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Abstract

Hikita polynomials are the combinatorial side of the rational shuffle theorem.
Building upon a recent formula for (m, 3)-Catalan polynomials, we prove a formula
for (m, 3)-Hikita polynomials in terms of Catalan polynomials. This formula shows
a surprising relation among coefficients of Hikita polynomials and implies deeper
recursive relations and proves the q, t-symmetry of (m, 3)-Hikita polynomials.

Keywords: Catalan, Dyck path, parking function, shuffle theorem, rational shuffle
theorem

1 Introduction

In the early 1990’s Garsia and Haiman introduced an important sum of functions in
Q(q, t), the q, t-Catalan polynomial Cn(q, t), which has since been shown to have in-
terpretations in terms of algebraic geometry and representation theory. These classical
q, t-Catalan polynomials are given by

Cn(q, t) =
∑
π

qdinv(π)tarea(π), (1)

where the sums are over all Dyck paths π from (0, 0) to (n, n) and the statistics dinv and
area arise from the shape and size of the Dyck path. For an overview of the classical
q, t-Catalan polynomials and Dyck paths, see [GH96, GH02, HHL+05, Hag08].

Recently, a valuable generalization of the classic q, t-Catalan polynomial has come
to light [Hik12]. For positive integers m,n that are coprime, these (m,n)-rational q, t-
Catalan polynomials have a similar description to the classic case

Cm,n(q, t) =
∑
π

qdinv(π)tarea(π), (2)
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where the sum is over all rational Dyck paths π from (0, 0) to (m,n).
A rational Dyck path is a path in the m × n integer lattice which proceeds by north

and east steps from (0, 0) to (m,n) and which always remains weakly above the main
diagonal y = m

n
x. The collection of cells lying above a Dyck path π always forms an

English Ferrers diagram λ(π). The dinv and area statistics on rational Dyck paths arise
in a similar way to the statistics on square Dyck paths and will be defined explicitly in
Section 1.2.

The classical Catalan polynomials can be realized as a special case of the rational
Catalan polynomials, specifically

Cn(q, t) = Cn+1,n(q, t).

So the classical dinv and area statistics can be defined in terms of the rational statistics.
In 2015, Kaliszewski and Li gave an explicit formula of (3, n)-rational and (n, 3)-

rational q, t-Catalan polynomials [KL15, KL16] for n not divisible by 3,

C3,n(q, t) = Cn,3(q, t) =
∑

06i<n/3

s(n−1−2i,i)(q, t). (3)

The function s(b,a)(q, t) where b > a is the Schur function s(b,a) with the evaluations
x1 = q, x2 = t, and xi = 0 for i > 2. For example,

s(5,2)(q, t) = q5t2 + q4t3 + q3t4 + q2t5.

In 2005, Haglund, Haiman, Loehr, Remmel, and Ulyanov conjectured that certain
generalizations of Catalan polynomials involving parking functions are the image of the
Macdonald eigen-operator, specifically

(−1)n∇en(X) =
∑

P∈PF(n)

tarea(P )qdinv(P )FiDes(P )(X) (4)

where ∇ is the operator satisfying

∇H̃µ(x; q, t) = tn(λ)qn(λ
′)H̃µ(x; q, t)

for modified Macdonald polynomials {H̃µ}µ [HHL+05] and the F are Gessel’s fundamental
quasi-symmetric basis,

FS(X) =
∑

16i16i26···6ik
i`=i`+1⇒`∈S

xi1xi2 · · ·xik .

The area statistic on parking functions is the area of the underlying Dyck path and the dinv
statistic is obtained by inversions along attacking cells. The shuffle theorem, Equation
(4), was later proven by Carlsson and Mellit [CM15].

In [Hik12], Hikita extended parking functions and their statistics to the (m,n)-rational
case and defined polynomials

Hm,n(X; q, t) =
∑

P∈PF(m,n)

tarea(P )qdinv(P )FiDes(P )(X), (5)
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where the sum is over all (m,n)-rational parking functions. Similar to how an n-Dyck
path can be realized as a rational (n + 1, n)-Dyck path, an n-parking function can be
realized as a rational (n+ 1, n)-parking function.

For each (m,n)-rational Dyck path there is an (m,n)-rational parking function with
the same statistics, so the (m,n)-rational q, t-Catalan polynomial appears within
Hm,n(X; q, t). Specifically, Cm,n(q, t) is the coefficient of F∅ in the expansion given in
Equation (5).

The shuffle theorem was generalized by Gorsky and Neguţ [GN15] using operators Pk,n
on symmetric functions. This so-called rational shuffle conjecture, later changed to the
rational shuffle theorem after a proof by Mellit [Mel16], is

Pk,n · 1 = Hm,n(X; q, t).

While the shuffle theorem and rational shuffle theorem allow us to describe the images
of the ∇ and Pk,n operators in terms of combinatorial objects, much is still unknown
about these objects and the structure of the Hikita polynomials. For example, it is
known from the algebra involved that the parking functions exhibit a symmetry in their
q and t statistics when the iDes statistic is fixed, i.e.

H(X; q, t) = H(X; t, q).

However, there is no bijective proof of this fact. Even in the best studied case, the classic
Catalan polynomials, there is no simple bijection that exchanges area and dinv. Also, while
it is known that Hikita’s polynomials are symmetric functions in the x-indeterminates,
there isn’t a conjecture as to a cancellation-free or positive Schur expansion.

The main result of this paper is to study the properties of the (m, 3)-Hikita polynomi-
als, showing the q, t-symmetry of the parking functions and the positive Schur expansion
in these cases. The first step in exploring Hikita polynomials was the cases when m = 2
or n = 2, which was completed by Leven [Lev14]. Our work continues in this process,
exploring the next case and we hope that our work will inspire further results regarding
these properties in more general cases.

We begin the paper by discussing rational Dyck paths and their combinatorics, includ-
ing the Fast dinv algorithm. We then introduce a useful function, the modified Catalan
polynomials, which we will use in later parts of the paper.

In Section 3 we discuss rational parking function combinatorics and their connection
to affine permutations. We then prove that if m,n are coprime then the coefficient of
F[n−1] in Hm,n(X; q, t) is {

0 if m < n
Cm−n,n(q, t) if m > n

. (6)

While this can be seen as a result of repeated applications of the Macdonald eigen-operator
∇, this paper contains the first combinatorial proof of this fact.

In Section 4 we explore a relation between the coefficients of the two- and three-row
Hikita polynomials Hm,2(X; q, t) and Hm,3(X; q, t) and the two- and three-row Catalan
polynomials Cm,2(q, t) and Cm,3(q, t). We will prove formulas:

Hm,2(X; q, t) = Cm,2(q, t)s(1,1)(X) + Cm−2,2(q, t)s(2)(X)

the electronic journal of combinatorics 25(1) (2018), #P1.21 3



and

Hm,3(X; q, t) =

Cm,3(q, t)s(1,1,1)(X) + (Km−1,3(q, t) +Km−2,3(q, t)) s(2,1)(X) + Cm−3,3(q, t)s3(X),
(7)

where
Km,3(q, t) =

∑
06i<m/3

s(n−1−2i,i)(q, t).

Note that for m not divisible by 3,

Km,3(q, t) = Cm,3(q, t),

by Equation (3). Equation (7) and the more general result of Equation (6) suggest that
there may be a more general way to describe all Hikita polynomials as sums of rational
q, t-Catalan polynomials.

This new formula and the q, t-symmetry of Ck,3(q, t), [GM14, KL15], imply the q, t-
symmetry of Hm,3(X; q, t). Then, in Section 5 we will explicitly show this symmetry by
constructing a bijection on the set of (m, 3)-parking functions that exchanges area and
dinv while holding the inverse descent set fixed.

1.1 Rational Dyck Paths

Suppose that m,n are positive coprime integers. Construct the (m,n)-lattice by drawing
a rectangular integer lattice in R2 whose southwest corner lies on the origin and whose
northeast corner lies on the point (m,n). The cell whose northeast corner lies on the
point (u, v) will be referred to as cell (u, v). Thus we can define the ith row as the set of
cells

{(u, i)|1 6 u 6 n}

and the jth column as the set of cells

{(j, v)|1 6 v 6 m}.

The (m,n)-diagram is the (m,n)-lattice where each cell (u, v) contains an integer a that
satisfies

a = (v − 1)m− un. (8)

We call a the rank of cell (u, v), denoted by γm,n(u, v) or simply γ(u, v) when the pa-
rameters are clear from context. Since m and n are coprime, there are no duplicate
ranks.

An (m,n)-rational Dyck path or (m,n)-Dyck path is path on the (m,n)-diagram that
begins at (0, 0) and ends at (m,n). The path can only consist of northward and eastward
steps and must always lie weakly above the diagonal y = n

m
x.

An (m,n)-Dyck path partitions the cells within the (m,n)-diagram into two sets.
Since the path must lie weakly above the diagonal, one of the sets will always contain the
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southeast corner of the (m,n)-diagram. We say that any of the cells in this set are below
the path. The other set of cells, which may be empty, is above the path. We say that a
cell is on the path if its western edge is part of the path. We will say that a rank is above,
below, or on the path if the cell containing it is above, below, or on the path; respectively.

Example 1. A (4, 7)-Dyck path:

π =

-7

-3

1

5

9

13

17

-14

-10

-6

-2

2

6

10

-21

-17

-13

-9

-5

-1

3

-28

-24

-20

-16

-12

-8

-4

.

The cells that are above the path are colored gray and those that are below the path are
colored cyan. For example, rank 6 is above the path, while rank 5 is below the path. The
ranks that are on the path are −7,−3,−1, 1, 3, 5, and 9.

Here, for example, γ(1, 5) = 9 and γ(4, 3) = −20.

The set of cells above the path always has the shape of a Ferrers diagram (in English
notation). This is because the only allowed moves are northward steps and eastward
steps, so the number of cells above the path in each row must be weakly increasing from
bottom to top.

1.2 Statistics on Rational Dyck Paths

Let π be an (m,n)-Dyck path for coprime m and n. We partition the cells containing
positive ranks into three sets, Area(π),Dinv(π) and Skip(π). Define

Area(π) = {(x, y) : (x, y) is below path π and contains a positive rank}. (9)

For the cells above the path define

Dinv(π) =

{
(x, y) above the path :

arm(x, y)

leg(x, y) + 1
<
m

n
<

arm(x, y) + 1

leg(x, y)

}
, (10)

where arm(x, y) is the number of cells above π and strictly east of (x, y) and leg(x, y) is
the number of cells above π and strictly south of (x, y). We interpret division by zero to
be infinity. Define the Skip set to be the remaining cells above the path:

Skip(π) = {(x, y) above the path : (x, y) 6∈ Dinv(π)} . (11)

Set
area(π) = |Area(π)|, dinv(π) = |Dinv(π)|, skip(π) = |Skip(π)|.
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The idea is that when counting the cells that contribute to dinv we should skip any that
do not satisfy the inequality in (10).

Presented in [KL15, KL16], the fast dinv algorithm gives a faster and simpler way to
determine whether or not a cell is in Dinv. For a given cell (x, y) above an (m,n)-Dyck
path π, let (x, y)↓ be the southernmost cell in the same column as (x, y) that is above the
path and (x, y)⇓ be the northernmost cell in the same column as (x, y) that is below the
path. Similarly, let (x, y)→ be the easternmost cell in the same row as (x, y) that is above
the path and (x, y)⇒ be the westernmost cell in the same row as (x, y) that is below the
path. So (x, y)⇒ is exactly one cell to the east of (x, y)→ and (x, y)⇓ is exactly one cell
south of (x, y)↓.

Theorem 2 (Fast dinv). Suppose π is an (m,n)-Dyck path and let (x, y) be a cell above
the path in π. The cell (x, y) is in Dinv(π) if and only if

γ[(x, y)→] > γ[(x, y)⇓] and γ[(x, y)↓] > γ[(x, y)⇒]. (12)

Example 3. Consider cell (1, 7) of the (5, 7)-Dyck path:

π =

-7

-2

3

8

13

18

23

-14

-9

-4

1

6

11

16

-21

-16

-11

-6

-1

4

9

-28

-23

-18

-13

-8

-3

2

-35

-30

-25

-20

-15

-10

-5

.

We compute and get γ[(1, 7)→] = 16 > γ[(1, 7)⇓] = −2 :

π =

-7

-2

3

8

13

18

23

-14

-9

-4

1

6

11

16

-21

-16

-11

-6

-1

4

9

-28

-23

-18

-13

-8

-3

2

-35

-30

-25

-20

-15

-10

-5

.

But γ[(1, 7)↓] = 3 < γ[(1, 7)⇒] = 9 :

π =

-7

-2

3

8

13

18

23

-14

-9

-4

1

6

11

16

-21

-16

-11

-6

-1

4

9

-28

-23

-18

-13

-8

-3

2

-35

-30

-25

-20

-15

-10

-5

.

the electronic journal of combinatorics 25(1) (2018), #P1.21 6



So (1, 7) 6∈ Dinv(π).

Define the rational Catalan polynomial

Cm,n(q, t) =
∑
π

qdinv(π)tarea(π)

where the sum is over all (m,n)-Dyck paths.

2 Modified Catalan Polynomials, Km,3(q, t)

For m a positive integer, define

Km,3(q, t) =
∑

06i<m/3

sm−1−2i,i(q, t).

where s is the Schur basis for symmetric functions. When m is not divisible by 3

Km,3(q, t) = Cm,3(q, t) = C3,m(q, t),

so Km,3 are the generating functions for rational Dyck paths.
The functions K3k,3(q, t) can be realized as generating functions for modified (3k, 3)-

rational Dyck paths. When a rank appears more than once in the (3k, 3)-diagram then
the one appearing further to the east is considered slightly larger and only positive ranks
can lie above the path.

Example 4. The Dyck path

π =
-3

3

9

-6

0

6

-9

-3

3

-12

-6

0

-15

-9

-3

-18

-12

-6

is a valid modified (6, 3)-Dyck path because the rank in cell (4, 3) is slightly larger than the
0-rank in cell (2, 2), and is therefore positive.

Rather than showing a direct proof in the style of [KL16], we will make the observation
that there is a bijection between the set of modified (3k, 3)-Dyck paths and the set of
(3k + 1, 3)-Dyck paths where the rank 1 is below the path. One can see the bijection by
superimposing the (3k + 1, 3)-diagram over the (3k, 3)-diagram and noting that

γ3k,3(x, y) > γ3k,3(u, v) ⇐⇒ γ3k+1,3(x, y) > γ3k+1,3(u, v).

Thus the dinv and area statistics match precisely.

Example 5. Consider

π =
-3

6

15

-6

3

12

-9

0

9

-12

-3

6

-15

-6

3

-18

-9

0

-21

-12

-3

-24

-15

-6

-27

-18

-9

versus π =
-3

7

17

-6

4

14

-9

1

11

-12

-2

8

-15

-5

5

-18

-8

2

-21

-11

-1

-24

-14

-4

-27

-17

-7

-30

-20

-10

.
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Proposition 6. Suppose that m is a positive integer that is not divisible by 3 and π is
an (m, 3)-Dyck path. Then for any cell in the middle row (x, 2),

(x, 2) ∈ Dinv(π).

Proof. Observe that
γ[(x, 2)↓] = γ(x, 2) > γ[(x, 2)⇒]

and
γ[(x, 2)→] > −2 > −3x = γ[(x, 2)⇓].

The result follows from Theorem 2.

Let πi be the (3k + 1, k)-Dyck path where rank 1 is above the path and with exactly
k + i cells in the top row that are above the path. Suppose that 1 6 j1 6 i < j2 6 k.
Then

γ[(j1, 3)⇒] = γ(k + i+ 1, 3)

= γ(i, 3)− 3k − 3

< γ(j1, 3)− 3k − 3

< γ(j1, 3)− 3k − 1

= γ(j1, 3)−m
= γ[(j1, 3)⇓]

and γ[(j1, 3)⇓] < 0 < γ[(j1, 3)→]. Therefore, by Theorem 2, (j1, 3) ∈ Dinv(πi). Similarly,

γ[(k + j1, 3)⇒] < γ(k + j1, 3) = γ[(k + j1, 3)↓]

and γ[(k + j1, 3)⇓] < 0 < γ[(k + j1, 3)→] so (k + j1, 3) ∈ Dinv(πi). However,

γ[(j2, 3)⇒] = γ(k + i+ 1, 3)

= γ(i, 3)− 3k − 3

> γ(j2, 3)− 3k

> γ(j2, 3)−m
= γ[(j2, 3)↓]

so (j2, 3) 6∈ Dinv(πi).
Therefore, each path πi contributes term qk+2itk−i to C3k+1,3(q, t). In general, the

(3k + 1, 3)-Dyck paths where 1 lies above the path contribute

k∑
i=0

qk+2itk−i =
k∑
i=0

q3k−2iti
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to C3k+1,3(q, t). Note that in the bijection, a (3k + 1, 3) path with rank 1 below the path
is mapped to a modified (3k, 3) path. Since the rank 1 is transformed into rank 0, that
cell no longer contributes to the area of the image. So

C3k+1,3(q, t)−
∑k

i=0 q
3k−2iti

t
=

∑k
i=0 s3k−2i,i(q, t)−

∑k
i=0 q

3k−2iti

t

=
∑
06i<k

s3k−1−2i,i(q, t)

= K3k,3(q, t).

3 Rational Parking Functions

Let m and n be coprime. An (m,n)-parking function is an (m,n)-Dyck path with the
integers 1, . . . , n written on the path so that within any particular column the entries are
increasing from bottom to top.

For an (m,n)-Dyck path π, let R(π) = {r1, . . . , rn} be the set of ranks on the path of π
written in increasing order. In this language an (m,n)-parking function can be realized as
a pair (π, σ) where π is an (m,n)-Dyck path and σ is a permutation such that if rσ−1(i) = k
and rσ−1(j) = k +m in R(π) then i < j.

Each pair (π, σ) can be uniquely represented by using inline or window notation:

[rσ−1(1), rσ−1(2), . . . , rσ−1(n)] .

For a more classical handling of (m,n)-parking functions, see [BGLX16].

Example 7. Consider the (4, 7)-Dyck path:

π =

-7

-3

1

5

9

13

17

-14

-10

-6

-2

2

6

10

-21

-17

-13

-9

-5

-1

3

-28

-24

-20

-16

-12

-8

-4

.

The set of (4, 7)-parking functions includes:

[−7,−3,−1, 1, 3, 5, 9], [−7,−1, 3,−3, 1, 5, 9], and [−1,−7,−3, 1, 5, 9, 3],

all supported by the displayed Dyck path, π. Notice that for each parking function (window)
above, the ranks appearing in column 1 of the diagram, namely {−7,−3, 1, 5, 9} appear in
increasing order from left to right.
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3.1 Statistics on Parking Functions

The construction of the Hikita polynomial from parking functions is analogous to the
construction of the Catalan polynomial from Dyck paths. The first step is to extend the
Dyck path statistics to the set of parking functions.

Given an (m,n)-parking function P = (π, σ) we define the area to be the area of
the underlying Dyck path and the inverse descent set is the inverse descent set of the
permutation σ, i.e.

area(P ) = area(π) and iDes(P ) = iDes(σ).

If we look at the window W for P we can compute the inverse descents of the parking
function by computing the descents of the window,

iDes(P ) = Des(W ).

Let m-bounded inversions be pairs:

Inv(P ) = {(i, j)|i < j and σ(j) < σ(i) < σ(j) +m} (13)

and invm(P ) = |Inv(P )|. Note the reversed role of i and j from the traditional tdinv
statistic (see below). Define the dinv of a parking function to be

dinv(P ) = dinv(π)− invm(P ). (14)

Remark 8. The definition of dinv for parking functions is given in [GM13, BGLX16] as

dinv(P ) = dinv(π) + tdinv(P )−maxtdinv(π)

where tdinv is the number of pairs

{(i, j)|i < j and σ(i) < σ(j) < σ(i) +m}

and maxtdinv is the largest tdinv of all parking functions associated to the path. It is not
difficult to see that the definition given on line (14) is equivalent.

This allows us to define the Hikita polynomials

Hm,n(X; q, t) =
∑
PF

tarea(PF)qdinv(PF)FiDes(PF)(X)

where the sum is over all (m,n)-parking functions and {Fα} is the set of Gessel’s funda-
mental quasisymmetric functions.

It is immediate by the descriptions of the statistics that if P is a parking function on
Dyck path π with window

σ = [w1, w2, . . . , wn]

where wi < wi+1 for all i, then
dinv(P ) = dinv(π).
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Example 9. Recall the (4, 7)-parking function σ = [−7,−1, 3,−3, 1, 5, 9] from Example
7. By looking at the area of the underlying path, area(π) = 4 we immediately have that
area(σ) = 4. Similarly, dinv(π) can be quickly computed to be 3. Since the m-bounded
inversions are

(2, 4) and (3, 5),

dinv(σ) = 3− 2 = 1.
Recall that the inverse descent set of the parking function is equal to the descents in

the window. Therefore, iDes(σ) = {3}.

3.2 Affine Permutations and Parking Functions

An affine n-permutation is a permutation σ of Z such that

σ(i+ n) = σ(i) + n

for all i ∈ Z and
n∑
i=1

σ(i) =
n(n+ 1)

2
.

An affine n-permutation is m-bounded if σ−1(i) < σ−1(i+m) for all i ∈ Z.
There is a correspondence between (m,n)-parking functions and m-bounded affine n-

permutations, see [GMV14]. Suppose that P is a parking function. To obtain the affine
permutation from the window notation of P , add κ = n+ 1− area(P ) to each rank:

σ = [w1, w2, . . . , wn] −→ [w1 + κ,w2 + κ, . . . , wn + κ] = σ̂.

These affine permutations are m-bounded because for all i,

σ−1(i) < σ−1(i+m).

The statistics of the parking function can be recovered from the affine permutation.
Let a be the smallest letter appearing in the window of σ̂; then

area(P ) = 1− a.

An m-bounded inversion is a pair (i, j) such that

i < j, 1 6 j 6 n, and σ̂(j) < σ̂(i) < σ̂(j) +m.

Let the number of m-bounded inversions of σ̂ be denoted invm(σ̂), which gives

dinv(P ) =
(m− 1)(n− 1)

2
− invm(σ̂).
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Example 10. Recall that σ = [−7,−1, 3,−3, 1, 5, 9] is a (4, 7)-parking function from
Example 7. The corresponding affine 7-permutation is

σ̂ = [−3, 3, 7, 1, 5, 9, 13],

obtained by adding κ = 4 to each entry in the window.
The area of σ can be recovered from σ̂ as 1− (−3) = 4. And the m-bounded inversions

of σ̂ are
(−7, 1), (−4, 1), (−2, 1), (−1, 4), (0, 2), (0, 5),

which can be seen by extending σ̂’s window to the left:

σ̂ = . . . ,−1,−10,−4, 0,−6,−2, 2, 6, [−3, 3, 7, 1, 5, 9, 13],

and
(2, 4), and (3, 5).

So

dinv(σ) =
(7− 1)(4− 1)

2
− 8 = 1.

Similarly, iDes(σ) can be read from the window of σ̂ since a constant shift doesn’t change
descents. So iDes(σ) = {3}.

3.3 The F[n−1]-term

Let m and n be coprime. The highest order term F[n−1] of Hm,n occurs when the parking
function consists of a Dyck path π and the longest permutation w0 ∈ Sn. This can
only happen when for each rank k ∈ R(π), k + m does not appear in R(π). Another
way of saying this is that each rank on the path π must lie in a distinct column of the
(m,n)-diagram.

Since this can only happen when m > n, we have the following proposition:

Proposition 11. The coefficient of F[n−1] is 0 in all Hm,n where m < n.

Theorem 12. For any m,n coprime with m > n, the coefficient of F[n−1] in Hm,n is
Cm−n,n.

Proof. Suppose that π is an (m,n)-Dyck path with m > n coprime and each rank on
the path in a distinct column. The term in the F[n−1]-coefficient in Hm,n arising from π
corresponds to the parking function

σ = {w1, w2, . . . , wn}

where wi > wi+1 for all i.
This parking function corresponds to an affine permutation, which can be factored

into an affine part and a standard permutation σ̂ = (η, ω0). We claim that (η, id) is
(m− n)-bounded and

(m− n− 1)(n− 1)

2
− invm−n(η, id) =

(m− 1)(n− 1)

2
− invm(η, ω0). (15)

the electronic journal of combinatorics 25(1) (2018), #P1.21 12



To show that (η, id) is (m − n)-bounded first note that the window of (η, ω0) is de-
creasing. So if i appears in the window of (η, ω0) then i + m must appear right of the
window. Therefore i + m − n must either appear in the window or right of the window.
But the window of (η, id) is increasing, so i+m− n must appear to the right of i. Since
this holds for all i in the window, it holds for all i.

To prove Equation (15) we will show that

invm(η, ω0)− invm−n(η, id) =

(
n

2

)
.

We do this by noting that for every pair (i, j) in the window of (η, id) with i < j, if
j > i+m, there is a kj to the left of the window with i+m− n < kj < i+m.

Since for degree 2, F∅ = s(1,1) and F{1} = s(2) this gives:

Corollary 13. For any odd m > 0,

Hm,2(X; q, t) = Cm,2(q, t)s(1,1)(X) + Cm−2,2(q, t)s(2)(X).

4 The Hikita Polynomials Hm,3

Using Theorem 12 we can expand

Hm,3(q, t) = Cm,3(q, t)F∅(X) + pm1 (q, t)F{1}(X) + pm2 (q, t)F{2}(X) + Cm−3,3(q, t)F{1,2}(X)

for some polynomials pm1 and pm2 . We will continue by investigating the polynomials
pm1 (q, t) and pm2 (q, t).

Consider the set of (m, 3)-Dyck paths for m not divisible by 3. We can uniquely
describe an (m, 3)-Dyck path by stating the number of cells above the path in rows 1 and
2, respectively. We will denote this by Dm(k, `), where 0 6 k < 2m/3, 0 6 ` < m/3 and
` 6 k.

Example 14.

D5(3, 1) =

-3

2

7

-6

-1

4

-9

-4

1

-12

-7

-2

-15

-10

-5

.

For a fixed m we will partition the set of (m, 3)-Dyck paths into various types, based
on k and `:

• Type 0: {Dm(0, 0)},

• Type 1: {Dm(k, k) : k < m/3},

• Type 2a: {Dm(k, 0) : k < m/3},
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• Type 2b: {Dm(k, 0) : k > m/3},

• Type 3a: {Dm(k, `) : 0 < ` < k, k < m/3},

• Type 3b: {Dm(k, `) : 0 < `, k > m/3}.

Define the polynomials

Pm
y (q, t) =

∑
π type y

tarea(π)qdinv(π),

so that
Cm,3(q, t) =

∑
y∈{0,1,2a,2b,3a,3b}

Pm
y (q, t).

Since there is only one Dyck path of type 0,

Pm
0 (q, t) = tm−1.

Recall from Proposition 6 that any cell in the middle row of a (m, 3)-Dyck path π is
in Dinv(π). We will now explore which cells in the top row are in Dinv(π) and how the
parking functions on π affect the statistics.

4.1 The polynomial Pm
1

Let m not be divisible by 3. Let π be an (m, 3)-Dyck path of type 1 and let (x, 3) be any
cell above the path in the top row. Consider that

γ[(x, 3)⇒] = 2m− 3− 3k

> m− 3x

= γ(x, 2) = γ[(x, 3)↓],

since x < k < m/3. So by Theorem 2 no cells in the top row are in Dinv(π), and therefore

Pm
1 (q, t) =

∑
16k<m/3

tm−1−2kqk.

There are three parking functions associated to any (m, 3)-Dyck path of type 1:

p1 = [−3, a, a+m], p2 = [a,−3, a+m], p3 = [a, a+m,−3].

If pi are the parking functions associated to the Dyck path Dm(k, k) then a = m−3−3k <
m− 3. Note that Des(p1) = ∅,Des(p2) = {1} and Des(p3) = {2}.

So (1, 2) is an m-bounded inversion in p2 and (1, 3) is an m-bounded inversion in p3.
Therefore

dinv(p2) = dinv(p3) = dinv(Dm(k, k))− 1. (16)
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Example 15. The type 1 (5, 3)-Dyck path is:

D5(1, 1) =

-3

2

7

-6

-1

4

-9

-4

1

-12

-7

-2

-15

-10

-5

,

so
P 5
1 (q, t) = q1t2.

There are three associated parking functions:

[−3,−1, 4], [−1,−3, 4], [−1, 4,−3]

which contribute terms
q1t2F∅, t2F{1}, t2F{2}

to H5,3(X; q, t), respectively.

4.2 The polynomial Pm
2a

Let m not be divisible by 3. Let π be an (m, 3)-Dyck path of type 2a and let (x, 3) be
any cell above the path in the top row. Consider that

γ[(x, 3)→] = 2m− 3k

> m− 3x

= γ(x, 2) = γ[(x, 3)⇓],

since x < k < m/3. In addition,

γ[(x, 3)↓] = γ(x, 3) > γ[(x, 3)⇒].

So by Theorem 2 every cell above the path is in Dinv(π), and therefore

Pm
2a(q, t) =

∑
16k<m/3

tm−1−kqk.

There are three parking functions associated to any (m, 3)-Dyck path of type 2a:

p1 = [−3,m− 3, b], p2 = [−3, b,m− 3], p3 = [b,−3,m− 3].

If pi are the parking functions associated to the Dyck path Dm(k, 0) then m − 3 < b =
2m − 3 − 3k < 2m − 3, since k < m/3. Note that Des(p1) = ∅,Des(p2) = {2} and
Des(p3) = {1}.

So (2, 3) is an m-bounded inversion in p2 and (1, 3) is an m-bounded inversion in p3.
Therefore

dinv(p2) = dinv(p3) = dinv(Dm(k, 0))− 1. (17)
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Example 16. The type 2a (5, 3)-Dyck path is:

D5(1, 0) =

-3

2

7

-6

-1

4

-9

-4

1

-12

-7

-2

-15

-10

-5

,

so
P 5
2a(q, t) = q1t3.

There are three associated parking functions:

[−3, 2, 4], [−3, 4, 2], [4,−3, 2]

which contribute terms
q1t3F∅, t3F{2}, t3F{1}

to H5,3(X; q, t), respectively.

4.3 The polynomial Pm
2b

Let m not be divisible by 3 and let π be an (m, 3)-Dyck path of type 2b and let (x, 3) for
x < k −m/3 be a cell above the path in the top row. Consider that since k > m/3,

γ[(x, 3)→] = 2m− 3k

< m− 3x

= γ(x, 2) = γ[(x, 3)⇓].

So by Theorem 2 every cell above the path with x < k−m/3 is not in Dinv(π). However,
every cell (x, 3) above the path with x > k−m/3 is in Dinv(π). This can be seen because
m − 3x < 2m − 3k, reversing the inequality above, and γ[(x, 3)↓] = γ(x, 3) > γ[(x, 3)⇒].
Therefore,

Pm
2b (q, t) =

∑
m/3<k<2m/3

tm−1−kqdm/3e.

There are three parking functions associated to any (m, 3)-Dyck path of type 2b:

p1 = [−3,m− 3, b], p2 = [−3, b,m− 3], p3 = [b,−3,m− 3].

If pi are the parking functions associated to the Dyck path Dm(k, 0) then −3 < b =
2m − 3 − 3k < m − 3, since k > m/3. Note that Des(p1) = {2},Des(p2) = ∅ and
Des(p3) = {1}.

So (2, 3) is an m-bounded inversion in p1 and (1, 2) is an m-bounded inversion in p3.
Therefore

dinv(p1) = dinv(p3) = dinv(Dm(k, 0))− 1. (18)
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Example 17. The type 2b (5, 3)-Dyck paths are:

D5(2, 0) =

-3

2

7

-6

-1

4

-9

-4

1

-12

-7

-2

-15

-10

-5

and D5(3, 0) =

-3

2

7

-6

-1

4

-9

-4

1

-12

-7

-2

-15

-10

-5

,

so
P 5
2b(q, t) = q2t2 + q2t1.

D5(2, 0) has three associated parking functions:

[−3, 2, 1], [−3, 1, 2], [1,−3, 2]

which contribute terms
q1t1F{2}, q2t1F∅, q1t1F{1}

to H5,3(X; q, t), respectively.

4.4 The polynomial Pm
3a

Let m not be divisible by 3. There are six parking functions associated to any (m, 3)-Dyck
path of type 3a:

p1 = [−3, a, b], p2 = [−3, b, a], p3 = [a,−3, b],

p4 = [a, b,−3], p5 = [b,−3, a], p6 = [b, a,−3],

with a < b.
Let π be a (m, 3)-Dyck path of type 3a and let (x, 3) be a cell above the path in the

top row such that (x, 2) is also above the path. Since k < m/3,

γ[(x, 3)⇒] = 2m− 3− 3k

> m− 3x

= γ(x, 2) = γ[(x, 3)↓].

By Theorem 2 every cell in the middle row that is above the path is immediately below
a cell that is not in Dinv(π). But for any cell (x, 3) that does not have a cell immediately
below it that is above the path,

γ[(x, 3)→] = 2m− 3k

> m− 3x

= γ(x, 2) = γ[(x, 3)⇓],

and γ[(x, 3)↓] = γ(x, 3) > γ[(x, 3)⇒], so it is in Dinv(π). Therefore,

Pm
3a(q, t) =

∑
26k<m/3

k−1∑
`=1

tm−1−k−`qk.
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If pi are the parking functions associated to the Dyck path Dm(k, `) then a = m− 3`
and b = 2m− 3k with m− 3 < b < a+m since k < m/3. Note that

Des(p1) = ∅, Des(p2) = Des(p4) = {2},

Des(p3) = Des(p5) = {1}, Des(p6) = {1, 2}.

So (2, 3) is an m-bounded inversion in p2, (1, 2) is an m-bounded inversion in p3, and
(1, 3) is an m-bounded inversion in p4, and p5. Therefore

dinv(p2) = dinv(p5) = dinv(p3) = dinv(p4) = dinv(Dm(k, `))− 1. (19)

Example 18. The (3, 5)-diagram does not support any Dyck paths of type 3a. So

P 5
3a(q, t) = 0.

4.5 The polynomial Pm
3b

Let m not be divisible by 3 and let π be an (m, 3)-Dyck path of type 3b. We will break
these Dyck paths into two further subcases, those with ` < k − m/3 and those with
` > k −m/3. In the first case, when ` < k −m/3, if ` < x < k −m/3 then the cell (x, 3)
is not in Dinv(π). This is because

γ[(x, 3)⇓] = m− 3x

> 2m− 3k

= γ[(x, 3)→]

and Theorem 2. The cells (x, 3) where x 6 ` are all in Dinv(π) because

γ[(x, 3)↓] = m− 3x

> 2m− 3− 3k

= γ[(x, 3)⇒]

and

γ[(x, 3)→] > −2

> −3x

= γ[(x, 3)⇓]

Therefore, these (m, 3)-Dyck paths contribute

∑
m/3+1<k<2m/3

 ∑
16`<k−m/3

qdm/3e+2`tm−1−k−`

 (20)

to Cm,3(q, t).
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In the second case, where ` > k−m/3, then every cell (x, 3) that is immediately above
a cell in the middle row that is above the path and x > k + 1 −m/3 is not in Dinv(π).
This is because

γ[(x, 3)↓] = m− 3x

< 2m− 3− 3k

= γ[(x, 3)⇒].

However, for every cell (x, 3) with x < k + 1−m/3,

γ[(x, 3)↓] = m− 3x

> 2m− 3− 3k

= γ[(x, 3)⇒],

and

γ[(x, 3)→] > −2

> −3x

= γ[(x, 3)⇓],

so the cell is in Dinv(π), by Theorem 2. Therefore, these (m, 3)-Dyck paths contribute

∑
m/3<k<2m/3

 ∑
k−m/3<`<m/3

q2k−bm/3ctm−1−k−`

 (21)

to Cm,3(q, t).
By summing Lines (20) and (21),

Pm
3b (q, t) =

∑
m/3+1<k<2m/3

 ∑
16`<k−m/3

qdm/3e+2`tm−1−k−`


+

∑
m/3<k<2m/3

 ∑
k−m/3<`<m/3

q2k−bm/3ctm−1−k−`

 .

The type 3b (m, 3)-Dyck paths also have six parking functions associated to each of
them:

p1 = [−3, a, b], p2 = [−3, b, a], p3 = [a,−3, b],

p4 = [a, b,−3], p5 = [b,−3, a], p6 = [b, a,−3],

where a is the rank appearing in row 2 and b is the rank appearing in row 1.
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If pi are the parking functions associated to the Dyck path Dm(k, `) then a = m− 3`
and b = 2m − 3k with b < 2m − 3 and a, b > m − 3. If a < b then the case proceeds
similarly to type 3a:

Des(p1) = ∅, Des(p2) = Des(p4) = {2},

Des(p3) = Des(p5) = {1}, Des(p6) = {1, 2}.

Also, (2, 3) is an m-bounded inversion in p2 and (1, 2) is an m-bounded inversion in
p3. However, (1, 3) and (2, 3) are m-bounded inversions in p4 and (1, 2) and (1, 3) are
m-bounded inversions in p5. Therefore

dinv(p2) = dinv(p3) = dinv(Dm(k, `))− 1, (22)

dinv(p4) = dinv(p5) = dinv(Dm(k, `))− 2. (23)

If b < a then
Des(p1) = Des(p6) = {2}, Des(p2) = ∅,

Des(p4) = {1, 2}, Des(p3) = Des(p5) = {1}.

In this case, (2, 3) is an m-bounded inversion of p1 and (1, 2) is an m-bounded inversion
of p5. Both (1, 2) and (1, 3) are m-bounded inversions of p3 and (1, 3) and (2, 3) are m-
bounded inversions of p6. Therefore

dinv(p1) = dinv(p5) = dinv(Dm(k, `))− 1, (24)

dinv(p3) = dinv(p6) = dinv(Dm(k, `))− 2. (25)

Example 19. The type 3b (5, 3)-Dyck paths are:

D5(2, 1) =

-3

2

7

-6

-1

4

-9

-4

1

-12

-7

-2

-15

-10

-5

and D5(3, 1) =

-3

2

7

-6

-1

4

-9

-4

1

-12

-7

-2

-15

-10

-5

,

so
P 5
3b(q, t) = q3t1 + q4.

D5(2, 1) has six associated parking functions:

[−3,−1, 1], [−3, 1,−1], [−1,−3, 1], [−1, 1,−3], [1,−3,−1], [1,−1,−3]

which contribute terms

q3t1F∅, q2t1F{2}, q2t1F{1}, q1t1F{2}, q1t1F{1}, t1F{1,2},

to H5,3(X; q, t), respectively.
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4.6 The polynomials Km−1,3 and Km−2,3

Let m not be divisible by 3.
Lines (16)–(25) give that the coefficient of F{1} in Hm,3 is

pm1 = q−1 · (Pm
1 + Pm

2a + Pm
2b + 2Pm

3a) + (q−1 + q−2) · Pm
3b .

We claim that
Km−1,3 = q−1 · (Pm

2a + Pm
2b + Pm

3a + Pm
3b )

and
Km−2,3 = q−1 · (Pm

1 + Pm
3a) + q−2 · Pm

3b .

Consider q−1 · s(a,b)(q, t) for a > b > 0,

q−1 · s(a,b)(q, t) = q−1 ·
a∑
i=b

qa+b−iti

=
a∑
i=b

q(a−1)+b−iti

= qb−1ta +
a−1∑
i=b

q(a−1)+b−iti

= qb−1ta + s(a−1,b)(q, t)

where s(b−1,b)(q, t) = 0. If we sum over each type, S,∑
S

Pm
S = Cm,3,

so
pm1 = q−1 · (Cm,3 − Pm

0 ) + q−1Pm
3a + q−2Pm

3b .

Consider that

q−1 · (Cm,3 − tm−1) =

∑
06i<m/3 s(m−1−2i,i)(q, t)− tm−1

q

=
s(m−1)(q, t)− tm−1 +

∑
16i<m/3 s(m−1−2i,i)(q, t)

q

= s(m−2)(q, t) +
∑

16i<m/3

(
s(m−2−2i,i)(q, t) + qi−1tm−1−2i

)
=

∑
06i<m/3

s(m−2−2i,i)(q, t) +
∑

16i<m/3

qi−1tm−1−2i

= Km−1,3(q, t) + q−1 · Pm
1 .

This proves that
pm1 = Km−1,3 + q−1(Pm

1 + Pm
3a) + q−2Pm

3b ,
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or
Km−1,3 = q−1 · (Pm

2a + Pm
2b + Pm

3a + Pm
3b ). (26)

To address the second part, we will map a (m, 3)-Dyck path Dm(k, `) with ` > 0 to
the (m − 2, 3)-Dyck path Dm−2(k − 1, ` − 1). Each cell (x, y) in Dm−2(k − 1, ` − 1) has
the same arm and leg as (x+ 1, y) in Dm(k, `) so

(x, y) ∈ Dinv(Dm−2(k − 1, `− 1)) ⇐⇒ (x+ 1, y) ∈ Dinv(Dm(k, `)).

Similarly, it is immediate that area(Dm−2(k − 1, `− 1)) = area(Dm(k, `)).
Therefore, we need to consider cells (1, 2) and (1, 3) in Dm(k, `) to compute

dinv(Dm−2(k − 1, ` − 1)). Since (1, 2) is in the middle row, (1, 2) ∈ Dinv(Dm(k, `)). The
cell (1, 3) is in Dinv(Dm(k, `)) if and only if

γm[(1, 3)⇒] < m− 3 ⇐⇒ k > m/3

⇐⇒ Dm(k, `) is type 3b.

So if Dm(k, `) is type 3b,

dinv(Dm−2(k − 1, `− 1)) = dinv(Dm(k, `))− 2,

otherwise
dinv(Dm−2(k − 1, `− 1)) = dinv(Dm(k, `))− 1.

Since every (m− 2, 3)-Dyck path is the image of a (m, 3) dyck path of type 1, 3a, or
3b by removing one cell from row 2 and one cell from row 3,

Km−2,3 = q−1(Pm
1 + Pm

3a) + q−2Pm
3b . (27)

5 Isomorphisms Between Parking Functions and Dyck Paths

Let Π(k, n) be the set of, possibly modified in the sense of Section 2, (k, n)-Dyck paths
and PF(m,n) be the set of (m,n)-parking functions for m,n relatively prime. Let

PFS(m,n) = {P ∈ PF(m,n)|iDes(P ) = S}.

We will refer to a bijection ϕ between sets of parking functions or Dyck paths as an
isomorphism if

area(P ) = area(ϕ(P )) and dinv(P ) = dinv(ϕ(P )).

It is well-known that there is an isomorphism between PF∅(m,n) and Π(m,n) by map-
ping a parking function to its underlying Dyck path. For m > n, Theorem 12 gives an
isomorphism between PF[n−1](m,n) and Π(m− n, n).

Section 4 suggests an isomorphism between PF{1}(m, 3) and Π(m−1, 3)∪Π(m−2, 3).
Note that exactly one of these sets of Dyck paths must be modified Dyck paths as per
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Section 2. Let P ∈ PF{1}(m, 3) and let σ̂ = [x, y, z] be the associated affine permutation.
Since Des(P ) = {1} it follows that x > y, z > y.

By [KL15] there is a unique association of (k, 3)-Dyck paths with pairs of non-negative
integers (a, d) where a, d > k − a − d − 1 by setting a = area(π) and d = dinv(π) for a
given Dyck path π. To construct an (m, 3)-Dyck path corresponding to a pair of such
integers (a, d):

1. draw the (m, 3)-diagram,

2. highlight the largest d ranks,

3. find the next largest rank, r,

4. highlight the next m− 1− a− d largest ranks that do not lie in the same row as r,

5. finally, draw the Dyck path so that all of the highlighted ranks are above the path.

This is called the Rank Word Construction Algorithm.

Remark 20. Note that this association applies to modified Dyck paths in the sense of
Section 2. This is because we know that the (3k, 3)-modified Catalan polynomial can be
realized in terms of (3k+1, 3)-Dyck paths. Since each term of K(3k,3) is a term of C(3k+1,3)

it corresponds to a unique (3k + 1, 3)-Dyck path such that the rank 1 is not above the
path. Thus to construct a (3k, 3)-modified Dyck path we simply apply the association to
the (3k+ 1, 3)-diagram, obtain a (3k+ 1, 3)-Dyck path, and then superimpose that Dyck
path over the (3k, 3)-diagram.

Define ϕ : PF{1}(m, 3)→ Π(m− 1, 3) ∪ Π(m− 2, 3) by ϕ(P ) = π where

area(π) = area(P ) and dinv(π) = dinv(P )

and π ∈ Π(m − 1, 3) if the underlying Dyck path of P is Type 2 or Type 3 with x < z,
otherwise π ∈ Π(m− 2, 3).

5.1 Symmetry Results

In the previous section we were studying the Hikita polynomials

Hm,3(X; q, t)

= Cm,3(q, t)F∅(X) + pm1 (q, t)F{1}(X) + pm2 (q, t)F{2}(X) + Cm−3,3(q, t)F{1,2}(X).

By observing equations (16) – (25) we note that pm1 = pm2 , for all m. This means that
Hm,3 is symmetric in X and can be written

Hm,3(X; q, t) = Cm,3(q, t)s(1,1,1)(X) + pm(q, t)s(2,1)(X) + Cm−3,3(q, t)s(3)(X),

where pm(q, t) = pm1 (q, t) = pm2 (q, t). This necessarily pairs a parking function with inverse
descent set {1} to a unique parking function with inverse descent set {2} with identical
statistics.
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In light of Equations (26) and (27), we can express pm as

pm(q, t) = Km−1,3(q, t) +Km−2,3(q, t).

So

Hm,3(X; q, t)

= Cm,3(q, t)s(1,1,1)(X) + (Km−1,3(q, t) +Km−2,3(q, t))s(2,1)(X) + Cm−3,3(q, t)s(3)(X).

Each of these (modified) rational Catalan polynomials is symmetric in q and t, [GM14,
KL15]. That is,

Ca,3(q, t) = Ca,3(t, q)

and
Kb,3(q, t) = Kb,3(t, q)

for any b and any a not divisible by 3. Therefore the Hikita polynomials Hm,3 are sym-
metric in q and t:

Hm,3(X; q, t) = Hm,3(X; t, q).

To more explicitly see this association, begin with a parking function P = [x, y, z] ∈
PF(m, 3), where P̂ is the underlying Dyck path, area(P ) = a, and dinv(P ) = d. Map P
to the Dyck path π with area(π) = d and dinv(π) = a and

π ∈


Π(m, 3) if iDes(P ) = ∅

Π(m− 1, 3) if |iDes(P )| = 1 and P̂ is Type 2 or Type 3 with x < z

Π(m− 2, 3) if |iDes(P )| = 1 and P̂ is Type 1 or Type 3 with x > z
Π(m− 3, 3) if iDes(P ) = {1, 2}

.

If π is Type 0, Type 1, or Type 2, it is sufficient finish the association by choosing
the unique parking function P ′ defined on π with iDes(P ′) = iDes(P ). For Type 3, then
associate P to the parking function P ′ = [x′, y′, z′] where x′ > z′ if and only if x > z.
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