100100 ←→ 221211
101001000 ←→ �

Corollary 3.12. The number of cyclically inequivalent compositions c of n with each part
equal to 1 or 2, for which the reverse order of c is cyclically equivalent to c is Fbn/2c+2.

Proof. This follows easily from Corollary 3.9 and the proof of Theorem 3.11. �

Theorem 3.13. The total number of ϕ-orbits of In is 1
n−1

∑
d|(n−1)

φ((n−1)/d)(Fd−1+Fd+1).

The total number of reversible orbits is Fdn/2e+1.

Proof. Combine the bijection of Proposition 2.27 with Theorem 3.11 for orbits and with
Corollary 3.12, for reversible orbits. Note that b(n− 1)/2c+ 2 = dn/2e+ 1. �

A more user-friendly version of the latter formula is:
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1 2 3 4 5 6 7

S0 1 0 1 0 0 0 0

S1 0 0 0 1 0 1 0

S2 1 0 0 0 0 0 1

S3 0 1 0 1 0 0 0

S4 0 0 0 0 1 0 1

S5 1 0 1 0 0 0 0

S6 0 0 0 1 0 1 0

S7 1 0 0 0 0 0 1

S8 0 1 0 1 0 0 0

S9 0 0 0 0 1 0 1

Figure 7: The ϕ-orbit with snake composition 2121 has size 5 not 10 because of the
periodicity of the composition.

• The number of reversible orbits in I2k−1 is Fk+1.

• The number of reversible orbits in I2k is Fk+1.

4 Sizes of Orbits

In the initial data gathering, the authors observed several mysterious patterns in the sizes
of ϕ-orbits. For example, almost all of the orbits had size congruent to 1 − n mod 4
and certain orbit sizes like 4 and 6 never appeared at all (for any n). These mysteries
were also cleared up via the snake compositions of Section 2, which leads to a simple
characterization (Proposition 4.3) of the orbit size corresponding to a given composition.
From this we derive nontrivial consequences for the existence of orbits of a fixed sizes as
n varies, summarized for small sizes in Figure 8.

The basic idea uses Theorem 2.25: whenever the snake composition c contains a 2,
the next snake starts two positions down, and when a snake composition contains a 1,
the next snake starts three positions down. So the size of the orbit should be |c′|, where
c′ is obtained from c by replacing each 1 with a 3. For example, if c = 221121, then
c′ = 223323 is a composition of 15, which is the size of the orbit in Example 2.26.

This naive approach can fail, however, in the case where periodicity of c leads one to
create a “super-orbit” rather than an orbit, e.g., the orbit of I7 in Figure 7 given by snake
composition c = 2121. Here |c′| = 2 + 3 + 2 + 3 = 10, but S5 = S0 so the orbit actually
has size 5, and the board repeats itself. Therefore, given a snake composition such as
2121 made up entirely of a repeated segment (here 21), we must divide by the number of
times the smallest repeated segment repeats itself (here 2) to get the correct orbit size.

Definition 4.1. Call a composition c periodic if it consists entirely of adjacent copies of
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the same repeated substring. Given a composition c, let ψ(c) be the number of times the
smallest repeated segment repeats itself to make up c. If ψ(c) = 1, we call c aperiodic.

Example 4.2. The composition 21221 is aperiodic, but ψ(22122212) = 2 and ψ(222) = 3.

Corollary 4.3. Given a ϕ-orbit O containing snake composition c, let N1(c) be the number
of occurrences of 1 in c and N2(c) be the number of occurrences of 2 in c. Then the size

of the orbit O is 3N1(c)+2N2(c)
ψ(c)

.

Therefore, given any orbit size, we can characterize exactly for which n there is an
orbit of In with that size, and how many such orbits.

Corollary 4.4. There is an orbit of In of size 2 exactly when n is odd. In this case, the
orbit is unique.

Proof. The only composition of 2 into parts 2 and 3 is the composition 2. By Proposi-
tion 2.27, an orbit has size 2 if and only if a snake composition corresponding to the orbit
is of the form 222 · · · 2, with k 2s repeated in I2k+1. �

Example 4.5. For n odd, the two independent sets in a ϕ-orbit of In of size 2 are the
empty set and the set {1, 3, 5, . . . , n}, as shown in the following orbit board in I9.

1 2 3 4 5 6 7 8 9

S0 0 0 0 0 0 0 0 0 0

S1 1 0 1 0 1 0 1 0 1

Corollary 4.6. For any n > 2, there is a unique orbit of In of size 3.

Proof. The only composition of 3 into parts 2 and 3 is the composition 3. Therefore, a ϕ-
orbit has size 3 if and only if the corresponding snake composition has the form 111 · · · 1,
with k ones repeated in Ik+1. �

Example 4.7. The three independent sets S0, S1, S2 in the orbit of size 3 are the sets of
all elements of [n] congruent to 0, 1, 2 mod 3, respectively. An example of the orbit board
for this orbit of I7 is shown below.

1 2 3 4 5 6 7

S0 0 0 1 0 0 1 0

S1 1 0 0 1 0 0 1

S2 0 1 0 0 1 0 0

Corollary 4.8. For every n, there are no orbits of In of size 4 or 6.

Proof. The only composition of 4 into parts 2 and 3 is the composition 2 + 2. However,
this composition is periodic and therefore gives an orbit of size 2. Similarly, the only
compositions of 6 into parts 2 and 3 are 2 + 2 + 2 and 3 + 3, both periodic. These give
the orbits of size 2 and 3 respectively. �
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Aperiodic cyclically n > 2 for which
Orbit inequivalent compositions Corresponding snake In has an orbit
size m of m into parts 2 or 3 composition type of size m

2 2 222 · · · 2 n ≡ 1 mod 2
3 3 111 · · · 1 all n
4 none none none
5 3 + 2 1212 · · · 12 n ≡ 1 mod 3
6 none none none
7 3 + 2 + 2 122122 · · · 122 n ≡ 1 mod 5
8 3 + 3 + 2 112112 · · · 112 n ≡ 1 mod 4
9 3 + 2 + 2 + 2 12221222 · · · 1222 n ≡ 1 mod 7
10 3 + 3 + 2 + 2 11221122 · · · 1122 n ≡ 1 mod 6
11 3 + 3 + 3 + 2 11121112 · · · 1112 n ≡ 1 mod 5
11 3 + 2 + 2 + 2 + 2 1222212222 · · · 12222 n ≡ 1 mod 9
12 3 + 2 + 3 + 2 + 2 1212212122 · · · 12122 n ≡ 1 mod 8
12 3 + 3 + 2 + 2 + 2 1122211222 · · · 11222 n ≡ 1 mod 8

Figure 8: Classification of path graphs which give certain ϕ-orbit sizes

Corollary 4.9. For n > 2, there is an orbit of In of size 5 exactly when n ≡ 1 mod 3.
In this case, the orbit is unique.

Proof. The only compositions of 5 into parts 2 and 3 are 2 + 3 and 3 + 2, which are
cyclically equivalent. Therefore, an orbit has size 5 if and only if a snake composition
corresponding to the orbit is of the form 1212 · · · 12, with k total patterns of 12 repeated
(thus a composition of 3k). This snake composition is in an orbit of I3k+1. �

Example 4.10. The orbit board for the ϕ-orbit of I7 of size 5 is below.

1 2 3 4 5 6 7

S0 1 0 1 0 0 0 0

S1 0 0 0 1 0 1 0

S2 1 0 0 0 0 0 1

S3 0 1 0 1 0 0 0

S4 0 0 0 0 1 0 1

We can continue this classification for n > 2 as shown in Figure 8. For example In
has an orbit of size 7 if and only if n ≡ 1 mod 5, in which case the orbit is unique. An
orbit of size 11 exists if and only if n ≡ 1 mod 5 or n ≡ 1 mod 9, and this orbit is unique
except when n is both 1 mod 5 and 1 mod 9 (i.e., n ≡ 1 mod 45) in which case there exist
two such orbits. Also, In has an orbit of size 12 if and only if n ≡ 1 mod 8, in which case
there are always exactly two such orbits.

Corollary 4.11. For even n, the ϕ-orbit of In containing the empty set has size n+ 1.

the electronic journal of combinatorics 25(1) (2018), #P1.18 25



1 2 3 4 5 6

S0 0 0 0 0 0 0

S1 1 0 1 0 1 0

S2 0 0 0 0 0 1

S3 1 0 1 0 0 0

S4 0 0 0 1 0 1

S5 1 0 0 0 0 0

S6 0 1 0 1 0 1

Figure 9: The ϕ-orbit of I6 contaning Ø.

Proof. It is easy to see that for even n, ϕ(0000 · · · 00) = 1010 · · · 10 and ϕ2(0000 · · · 00) =
0000 · · · 01. This gives the first three rows of an orbit board, corresponding to aperiodic
snake composition 22 · · · 2︸ ︷︷ ︸

(n−2)/2

1, whose orbit size is 2n−2
2

+ 3 = n + 1. See Figure 9 for an

example of this orbit when n = 6. �

Theorem 4.12. Let O be an ϕ-orbit of In and c be a snake composition that appears in
O. If c is aperiodic, then the size of O is congruent to 1 − n mod 4. Furthermore, even
when c is periodic, the size of O divides an integer m ≡ 1 − n mod 4 for m 6 3(n − 1)
(where m depends on the orbit O).

Proof. Using the notation of Proposition 4.3, the size of O is 3N1(c)+2N2(c)
ψ(c)

. If c = 111 · · · 1︸ ︷︷ ︸
n−1

,

then
3N1(c) + 2N2(c) = 3(n− 1) ≡ 1− n mod 4.

Any other composition of n − 1 into parts 1 or 2 can be formed starting with 111 · · · 1
and replacing strings of 11 with 2. Each time a 11 in a snake composition is changed to a
2, the sum 3N1(c) + 2N2(c) is decreased by 4. Thus, 3N1(c) + 2N2(c) ≡ 1− n mod 4 and
is at most 3(n− 1). Thus, the size of O divides 3N1(c) + 2N2(c) and when c is aperiodic,
the orbit size is given by 3N1(c) + 2N2(c) ≡ 1− n mod 4. �

Corollary 4.13. For even n, every ϕ-orbit of In has odd size. Furthermore, when n ≡
3 mod 4, there exist no orbits with size divisible by 4.

Proof. Theorem 4.12 tells us that the size of any orbit O divides an integer m ≡ 1 −
n mod 4, which is odd for n even. Meanwhile, n ≡ 3 mod 4 forces m ≡ 2 mod 4, which
#O must divide. �

Corollary 4.14. When n is even, any reversible ϕ-orbit of In contains exactly one sym-
metrical independent set.

Proof. For a reversible orbit O and any S ∈ O, Srev is also in O. This partitions the
independent sets in O into pairs, with the only unpaired ones being the sets that satisfy
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S = Srev, i.e., the symmetrical independent sets. By Corollary 4.13, O has odd size so
there must be an odd number of symmetrical independent sets in O. By Proposition 2.17,
an orbit can contain at most two symmetrical independent sets, so O contains exactly one
symmetrical independent set. �

5 Connections with Order Ideals in Zigzag Posets

The original problem about independent sets is connected with other well-studied maps,
called promotion and rowmotion, on zigzag posets. Rowmotion was introduced as a
map on antichains of a poset in [BS74], while promotion was originally formulated by
Schützenberger in the context of standard Young tableaux [Sch63]. Promotion and row-
motion have both been studied in various settings by numerous authors. Here, we consider
them as maps on order ideals, as discussed by Striker and Williams [SW12].

Our main result is an equivariant bijection between the ϕ-action on In and the row-
motion action on order ideals of a zigzag poset. This allows us to carry over results from
the previous sections to the new context, which we now describe.

A partially ordered set (or poset for short) is a set P together with a binary relation
6 that is reflexive, antisymmetric, and transitive. (A reader unfamiliar with posets can
find the necessary background in Stanley’s text [Sta11, Ch. 3].) An order ideal of a
poset P is a subset I of P such that if x ∈ I and y 6 x in P , then y ∈ I. The set of order
ideals of P is denoted J(P ).

Definition 5.1. The zigzag poset with n elements, denoted Zn, is the poset consisting
of elements a1, . . . , an and relations a2i−1 < a2i and a2i+1 < a2i. (Such posets are also
called fence posets and are discussed in [Sta11, p. 367].)

The zigzag posets have Hasse diagrams that can be drawn in a zigzag formation, hence
the name. For example

a1

a2

a3

a4

a5

a6

Z6 = and

a1

a2

a3

a4

a5

a6

a7

Z7 =
.

The toggle group on J(Zn) is defined analogously to that of In. The main conceptual
difference is that while an element can always be toggled out of an independent set, the
same is not true for all elements in an order ideal of P .

Definition 5.2. The toggle ti : J(Zn)→ J(Zn) is defined as

ti(I) :=


I ∪ {ai} if ai 6∈ I and I ∪ {ai} ∈ J(Zn)
I \ {ai} if ai ∈ I and I \ {ai} ∈ J(Zn)
I otherwise

The toggle group of J(Zn), denoted Tog(Zn), is generated by the toggles ti for i ∈ [n].
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As with toggles on In, it is clear that t2i = 1 for any i ∈ [n]. The following is an
analogue of Proposition 2.2.

Corollary 5.3. Two toggles ti, tj ∈ Tog(Zn) commute if and only if |i− j| 6= 1.

Proof. When |i− j| > 1, ai and aj are incomparable (i.e., neither ai 6 aj nor aj 6 ai) so
inclusion of one of ai or aj cannot affect whether the other can be included. �

Two special elements of Tog(Zn) are promotion Pro = tn · · · t2t1 and rowmotion

Row =

{
tn−1tn−3 · · · t3t1tntn−2 · · · t2 if n is even
tntn−2 · · · t3t1tn−1tn−3 · · · t2 if n is odd

.

These maps have been studied on general posets by many authors. Rowmotion can be
defined for any poset, and promotion can be defined for any poset which can be embedded
as a rowed-and-columned poset (such as Zn) [SW12].

Next we define the equivariant bijection η that takes us between independent sets of
Pn and order ideals of Zn.

Corollary 5.4. The map η : In → J(Zn) defined below is a bijection:

η(S) := {ai | i ∈ [n], i odd, i 6∈ S} ∪ {ai | i ∈ [n], i even, i ∈ S}.

Proof. Note that for I ⊆ Zn to be an order ideal, it must satisfy the property that
whenever a2j is in I, so are a2j−1 and a2j+1 (or just a2j−1 if 2j = n).

Suppose a2j ∈ η(S). Then 2j ∈ S. Since S is independent, 2j − 1 and 2j + 1 are not
in S. So a2j−1 ∈ η(S) and (when 2j 6= n) a2j+1 ∈ η(S). Hence η(S) ∈ J(Zn). The inverse
of η is given by

η−1(I) = {i | i ∈ [n], i odd, ai 6∈ I} ∪ {i | i ∈ [n], i even, ai ∈ I}

which always produces an independent set for I ∈ J(Zn) by analogous reasoning. Thus η
is a bijection. �

Example 5.5. Let n = 7 and S = 1001010 = {1, 4, 6}. Then a1 6∈ η(S) and a3, a5, a7 ∈
η(S) because 1 ∈ S and 3, 5, 7 6∈ S. Also, a2 6∈ η(S) and a4, a6 ∈ η(S), since 2 6∈ S and
4, 6 ∈ S. This correspondence is shown below, where the hollow circles are included in
Z7 but not the order ideal η(S).

a1

a2

a3

a4

a5

a6

a7

η
7−→1001010

Corollary 5.6. For every i ∈ [n], η ◦ τi = ti ◦ η. Thus, η ◦ ϕ = Pro ◦η, making η an
equivariant bijection, as shown in the following commutative diagrams.
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In

In

J(Zn)

J(Zn)

τi

η

η

ti

In

In

J(Zn)

J(Zn)

ϕ

η

η

Pro

As with Tn, Tog(Zn) is the quotient of a Coxeter group, and it is clearly isomorphic
to Tn via Proposition 5.6. We define Coxeter elements analogously to Tn, and Pro and
Row are two examples of Coxeter elements in Tog(Zn).

Definition 5.7. A Coxeter element in Tog(Zn) is a product of each of the n toggles
t1, t2, . . . , tn each used exactly once, in some order.

Theorem 5.8. Any two Coxeter elements in Tog(Zn) are conjugate. In particular, pro-
motion and rowmotion are conjugate.

In [SW12, §5], Striker and Williams prove that Pro and Row are conjugate for any
rowed-and-columned poset. However, in the case of Tog(Zn), the conjugacy of any two
Coxeter elements follows from the conjugacy of Coxeter elements in Tn and Proposi-
tion 5.6. Thus, the orbit structure of J(Zn) under Row, or any other Coxeter element in
Tog(Zn), is the same as that of Pro, which by Proposition 5.6, is the same as the orbit
structure of ϕ on In.

Using Proposition 5.6, we can restate Corollary 2.31 for toggling in J(Zn), as follows.

Corollary 5.9. Let w be a Coxeter element in Tog(Zn). Let χaj : J(Zn) → {0, 1}
be the indicator function of aj. Then on w-orbits in J(Zn), the following statistics are
homomesic.

• If n is odd, then χaj − χan+1−j
is 0-mesic for every j ∈ [n]. Also 2χa1 − χa2 and

2χan − χan−1 are both 1-mesic.

• If n is even, then χaj + χan+1−j
is 1-mesic for every j ∈ [n]. Also 2χa1 − χa2 is

1-mesic and 2χan − χan−1 is 0-mesic.

Proof. From the definition of η, it is clear that for any S ∈ In,

χaj(η(S)) =

{
χj(S) if j is even
1− χj(S) if j is odd

.

The rest of the proof follows by restating Corollary 2.31 into the language of J(Zn) via
Proposition 5.6. �

Notice that our statements above are significantly more complicated to state, forcing
us to divide into odd and even cases. This would also make direct proofs of them in the
J(Zn)-setting more unwieldy. It is much easier to handle them via translation to the In
context. This shows the efficacy of Striker’s notion of generalized toggling.
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It is well-known and not hard to see that for any graded poset P of rank r, there is
a rowmotion orbit on J(P ) of size r + 1 generated by the empty ideal, where Rowi(Ø)
consists of all elements of rank 6 i − 1. In particular, J(Zn) has a rowmotion orbit of
size 3. It is not directly obvious that this is the only orbit of this size. But since the orbit
structure of Row is the same as that of ϕ on In, uniqueness follows from Proposition 4.6.

In other proven examples of homomesy for rowmotion on posets, the map generally has
a small order and a cyclic sieving phenomenon has been found. However, the rowmotion
map on J(Zn) has a large order, and thus a natural cyclic sieving result is unlikely, which
makes the homomesy for this poset particularly interesting.
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