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Abstract

Cools, Draisma, Payne, and Robeva proved that generic metric graphs that are
“paths of loops” are Brill-Noether general. We show that Brill-Noether generality
does not hold for “trees of loops”: the only trees of loops that are Brill-Noether
general are paths of loops. We study various notions of generality and examine
which of these graphs satisfy them.

1 Introduction

Let Γ be a compact tropical curve, or a metric graph. The polyhedral subset W r
d (Γ) of

Picd(Γ), consisting of linear equivalence classes of divisors of degree d and rank at least
r, has expected dimension

ρ(g, r, d) = g − (r + 1)(g − d+ r).

This expectation is formalized by the notion of Brill-Noether generality, in which a
graph Γ is Brill-Noether general if W r

d (Γ) is empty whenever ρ < 0 and dim(W r
d (Γ)) =

min{ρ, g} whenever ρ > 0. Very few examples of Brill-Noether general graphs are known.
The most studied is the set of metric graphs that are combinatorially a path, or chain,
of g loops, with generic edge lengths. In [6], these are shown to be Brill-Noether general.
A natural combinatorial generalization is to consider metric graphs Γ that are trees of g
loops, with generic edge lengths. In this paper we examine these graphs and show that
the expectation ρ for the dimension of W r

d (Γ) is never accurate unless Γ is a path of loops.
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Theorem A. A tree of loops Γ is Brill-Noether general if and only if Γ is a path of loops.

This negative result inspires the definition of other notions of Brill-Noether generality.
One natural approach is to weaken Brill-Noether generality to the boolean condition that
ρ is nonnegative if and only if W r

d (Γ) is nonempty. We refer to this boolean condition
as weak Brill-Noether generality. However, examining this condition for general trees of
loops gives another negative result.

Theorem B. Let Γ be a tree of loops of genus g such that the longest path of loops consists
of at most g − 2 loops. Then Γ is not weakly Brill-Noether general.

Another approach, introduced in [9], is to examine the Brill-Noether rank wrd(Γ) as
opposed to the dimension of the space W r

d (Γ). The Brill-Noether rank also has expected
value ρ. Similarly, the condition of rank Brill-Noether generality is identical to the con-
dition of Brill-Noether generality, but measuring wrd(Γ) (instead of dim(W r

d (Γ))) against
ρ. The authors in [9] show that for Γ a loop of loops of genus 4, w1

3(Γ) = 0 = ρ(4, 1, 3).
As a result, rank Brill-Noether generality may hold in some cases where geometric Brill-
Noether generality does not. This paper concludes by introducing a possible technique
for examining the rank Brill-Noether generality of trees of loops.

2 Background

We will be working within the realm of divisors on metric graphs. A metric graph Γ is
a 1-dimensional compact connected metric space such that for all points p ∈ Γ, p has
a neighborhood isometric to a star-shaped set. A divisor D on a metric graph Γ is an
element of the free abelian group generated by Γ; we write Div(Γ) for the group of these
divisors under addition. For a divisor D = a1v1 + · · · + anvn with ai ∈ Z for all i, the
degree of D is the sum of the coefficients a1 + · · ·+ an, and a divisor is called effective if
all coefficients ai are nonnegative. We denote by D(v) the coefficient of v in the divisor
D, so that

D =
∑
v∈Γ

D(v) · v.

For f a continuous piecewise linear function on Γ with integer slopes, we may consider
the divisor of f given by

div(f) =
∑
v∈Γ

ordv(f) · v

where for all v ∈ Γ, ordv(f) is the sum of the incoming slopes of f at v. Divisors of
piecewise linear functions are called principal, and Prin(Γ) denotes the additive group of
principal divisors.

Two divisors D and D′ on a metric graph Γ are said to be equivalent, chip-firing
equivalent, or linearly equivalent, written D ∼ D′, if D−D′ ∈ Prin(Γ). Informally, D and
D′ are equivalent if and only if one can move from D to D′ via moves in the chip-firing
game on metric graphs. In this game, a divisor D is thought of as a configuration of
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finitely many chips placed on a metric graph, with D(v) the number of chips at any point
v. Negative coefficients are taken to be piles of “anti-chips” instead, where an anti-chip
and a chip cancel whenever they collide. One can then “fire” a point on the graph. When
a point p is fired, a chip is sent along every edge adjacent to p at the same speed, so that
each chip lands the same distance away from the point p. On a metric graph, any closed
subset can in fact be fired, so that chips are sent along outgoing edges. The intuition of
firing a closed subset exactly aligns with the concept of adding a principal divisor. Chip-
firing on metric graphs is also discussed in [3], [5], [6], [11], and [13]. In [12], Osserman
examines chip-firing on metric graphs with an approach akin to the one presented here.

For a point v ∈ Γ and a divisor D, one can consider the unique v-reduced divisor D0

equivalent to D, which satisfies the following two conditions.

1. D0 is effective away from v.

2. Let A ⊆ Γ \ {v} be any closed connected set. Then there exists p ∈ ∂A with
outdegA(p) < D(p). Here outdegA(p) is the degree of p in the graph Γ \ A ∪ {p}.
Intuitively, this condition means that no more chips may be fired towards v while
preserving the effectiveness of D0 away from v.

The v-reduced divisor D0 can be obtained from D via Dhar’s burning algorithm, which is
explained in [10]. For each divisor D on a metric graph Γ, and for each v ∈ Γ, there is a
unique v-reduced divisor equivalent to D. Among divisors equivalent to D and effective
away from v, the unique v-reduced divisor has maximal coefficient at v.

The Picard group Pic0(Γ) of Γ is the quotient group Div0(Γ)/ ∼, which can be viewed
as the g-dimensional torus H1(Γ,R)/H1(Γ,Z) ∼= Jac(Γ) via the Abel-Jacobi map. Simi-
larly, for any degree d we define Picd(Γ) = Divd(Γ)/ ∼, which is a Pic0(Γ)-torsor for every
d. Moreover, Γ and thus H1(Γ,R) is endowed with a natural “cycle intersection” bilinear
form (see [11], [2], [1]).

The question at hand is then which equivalence classes of divisors contain an effective
divisor, and the robustness of this containment. This concept is made rigorous by the
definition of a divisor’s rank.

Definition 2.1. The rank r(D) of a divisor D on a metric graph Γ is the largest nonneg-
ative integer r such that for every effective divisor E of degree r on Γ, the divisor D−E
is equivalent to an effective divisor. If D is not equivalent to an effective divisor, r(D) is
defined to be −1.

One particular divisor, known as the canonical divisor K on a metric graph Γ is defined
as

K =
∑
v

(deg v − 2)v,

ranging over all vertices v ∈ Γ. Then degK = 2g−2, which can be checked by examining
the Euler characteristic of Γ. This divisor is a key part of the tropical Riemann-Roch
Theorem, which holds for metric graphs and is a useful result in the study of divisors on
metric graphs.
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Theorem 2.2 (Tropical Riemann-Roch Theorem [11], [7]). Let D be a divisor on a metric
graph Γ of genus g. Then

r(D)− r(K −D) = deg(D) + 1− g.

Our main application of the tropical Riemann-Roch Theorem will be the case when Γ
is a single loop. In that case the divisor K has no chips whatsoever. For any divisor D
with positive degree, K −D then has negative degree. Thus the rank r(K −D) = −1, so
the Riemann-Roch theorem tells us that

r(D) + 1 = deg(D) + 1− 1 = deg(D).

So for the graph Γ consisting of a single loop, for any divisor D with deg(D) > 1, the
rank r(D) is given by r(D) = deg(D)− 1. We will frequently use this fact.

For each degree d and rank r, we would like to examine W r
d (Γ) ⊆ Picd(Γ), which

denotes the set of all divisors of Γ that have degree exactly d and rank at least r. The set
W r
d (Γ) is a polyhedral subset of Pic(Γ), but it is not necessarily pure dimensional (see,

for example, [9]). It is then natural to ask what its dimension is, where the dimension
of W r

d (Γ) is defined as the largest dimension of any cell in W r
d (Γ). If Γ has genus g, the

algebraic-geometric analogue suggests that the dimension of W r
d (Γ) is the Brill-Noether

estimate ρ(g, r, d) = g − (r + 1)(g − d+ r). In fact, it follows from the main result of [4],
along with properties of tropicalization as developed in [8], that dimW r

d (Γ) > ρ(g, r, d),
so the Brill-Noether estimate is always a lower bound. We spend the remainder of this
paper examining the accuracy of this estimate for metric graphs that are combinatorially
trees of loops.

3 Geometric Brill-Noether generality

Definition 3.1. A metric graph Γ is geometric Brill-Noether general if:

1. W r
d (Γ) is empty whenever ρ(g, r, d) is negative.

2. W r
d (Γ) has dimension min{ρ, g} whenever ρ(g, r, d) is nonnegative.

The authors in [6] have shown that a general path of loops is geometric Brill-Noether
general. This leads to the question of whether or not the same holds for trees of loops,
which we address using inequalities. These inequalities, presented in 3.4, might be of
independent interest. However, we will first present a tree of loops of small genus that is
not geometric Brill-Noether general.

Lemma 3.2. Let Γ be a tree of loops of genus 4 that is not a path of loops. Then Γ is
not geometric Brill-Noether general; in particular, dim(W 1

3 (Γ)) > ρ(4, 1, 3).

Proof. Since Γ is a tree of loops of genus 4 that is not a path of loops, Γ must be given
by the following picture with some edge lengths.
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C

AB

For any angle 0 6 θ < 2π, let Dθ be the divisor on Γ of the form

11

1

θ

In other words, Γ has one chip at each of A and B and a third chip at an angle θ
on the central circle. Each Dθ has degree 3. Let E be any divisor of degree 1; then E
consists of one chip at some point p ∈ Γ. Crucially, the chip-firing game may be played
independently on any loop, by firing all points on one of the other loops whenever a chip
is in danger of going from one to the next. Then if p is a point in the central loop,
Dθ − E = Dθ − (p) has degree 2 when restricted to the central loop, which by Riemann-
Roch is linearly equivalent to an effective divisor. If Dθ is A-, B-, or C-reduced, it has at
least two chips at A, B, or C, respectively. Thus if p is in the right, left, or bottom loop,
we may take the A-, B- or C-reduced divisor equivalent to Dθ, respectively. The degree
of this divisor with one chip removed from p, and restricted to the right, left, or bottom
loop, is 1. By Riemann-Roch this loop is linearly equivalent to an effective divisor, so
Dθ − E must be linearly equivalent to an effective divisor.

In particular, for all θ, Dθ has rank at least 1. Thus we have a one-dimensional subset
of W 1

3 (Γ), with parameter θ, so dim(W 1
3 (Γ)) > 1. However, the genus of Γ is 4, and

ρ(4, 1, 3) = 0 < 1.

Definition 3.3. Suppose Γ1 and Γ2 are metric graphs. For any p ∈ Γ1 and q ∈ Γ2, the
wedge sum Γ1∧p,qΓ2 is the metric graph obtained by gluing Γ1 and Γ2 via the identification
p ∼ q.

Γ1 Γ2q
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As mentioned in the proof of Lemma 3.2, chip-firing may be performed independently
on either side of a wedge point. It is therefore possible to examine the relationship
between different values of W r

d for a wedge sum and its summands. For Γ a metric graph
and Γ1 ⊂ Γ a metric subgraph, for any divisor D ∈ Div(Γ), we will denote by D|Γ1 the
restriction of D to Γ1, namely the divisor D1 on Γ1 with D1(p) = D(p) for all p ∈ Γ1.

Theorem 3.4. Let Γ1 be any metric graph, Γ2 a loop, and Γ = Γ1∧Γ2 an arbitrary wedge
sum with wedge point q. If W r

d (Γ1) is nonempty, then

dim(W r
d+1(Γ)) > dim(W r

d (Γ1)) + 1

Proof. Let D ∈ W r
d (Γ1) and p ∈ Γ2 be arbitrary; we may assume, without loss of gen-

erality, that D is q-reduced. We claim r(D + (p)) > r as a divisor on Γ. To see this,
let E ∈ Div(Γ) be any effective divisor of degree r, which is q-reduced without loss of
generality, and denote A := D+ (p)−E. Let A1 and A2 be the unique divisors on Γ such
that:

• A = A1 + A2,

• supp(Ai) ⊂ Γi for i = 1, 2,

• deg(A1) = d− r and deg(A2) = 1

Since chip firing moves can be conducted independently on Γ1 and Γ2, to show that
A is equivalent to an effective divisor, we need only show that A1 and A2 are equivalent
to effective divisors on Γ1 and Γ2 respectively. By construction, A1 = D − E1 for some
effective divisor E1 of degree r with supp(E1) ⊂ Γ1. Because D has rank r in Γ1, it
follows A1 is equivalent to an effective divisor on Γ1. The Riemann-Roch theorem implies
A2 is equivalent to an effective divisor on Γ2, since deg(A2) = 1 = genus(Γ2). Thus, we
conclude D + (p) has rank at least r on Γ.

We may identify W r
d (Γ1) with a polyhedral subset of W r

d (Γ) and W 0
1 (Γ2) with a poly-

hedral subset of W 0
1 (Γ) via the natural inclusion. Then, working inside Picd+1(Γ), the

above argument furnishes an injective map from the Minkowski sum W r
d (Γ1) + W 0

1 (Γ2)
into W r

d+1(Γ). It follows that

dim(W r
d+1(Γ)) > dim(W r

d (Γ1) +W 0
1 (Γ2)) = dim(W r

d (Γ1)) + 1

where the second equality follows from the fact that images under the Abel-Jacobi map of
the edges of Γ1 are orthogonal to the image of Γ2 with respect to the “cycle intersection”
bilinear form, since the intersection of Γ2 and any subset of Γ1 is at most a point.

This theorem and technique is all that is necessary to prove Theorem A, which we
restate and prove.

Theorem 3.5. A tree of loops Γ is geometric Brill-Noether general if and only if Γ is a
path of loops.
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Proof. If Γ is a path of loops, then Γ is geometric Brill-Noether general from the main
result of [6]. Now suppose that Γ is a tree of loops, but not a path of loops; we will show
Γ cannot be geometric Brill-Noether general. Since Γ is not a path, it must contain a
subgraph of genus 4 that is a tree of loops but not a path of loops, denoted Γ0 ⊆ Γ. Trees
are connected, so we can construct Γ by adding one loop at a time to Γ0. Let Γi be the
ith step in this process, once i cycles have been added to Γ0. Then Γi has genus i + 4
for all i, and if Γ has genus g, then Γ = Γg−4. We will prove by induction that Γi is not
geometric Brill-Noether general for all i, and thus that Γ is not geometric Brill-Noether
general.

As a base case, Γ0 is not geometric Brill-Noether general, since by Lemma 3.2,
dim(W 1

3 (Γ0)) > 1 > ρ(4, 1, 3) = 0. Now assume that Γi is not geometric Brill-Noether
general, i.e. that there exist r, d such that dim(W r

d (Γi)) > ρ(i+ 4, r, d). By Theorem 3.4,
we see

dim(W r
d+1(Γi+1)) > dim(W r

d (Γi)) + 1

> ρ(i+ 4, r, d) + 2

= ρ(i+ 5, r, d+ 1) + 1

> ρ(i+ 5, r, d+ 1).

Thus, Γi+1 is not geometric Brill-Noether general, so by induction, Γ is not geometric
Brill-Noether general.

4 Weakly Geometric Brill-Noether generality

Our second notion of Brill-Noether generality is a weakening of geometric Brill-Noether
generality. One might wonder if ρ is at minimum an indicator on trees of loops Γ of
whether the set W r

d (Γ) is empty.

Definition 4.1. A metric graph Γ is weakly geometric Brill-Noether general if W r
d (Γ) is

nonempty whenever ρ > 0 and empty otherwise.

Since this condition is strictly weaker than that of geometric Brill-Noether generality,
it is conceivable that it all trees of loops would be weakly geometric Brill-Noether general.
Nevertheless, most trees of loops still do not satisfy this condition.

Proposition 4.2. Let Γ be a tree of loops of genus g such that the longest path of loops
consists of at most g − 2 loops. Then Γ is not weakly geometric Brill-Noether general.

Proof. We will consider two cases. Let l be the number of loops in the longest path of
loops in Γ. First, consider the case where l is even. In this case, let q be the intersection
point of the middle two loops of a path of length l, as pictured.
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q
s t · · ·

· · ·

l/2 path loopsl/2 path loops

Let D =
(
l
2

+ 1
)

(q). By the tropical Riemann-Roch theorem, the rank of D when
restricted to either of the loops containing q is l

2
. In particular, for s the connection point

as in the diagram, D − l
2
(s) is equivalent to an effective divisor. In other words, D is

equivalent to some divisor D′ with l
2

chips placed on s. The rank of D′ when restricted
to one of the loops containing s is then l

2
− 1, so D′ has rank l

2
− 1 when restricted to one

of these loops. Thus D′−
(
l
2
− 1
)

(t) is equivalent to an effective divisor, since chip-firing
can be performed on each loop in isolation, so D′ is equivalent to some effective divisor
D′′ with l

2
− 1 chips placed on t.

We will show by induction on k that for L any loop at distance k 6 l
2

from one of
the two loops containing q, D is equivalent to some effective divisor with degree at least
l
2
− k + 1 when restricted to the loop L. The base case is precisely the argument that

l
2

chips may be placed on the point s above. For the inductive step, let L be a loop at
distance k from one of the loops containing q, and let L′ be the loop at distance k − 1
that is adjacent to L. Let v be the intersection point between L′ and L. By the inductive
hypothesis, D is equivalent to an effective divisor D(k−1) with degree at least l

2
− k + 2

when restricted to L′. Since v is in both loops L and L′, it suffices to show that D(k−1) is
equivalent to some divisor with l

2
−k+1 chips placed on v, or that D(k−1)−

(
l
2
− k + 1

)
(v)

is an effective divisor. Since k 6 l
2
, deg(D(k−1)) > 2, so the rank of D(k−1) is

r(D(k−1)) = deg(D(k−1))− 1 =
l

2
− k + 1.

But then D(k−1) −
(
l
2
− k + 1

)
(v) is equivalent to an effective divisor, just as desired.

This completes the inductive argument.
Any loop in Γ is connected to a loop containing q via a path of loops of length at most

l
2
−1, since otherwise we would have a longer maximal path. Let v be an arbitrary point in

Γ. Let L be the closest loop to q containing v and let k 6 l
2
−1 be the distance between L

and a loop containing q. Then by our inductive argument, D is equivalent to an effective
divisor D(L) with at least l

2
− k + 1 chips placed on L. The bound k 6 l

2
− 1 implies

that D(L) has at least 2 chips placed on L itself. But then by the tropical Riemann-Roch
Theorem, D(L) has rank 1 when restricted to L, so D(L) − (v) is linearly equivalent to an
effective divisor. Since D(L) and D are linearly equivalent, D − (v) must also be linearly
equivalent to an effective divisor. Thus D has rank 1, so

W 1
l
2

+1
(Γ) 6= ∅.

the electronic journal of combinatorics 25(1) (2018), #P1.19 8



However, since Γ has genus g where l 6 g − 2,

ρ

(
g, 1,

l

2
+ 1

)
= g − 2 ·

(
g − l

2
− 1 + 1

)
= −g + l

6 −2 < 0.

Thus Γ is not weakly geometric Brill-Noether general.
Now we consider the case where l is odd; it is very similar. In this case, let q be any

point on the middle loop of the longest path. Let D = l+3
2

(q). By an inductive argument
identical to that of the even case, if L is any loop at distance k 6 l−1

2
from the center

loop, then D is equivalent to some effective divisor with degree at least l+3
2
− k when

restricted to L. All loops are at distance at most l−1
2

from the center loop, so for any
loop L, D is equivalent to some effective divisor D(L) with degree at least l+3

2
− l−1

2
= 2

when restricted to L. Then for any point v ∈ L, D(L) − (v) is linearly equivalent to some
effective divisor just as above, so D − (v) must also be linearly equivalent to an effective
divisor. Thus D has rank 1, so

W 1
l+3
2

(Γ) 6= ∅.

However, Γ has genus g, with l 6 g − 2, so

ρ

(
g, 1,

l + 3

2

)
= g − 2 ·

(
g − l + 3

2
+ 1

)
= g − 2g + l + 3− 2

= −g + l + 1

6 −1 < 0.

Thus Γ is not weakly geometric Brill-Noether general.

This argument proves that for negative values of ρ, the set W r
d (Γ) may still be

nonempty. Note that since dimW r
d (Γ) > ρ(g, r, d), this is in fact the only way in which

weakly geometric Brill-Noether generality may be violated.

5 Rank Brill-Noether generality

Following the work done in [9], we examine a more combinatorial definition of rank.

Definition 5.1. Suppose Γ is a metric graph and r, d are natural numbers such that
W r
d (Γ) is nonempty. The Brill-Noether rank wrd(Γ) is the largest integer k such that for

every effective divisor E of degree r + k, there exists D of rank at least r and degree d
such that D − E is effective. If W r

d (Γ) is empty, then we set wrd(Γ) = −1.

Definition 5.2. A metric graph Γ of genus g is rank Brill-Noether general if:

1. wrd(Γ) = −1 whenever ρ(g, r, d) < 0.
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2. wrd(Γ) = ρ(g, r, d) whenever 0 6 ρ(g, r, d) 6 g.

The negative result obtained in examining weak Brill-Noether generality carries over,
so certainly rank Brill-Noether generality is out of reach for most trees of loops.

Theorem 5.3. Let Γ be a tree of loops of genus g such that the longest path of loops
consists of at most g − 2 loops. Then Γ is not rank Brill-Noether general.

Proof. This follows immediately from Proposition 4.2. If for some r, d, the set W r
d (Γ) 6= ∅,

then wrd(Γ) > 0. If Γ has genus g where the longest path of loops consists of at most
g − 2 loops, then Γ is not weakly geometric Brill-Noether general and in particular there
exist r, d such that W r

d (Γ) 6= ∅ despite ρ(g, r, d) being negative. Thus wrd(Γ) > 0 despite
ρ(g, r, d) being negative, so Γ is not rank Brill-Noether general.

We do not know the relationship between ρ(g, r, d) and wrd for a general tree of loops
Γ when ρ > 0. However, there is a constraint relating wrd of a metric graph and wrd+1 of
the graph formed from gluing a loop onto that metric graph. This constraint may prove
useful in further explorations.

Theorem 5.4. Let Γ1 be any metric graph, Γ2 a loop, and Γ = Γ1∧Γ2 an arbitrary wedge
sum (with wedge point q). If W r

d (Γ1) is nonempty, then

wrd(Γ1) 6 wrd+1(Γ) 6 wr−1
d (Γ1).

Proof. Set k = wrd(Γ1); k > 0, since W r
d (Γ1) is nonempty.

First, we will prove the lower bound. Let E ∈ Divr+k(Γ) be an arbitrary effective
divisor of degree r+k; we will construct a divisor D ∈ W r

d+1(Γ) with D−E effective. We
may first q-reduce E to obtain E ′ ∼ E, where E ′ must still be effective and must contain
either one chip or zero chips placed on Γ2 \{q}. Note that if there exists a divisor D′ with
D′−E ′ effective, we can let D = (D′−E ′) +E = D′+ (E −E ′), which is then a divisor,
still in W r

d+1(Γ), with D − E = D′ − E ′ effective. Thus it suffices to find a satisfactory
divisor for the q-reduced case.

If E ′ contains exactly one chip on a point p ∈ Γ2 \ {q}, let D2 be the divisor (p) on
Γ2. E ′|Γ1 is an effective divisor of degree r+k− 1, so there is a divisor D1 ∈ W r

d (Γ1) with
D1 − E ′|Γ1 effective. Then D′ = D1|Γ + D2|Γ is an element of W r

d+1(Γ) by the argument
in Theorem 3.4, with D′ − E ′ effective; thus there is a divisor D ∈ W r

d+1(Γ) with D − E
effective.

Now assume that E ′ contains no chips on Γ2 \ {q}. Then E ′|Γ1 has degree r+ k, so we
can pick a divisor D1 ∈ W r

d (Γ1) with D1−E ′|Γ1 effective. Let p be any point in Γ2; Then
the divisor D′ = D1|Γ +(p) is an element of W r

d+1(Γ) with D′−E ′ effective. Since E ∼ E ′,
there exists a divisor D ∈ W r

d+1(Γ) with D−E effective as well, so wrd+1(Γ) > k = wrd(Γ1).
We will now prove the upper bound. Let l = wrd+1(Γ). We will show that l is a

lower bound for wr−1
d (Γ1), or equivalently, that for any effective divisor E1 on Γ1 of degree

r − 1 + l, there exists a divisor D1 ∈ W r−1
d (Γ1) with D1 − E1 > 0.

Fix any effective divisor E1 on Γ1 of degree r − 1 + l. Just as above, we may restrict
to addressing the case when E1 is q-reduced, so assume that this is the case. Let E =
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(E1 + (q))|Γ, which is then an effective divisor of degree r + l on Γ. Note that E remains
q-reduced. Since wrd+1(Γ) = l and E is q-reduced, there exists a q-reduced divisor D of
degree d+ 1 on Γ with D − E > 0.

Since D is a q-reduced divisor on Γ, D either has one chip on the loop Γ\Γ1 = Γ2\{q},
or all chips are on Γ1. If D has one chip on Γ2 \ {q}, let p be the point at which this chip
is located. If not, let p = q.

Then D − (p) is a divisor with no chips on Γ \ Γ1. Since D has rank at least r, as an
element of W r

d+1(Γ), D− (p) has rank at least r− 1, since any additional r− 1 chips may
be removed from D after the removal of (p), and the result will still be equivalent to an
effective divisor. Thus D ∈ W r−1

d (Γ); since D − (p) has support on Γ1, D1 = D − (p) ∈
W r−1
d (Γ1), as well.

It suffices to show that D1 = D − (p) satisfies D1 − E1 > 0; then for every choice of
E1 we will have found a divisor D1 ∈ W r−1

d (Γ1) with D1 − E1 > 0. If p = q, then

D1 − E1 = D − (q)− (E − (q)), since E = E1 + (q)

= D − E − (q) + (q)

= D − E > 0, just as desired.

Now if p 6= q, we know that D|Γ1 = D1 = D− (p). Since E = E1 + (q) lies entirely on Γ1,
D|Γ1 − E > 0, since D − E > 0. But then

D|Γ1 − E > 0

⇒ D1 − E > 0

⇒ D1 − E1 − (q) > 0

⇒ D1 − E1 > 0, just as desired.

Thus we have proven that D1 − E − 1 > 0, so wr−1
d (Γ1) > wrd+1(Γ), which is exactly the

desired result.
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