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Abstract

For any finite Coxeter group W of rank n we show that the order complex of
the lattice of non-crossing partitions NC(W ) embeds as a chamber subcomplex into
a spherical building of type An−1. We use this to give a new proof of the fact that
the non-crossing partition lattice in type An is supersolvable for all n. Moreover, we
show that in case Bn, this is only the case if n < 4. We also obtain a lower bound
on the radius of the Hurwitz graph H(W ) in all types and re-prove that in type An
the radius is

(
n
2

)
.

Keywords: generalized non-crossing partitions; buildings; Hurwitz graph; super-
solvability

1 Introduction

The lattice of non-crossing partitions NC(W, c) of a finite Coxeter group W , defined with
respect to some Coxeter element c, is the interval below c in the absolute order, that is

NC(W, c) = {π ∈ W : π 6 c}.

It is easy to see that the isomorphism type of this lattice is independent of the choice of
c. In type A, the case of the symmetric group Sn, this definition agrees with the classical
notion of non-crossing partitions NCPn introduced by Kreweras [Kre72]. Our main result
is the following.

Main Theorem. For every finite Coxeter group W of rank n, the order complex of the
non-crossing partitions |NC(W )| is isomorphic to a chamber subcomplex of a spherical
building ∆ of type An−1. This subcomplex is the union of a collection of apartments and
has the homotopy type of a wedge of spheres. Moreover, if W is crystallographic then one
can choose ∆ to be finite.
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The fact that the order complex of NCPn embeds into a spherical building of type
An−2 was shown by Brady and McCammond [BM10] as well as Haettel, Kielak and the
second author [HKS16]. Our main result generalizes these results.

Throughout the rest of the paper we provide a couple of applications of our main result.
Corollary 4.12 contains a new proof for the supersolvability of the type A non-crossing
partitions. This fact was first shown by Hersh as Theorem 4.3.2 of her Ph.D. Thesis
[Her99]. In contrast to that we show in Theorem 4.23 that NC(Bn) is only supersolvable
if n 6 3.

In Theorem 5.4 we show that for all finite Coxeter groups W of rank n the radius of
the Hurwitz graph, as defined in Definition 5.1, is bounded below by

(
n
2

)
. In addition we

provide a simple new proof of the fact that the radius of the Hurwitz graph in type An
equals

(
n
2

)
in the same theorem. Moreover, we provide examples showing that sometimes

diam(H(W )) > rad(H(W )). This partially answers a question formulated by Adin and
Roichman in [AR14] and disproves their conjecture on the radius of the Hurwitz graph in
type B3.

We would like to illustrate our main result with a concrete example. Figure 1 below
shows the order complex of non-crossing partitions NCP4 inside the spherical building
of rank 2 over F2. The light gray edges are the chambers of the building that are not
contained in the image of |NCP4|. See also Example 3.2. A type B example is given in
Figure 5 on page 17.

In Section 2 we collect some basic

Figure 1: |NCP4| inside a spherical building.

concepts and results concerning abso-
lute order and non-crossing partitions.
We also characterize maximal Boolean
lattices in the non-crossing partition
lattice.

Structural results of the complex
|NC(W )| are proven in Section 3. For
instance, we show that both chambers
and apartments in |NC(W )| can be
described by reduced factorizations of
the Coxeter element. This enables us
to show that |NC(W )| is a union of
apartments. In this section we also
prove the main result.

Section 4 is devoted to explicitly constructing embeddings of the order complex of
non-crossing partitions for type A and B into finite buildings. We also provide pictorial
interpretations of these embeddings, which we use to give a pictorial description of apart-
ments in type B. The analog for type A is in [HKS16]. This section is also where we
discuss supersolvability.

In Section 5 we will prove the mentioned estimates and equalities on the diameter and
radius of the Hurwitz graph H(W ). This result relies on the embedding of the Hurwitz
graph into the chamber graph Γ∆ of the building ∆ which one obtains from the Main
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Theorem. Finally, we discuss a pictorial interpretation of the Hurwitz action in type A
in terms of labeled trees. Using this we sketch how to re-prove the transitivity of the
Hurwitz action in type A.

In Appendix A some very basic facts about spherical buildings of type A are given.
The reader not familiar with buildings may want to read that section first.

2 Finite Coxeter Groups and non-crossing Partitions

Throughout, we will assume that (W,S) is a finite Coxeter system, i.e. W is a finite
Coxeter group and S = {s1, . . . , sn} the standard generating set for W , consisting of
elements of order 2. The rank of W is n.

A Coxeter element in W is any element conjugate to s1 . . . sn. Note that in particular
every element of the form sσ(1)sσ(2) . . . sσ(n) for a permutation σ in the symmetric group
Sn is a Coxeter element. There are slightly different notions of Coxeter elements in the
literature. We follow [Arm09], but Humphreys [Hum90] only considers elements of the
form sσ(1)sσ(2) . . . sσ(n) as Coxeter elements.

In [Bes03], Bessis introduced the notion of a dual Coxeter system (W,T ). It arises from
the classical Coxeter system by replacing the generating set S by the larger generating
set

T = {wsw−1 : s ∈ S,w ∈ W}.

Since T is the conjugacy closure of S in W , it obviously generates W and consists of
elements of order 2. The elements of T are called reflections and elements of S are
called simple reflections. For a generating set X of W , the set of reduced expressions
with respect to X of w ∈ W is denoted by RX(w). The elements of RX(w) are called
X-reduced expressions of w.

2.1 Absolute order and non-crossing partitions

We will always assume our generating set of W to be T . For example, we will call a word
in W reduced, if it is reduced with respect to T and we denote by ` the word length on
W with respect to T . Define the absolute order 6 on W by setting

v 6 w ⇐⇒ `(w) = `(v) + `(v−1w)

for all v, w ∈ W . The poset (W,6) is a finite poset graded by ` with the identity as
unique minimal element and the Coxeter elements among the maximal elements. Note
that v 6 w holds if and only if there is a reduced expression of w such that a prefix of it
is a reduced expression for v. The absolute order is the natural analog of the weak order
in the classical approach.

Let us now review two properties of reduced words and the absolute order.
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Lemma 2.1 (Shifting property). [Arm09, Lem. 2.5.1]. For w ∈ W and t1 . . . tk ∈ RT (w),
the maps σi, σ

′
i : RT (w)→ RT (w) defined by

σi(t1 . . . tk) = t1 · t2 · . . . · ti−1 · (titi+1ti) · ti · ti+2 · . . . · tk,
σ′i(t1 . . . tk) = t1 · t2 · . . . · ti−1 · ti+1 · (ti+1titi+1) · ti+2 · . . . · tk

are inverse self-maps of RT (w) for all 1 6 i < k. In particular, T -reduced expressions do
not contain repetitions of letters of T .

Note that these shifts only alter the ith and (i+1)st letter of a reduced decomposition.
It is a straightforward computation that σ′i = σ−1

i and that the σi satisfy the braid
relations. They hence induce an action of the braid group on RT (c), which is called the
Hurwitz action. This action is known to be transitive [Bes03, Prop 1.6.1].

These shifts are used to prove the following characterization of the absolute order,
which is an analog of the subword property of the Bruhat order on W . If t1t2 . . . tk is a
word, we call an expression ti1ti2 . . . til a subword if 1 6 i1 < i2 < · · · < il 6 k.

Proposition 2.2 (Subword property). [Arm09, Prop. 2.5.2]. For v, w ∈ W we have
v 6 w if and only if there is a T -reduced expression of w that contains v as a subword.

Definition 2.3. Let c be a Coxeter element in W . The non-crossing partitions NC(W, c)
of W with respect to c is the interval between id and c in absolute order, i.e.

NC(W, c) := [id, c] = {π ∈ W : π 6 c}.

The fact that any two Coxeter elements c and c′ are conjugate implies that NC(W, c)
and NC(W, c′) are isomorphic posets. We therefore write NC(W ) for NC(W, c). We also
denote by NC(Xn) the non-crossing partitions of the Coxeter group of type Xn.

The grading of W by ` induces a grading of NC(W ) by `. Moreover, NC(W ) carries
the structure of a finite, graded lattice of rank n − 1, where n is the rank of W . See
[BW08, Thm. 7.8] for a uniform proof of this fact.

The next lemma shows that taking joins is compatible with the group structure.

Lemma 2.4. [Arm09, Le. 2.6.13]. Choose w in NC(W ). For any T -reduced expression
t1 . . . tk of w we have w = t1 ∨ . . . ∨ tk.

Maximal chains in NC(W ) are all of the same length and have an interpretation in
terms of reduced decompositions. Compare also Corollary 4 of [BW02b]. Let C(W ) denote
the set of maximal chains in NC(W, c).

Lemma 2.5. The map g : RT (c)→ C(W ) defined by

g(t1 . . . tn) = (id 6 t1 6 t1t2 6 · · · 6 t1 . . . tn)

is a bijection of reduced decompositions of the Coxeter element c and maximal chains in
NC(W, c).
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Proof. For a given maximal chain id 6 w1 6 w2 6 · · · 6 wn−1 = c a reduced decom-
position of c is given by w1 · w−1

1 w2 · w−1
2 w3 · . . . · w−1

n−2wn−1. The fact that w−1
i wi+1 is

a reflection in T follows from the maximality of the chain. This obviously provides an
inverse map.

A simple computation implies the next corollary.

Corollary 2.6. Choose t1 . . . tn ∈ RT (c). For all 1 6 i < n and all integers k > 1,
the chains g(σki (t1 . . . tn)) and g(t1 . . . tn) differ by exactly one element. The analog holds
for σ′.

2.2 A description of NC(W ) in terms of moved spaces

Let W be a finite Coxeter group and c a fixed Coxeter element of W . We denote the
standard geometric representation of W on V = RS by ρ and the root corresponding to
a reflection t in W by αt and conversely, the reflection corresponding to a root α by tα.

For each w ∈ W , the fixed space Fix(w) is the subspace of V that is pointwise fixed by
the linear transformation ρ(w), i.e. Fix(w) = ker(ρ(w)−id). Analogously, the moved space
Mov(w) of w is the orthogonal complement of Fix(w) in V , i.e. Mov(w) = im(ρ(w)− id).

We obtain the following description of the moved space in terms of reduced expressions
and roots from the proof of Theorem 2.4.7 of [Arm09].

Observation 2.7. If tα1tα2 . . . tαk
is a reduced expression for w ∈ W , then the set

{α1, α2, . . . , αk} is a basis of Mov(w).

This observation is a refinement of the following [Car72, Lem. 3].

Lemma 2.8 (Carter’s Lemma). For w ∈ W , a word w = tα1tα2 . . . tαk
is reduced if and

only if the roots α1, α2, . . . , αk are linearly independent.

The following proposition is central to the construction of an embedding of the order
complex of non-crossing partitions into a spherical building. This follows from results of
Brady and Watt [BW02b], [BW02a] and is stated in a similar way in Theorem 2.4.9 in
[Arm09]. For a vector space V , we denote by L(V ) the lattice of linear subspaces of V .

Proposition 2.9. For every finite Coxeter group W with Coxeter element c and V =
Mov(c) we have rk(NC(W )) = rk(L(V )) and the map

f : NC(W )→ L(V ), π 7→ Mov(π)

is a poset map that is injective, not surjective and rank preserving.

Proof. The map f is well-defined by Section 2 of [BW02a] and the injectivity of f is
Theorem 1 of [BW02b]. The fact that f is rank-preserving is shown in Proposition 2.2
of [BW02a]. In particular, we get that rk(NC(W )) = rk(L(V )), since `(c) = dim(V ) by
construction. Since W is finite and V ∼= Rn, the image of f is always a proper subset of
L(V ). This completes the proof.
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We will identify NC(W ) with its image under f and will sometimes abuse notation
and write NC(W ) ⊆ L(V ).

The following lemma is needed in Section 4 to construct explicit embeddings for type
A and B.

Lemma 2.10. Let w ∈ NC(W ) and t ∈ T such that rk(w ∨ t) = rk(w) + 1. Then
f(w ∨ t) = f(w) ∨ f(t). In particular, for a T -reduced decomposition t1 . . . tk of w we get
f(w) = f(t1 ∨ . . . ∨ tk) = f(t1) ∨ . . . ∨ f(tk).

Proof. Since f is order preserving we get that f(w), f(t) 6 f(w ∨ t), hence f(w)∨ f(t) 6
f(w ∨ t). Moreover, rk(f(w) ∨ f(t)) = rk f(w) + rk f(t) = rk f(w ∨ t), where the second
equality holds by assumption. Uniqueness of the join then implies f(w)∨f(t) = f(w∨ t).
The second assertion follows with Lemma 2.4.

2.3 Boolean lattices in NC(W )

We characterize the maximal Boolean sublattices of NC(W ) in terms of reduced decom-
positions of the Coxeter element in Proposition 2.11.

A lattice is a Boolean lattice, if it is isomorphic to the lattice Bn of subsets of {1, . . . , n}
ordered by inclusion for some n. The set of all maximal Boolean lattices in NC(W ) is
denoted by B(NC(W )).

Proposition 2.11. The map h : RT (c)→ B(NC(W )) defined by

t1 . . . tn 7→

{∨
i∈I

ti : I ⊆ {1, . . . , n}

}
,

which assigns to every reduced decomposition of the Coxeter element c a maximal Boolean
lattice in NC(W ), is surjective.

Note that in general h is not injective. For instance, (12)(34)(24) and (34)(12)(24) are
two different reduced expressions for the Coxeter element (1234) in the symmetric group
S4, but the corresponding Boolean lattices are clearly the same as the sets of reflections
coincide.

Proof. By the subword property 2.2 and the compatibility of taking products and the
join in NC(W ), which was shown in Lemma 2.4, it is clear that the map is well-defined.
For the surjectivity we show that for every Boolean lattice A in NC(W ) there exists a
reduced expression t1 . . . tn = c such that h(t1 . . . tn) = A. Let A be a Boolean lattice in
NC(W ). Then f(A) is a Boolean lattice in L(V ) as f is injective and rank-preserving.
The Boolean lattices in L(V ) correspond bijectively to frames of V . Let {L1, . . . , Ln} be
the frame determining f(A). Since f is injective, there is a unique ti ∈ T with f(ti) = Li
for all 1 6 i 6 n. Hence, Li = Mov(ti) with basis {αti}. By Carter’s Lemma 2.8, we get
that any word ti1 . . . tin is reduced if {i1, . . . , in} = {1, . . . , n}, as {α1, . . . , αn} is a basis
for V . But then one of these words has to be a reduced decomposition for c since every
element w in W with `(w) = `(c) either equals c or is not contained in NC(W ).
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3 Non-crossing Partitions embed into spherical Buildings

In this section we prove our Main Theorem as stated in the introduction and show that
|NC(W )| shares important properties with buildings, although (in general) it is not a
building itself. We split the proof of the Main Theorem into several smaller statements
and start by showing that there is an embedding into a building.

Proposition 3.1. The order complex |NC(W )| of the non-crossing partition lattice asso-
ciated to a finite Coxeter group W of rank n embeds into a spherical building ∆ of type
An−1. In particular, dim(|NC(W )|) = dim(∆).

Proof. The map f of Proposition 2.9 induces a map f̄ : |NC(W )| → |L(V )| on the order
complexes. By Proposition A.3 the order complex of L(V ) is a spherical building ∆ of
type An−1. As f is injective and rank preserving, the induced map f̄ is an embedding
of simplicial complexes. The equality of dimensions is implied by the equality of ranks,
which is guaranteed by Proposition 2.9.

The following two subsections contain, besides additional results, the proofs of the
remaining properties of this embedding stated in the main theorem. We summarize the
proof of the Main Theorem here.

Proof of Main Theorem. By Proposition 3.1, the complex |NC(W )| embeds into the build-
ing ∆ = |L(V )|. From the same proposition it follows that dim(|NC(W )|) = dim(∆) and
since |NC(W )| is a chamber complex by Lemma 3.6, it is isomorphic to a chamber sub-
complex of ∆.

The fact that the image of |NC(W )| in the building is a union of apartments is shown
in Corollary 3.11.

For the assertion on the homotopy type see Remark 3.12. In type A, this also follows
directly from Proposition 4.10.

Finally, the fact about crystallographic Coxeter groups is shown in Proposition 3.14.

Example 3.2. Figure 1 on page 2 shows the image of the order complex of the non-
crossing partitions NC(S4) sitting inside the spherical building of rank 2 over F2. Each
vertex of |NCP4| is labeled by the non-crossing partition that is its preimage. For the
pictorial description of non-crossing partitions see Section 4.1. The higher rank simplices
in the image of |NCP4| in the building are uniquely determined by its vertices (as |NCP4|
is a flag complex). They correspond to chains of non-crossing partitions whose length is
the dimension of the simplex.

3.1 Building-like structure of |NC(W )|

The chambers are the maximal simplices in |NC(W )| and we write Ch(W ) for the set of
all chambers in |NC(W )|. In Definition 3.7 we will introduce the notion of apartments
in |NC(W )| and relate chambers and apartments to reduced factorizations of the Coxeter
element. We prove in Lemma 3.6 that |NC(W )| is a chamber complex, which can be
written as a union of apartments, see Corollary 3.11.
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Remark 3.3. By definition of the order complex, the maximal chains in NC(W ) are in
bijection with the maximal simplices in |NC(W )|, i.e. its chambers, via

g̃ : (id 6 t1 6 t1t2 6 . . . 6 t1 . . . tn) 7→ {t1, t1t2, . . . , t1 . . . tn−1}.

Lemma 3.4. The map g′ : RT (c)→ Ch(W ) defined by

g′(t1 . . . tn) = {t1, t1t2, . . . , t1 . . . tn−1}

is a bijection of the set of reduced decompositions of the Coxeter element c and the set of
chambers in |NC(W )|.

Proof. The map g′ is the composition of the bijections g from Lemma 2.5 and g̃ from
above.

The shifts σi on the reduced decompositions of the Coxeter element induce maps on
Ch(W ) as follows. For any chamber C ∈ Ch(W ) put σ(C) := g′(σ(g′−1(C))) and define σ′i
analogously. The chamber σ(C) corresponds to the reduced expression that arises from
the reduced decomposition defining C by applying the shift σ. From this we obtain the
following corollary.

Corollary 3.5. For all C ∈ Ch(W ), 1 6 i < n and k > 1, the chamber σki (C) is adjacent
to C, i.e. they have all but one vertex in common. The same holds for σ′i.

Proof. The chains in NC(W ) corresponding to C and σki (C) differ in exactly one element
by Corollary 2.6. Hence, the corresponding chambers differ by one element as g̃ maps a
chain to the simplex on its elements. Similarly obtain the statement for σ′i.

Figure 2 shows an example of chambers sharing a codimension one face and the cor-
responding reduced decomposition. Here n = 3 and i = 2.

t1t2
t1t2t3

t1t3

t1 · t2t3t2

t1

C

σ2C

σ′2C

Figure 2: Three adjacent chambers C, σ2(C) and σ′2(C) given by the reduced decomposi-
tions t1t2t3, t1(t2t3t2)t2 and t1t3(t3t2t3), respectively.

The following is an easy consequence of the fact that the non-crossing partition lattices
are shellable [ABW07]. It also can be shown directly using the transitivity of the Hurwitz
action.
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Lemma 3.6. The complex |NC(W )| is a chamber complex.

Definition 3.7. An apartment in |NC(W )| is a subcomplex A such that A = |B| for a
Boolean lattice B ∈ B(NC(W )). The set of apartments in |NC(W )| is denoted by A(W ).

Note that every apartment is isomorphic (as abstract simplicial complex) to the Cox-
eter complex of type An−1. Therefore A(W ) is a subset of the set of apartments in the
building ∆. Hence, we get a bijection

h̃ : B(NC(W ))→ A(W ), B → |B|.

The apartments in |NC(W )| can be described in terms of reduced decompositions of
the Coxeter element.

Lemma 3.8. The map h′ : RT (c)→ A(W ) defined by

t1 . . . tn 7→

∣∣∣∣∣
{∨
i∈I

ti : I ⊆ {1, . . . , n}

}∣∣∣∣∣
is surjective and assigns to every reduced decomposition of the Coxeter element c an
apartment contained in |NC(W )|.

In the case W is of type An, this is Lemma 2.5 of [GY02].

Proof. Composition of the surjection h from Proposition 2.11 and the bijection h̃ from
above gives a surjective map from the reduced decompositions of c into A(W ).

Hence, an apartment in |NC(W )| is uniquely determined by a set of n reflections
{t1, . . . , tn} such that there is a permutation τ ∈ Sn of indices such that tτ(1) . . . tτ(n) = c.
Such a set of reflections corresponds to a basis {αt1 , . . . , αtn} of V .

Lemma 3.9. Let A ∈ A(W ) be an apartment and t1 . . . tn any corresponding reduced
decomposition of c, i.e. one of the preimages under h′. The set of chambers of A is given
by

Ch(A) =
{∣∣{tτ(1), tτ(1) ∨ tτ(2), . . . , tτ(1) ∨ . . . ∨ tτ(n)}

∣∣ : τ ∈ Sn
}
.

Proof. The maximal chains in a Boolean lattice are given by orderings (i.e. permutations)
of the rank one elements. As the elements of rank one in A (as Boolean lattice) are exactly
t1, . . . , tn, the assertion follows.

Lemma 3.10. Let t1 . . . tn be in RT (c). The chamber g′(t1 . . . tn) ∈ Ch(W ) is contained
in the apartment h′(t1 . . . tn) ∈ A(W ).

Proof. The chamber g′(t1 . . . tn) is given by

{t1, t1t2, . . . , t1 . . . tn} = {t1, t1 ∨ t2, . . . , t1 ∨ . . . ∨ tn},

which is clearly contained in the apartment h′(t1 . . . tn) by Lemma 3.9.
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As an easy consequence, we get the following.

Corollary 3.11. For every finite Coxeter group W , the complex |NC(W )| is a union of
apartments.

Proof. Since |NC(W )| is a chamber complex, it is the union of its chambers. Since ev-
ery chamber is contained in an apartment of |NC(W )| by Lemma 3.10, it is a union of
apartments.

Remark 3.12. It is an immediate consequence of Corollary 3.11 that |NC(W )| is homotopy
equivalent to a wedge of spheres: |NC(W )| is an (n− 3)-connected complex of dimension
n− 2, which is by a standard argument in topology, see for example [TD10, Thm. 8.6.2],
homotopy equivalent to a wedge of spheres of dimension n − 2. The homotopy type of
|NC(W )| is also a direct consequence of the shellability of NC(W ) [ABW07].

From the embedding of the order complex |NC(W )| into a spherical building ∆, we
immediately obtain a retraction onto any apartment it contains. A similar projection
(which was explicitly constructed) was used by Adin and Roichman [AR14] when they
computed the radius of the Hurwitz graph in type A.

Proposition 3.13. For every chamber C and every apartment A in |NC(W )| containing
C we obtain a simplicial map ρA,C : |NC(W )| → A that is distance non-increasing and the
restriction of ρA,C to an apartment A′ containing C is an isomorphism onto A.

Proof. It is a well known fact that there is a retraction ρA,C : ∆ → A of the building for
any pair C and A that has the desired properties [AB08, Sec. 4.4]. Its restriction to the
image of |NC(W )| in ∆ is still distance diminishing as

dA(ρA,C(X), ρA,C(Y )) 6 d∆(X, Y ) 6 d|NC(W )|(X, Y )

for all chambers X and Y . Here dA, d∆, d|NC(W )| are the length metrics on the chambers of
A, ∆ and |NC(W )|, respectively, i.e. the lengths of minimal galleries between chambers.
Hence the claim.

Note that the proposition immediately implies that for every retraction ρA,C and every
partial order on the chambers of A one obtains a partial order on the chambers of |NC(W )|
by defining D 6 E ⇔ ρA,C(D) 6 ρA,C(E).

3.2 Crystallographic Coxeter groups

Humphreys characterizes the finite crystallographic Coxeter groups in Proposition 6.6.
of [Hum90] as being the the finite Coxeter groups W with Coxeter system (W,S) where
the edge labels in the Coxeter diagram are in {2, 3, 4, 6} for all s, t ∈ S. In this case, there
exists a root system Φ associated to W such that every positive root can be written as a
non-negative integer linear combination of simple roots. The set B of simple roots forms
a basis for V and one can show that then every transformation matrix ρ(w), w ∈ W is
integral with respect to B. See [Hum90, Sec. 2.9] or [Arm09, Sec. 2.2.1] for details.
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From now on suppose that W is finite crystallographic and choose a basis B of V
as above. Since the finite image im(W ) is contained in GL(Z), we find a prime p ∈ Z
such that the representation ρp : W → GLn(Fp) induced by Z → Z/pZ is faithful. In
particular, we get an injective map

{αt : t ∈ T} → Fnp , αt 7→ βt.

Let w ∈ W and t1 . . . tk be a reduced decomposition for it. Recall that a basis for
Mov(w) ⊆ V is given by {αt1 , . . . , αtk}, see Observation 2.7. Let Vp =

⊕
s∈S βsFp. In

analogy to the real case, we define the moved space of w ∈ W in Vp to be the Vp-span
Movp(w) = 〈βt1 , . . . , βtk〉Vp .

Proposition 3.14. For every finite crystallographic Coxeter group W of rank n, the
complex |NC(W )| embeds into a finite spherical building of type An−1 over Fp.

Proof. Let f : NC(W ) → L(V ) with f(π) = Mov(π) be the map from Proposition 2.9.
Since W is crystallographic, every f(π) has a basis consisting of integer roots. For VZ =⊕

s∈S αsZ, we hence get an injective, rank preserving poset map f ′ : NC(W ) → L(VZ).
Composition with the map L(VZ) → L(Vp), induced by αs 7→ βs, which is injective by
assumption, gives the desired embedding of posets NC(W )→ L(Vp). The induced map on
order complexes provides the embedding of |NC(W )| into the finite building |L(Vp)|.

When W is fixed one can explicitly determine a minimal prime p such that |NC(W )|
embeds into |L(Fnp )|. For type An, we get that p = 2 and for Bn one chooses p = 3.
Compare Section 4 for details.

4 Types A and B

In this section, we construct explicit embeddings of the non-crossing partitions of type
A and B in a spherical building over F2 and F3, respectively. We will interpret the
embeddings using the pictorial presentations of NC(An) and NC(Bn). In type A, our
construction is a special case of the embeddings in [HKS16].

4.1 Type A

The Coxeter group of type An−1 is the symmetric group Sn. The set of reflections is

T (Sn) = {(i, j) ∈ Sn : 1 6 i < j 6 n},

the transpositions of Sn. From now on, we will fix the Coxeter element c = (1, 2 . . . , n) of
Sn.

We start with explicitly constructing the embedding from Proposition 3.14 of |NC(Sn)|
into a finite spherical building. Recall that a root system of type An−1 in Rn is given by

{εi − εj | 1 6 i, j 6 n, i 6= j},
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where εi ∈ Rn is the ith standard basis vector. In particular, the roots are contained in
the subspace of dimension n − 1, where all coordinates sum up to zero. Note that the
root εi − εj corresponds to the transposition (i, j) ∈ T (Sn) under the standard geometric
representation.

Let e1, . . . , en−1 be the standard basis vectors of Fn−1
2 .

Proposition 4.1. The map f ′ : T (Sn)→ L(Fn−1
2 ) given by

(i, j) 7→

{
〈ei + ej〉 if j < n

〈ei〉 if j = n

is injective and induces an embedding f : |NC(Sn)| → |L(Fn−1
2 )| of the complex of non-

crossing partitions of type An−1 into a finite building of type An−2 defined over F2.

Proof. The injectivity of the map f ′ is clear. Since we can extend f ′ to NC(Sn) by Lemma
2.10 via f(t∨ t′) := f ′(t)∨f ′(t′) for a reduced expression tt′, we get the desired embedding
f .

The non-crossing partitions of type An−1 are isomorphic to the classical non-crossing
partitions NCPn of a cycle, introduced by Kreweras in [Kre72]. In [Bra01] it was shown
that NC(An−1) ∼= NCPn as lattices. We will recall the correspondence and give in-
terpretations of the apartments and chambers in NC(An−1) = NC(Sn) in the pictorial
representation.

Let π = {B1, . . . , Bk} be a partition of {1, . . . , n}. The pictorial representation P (π)
of π is obtained as follows: label the vertices of a regular n-gon in the plane with 1, . . . , n
clockwise in this order and draw the convex hull of the elements of B for every B ∈ π.
The partition is called non-crossing, if there are no crossing blocks in P (π). When no
confusion arises, we will also write π for P (π). The set of non-crossing partitions of
{1, . . . , n} is denoted by NCPn. It is a graded lattice [Kre72] with partial order given by
refinement. The rank of π ∈ NCPn is rk(π) = n− k, where is the number of blocks of π.
Join and meet are given by the non-crossing span and intersection, respectively.

An element w ∈ NC(Sn) has a unique (up to order) cycle decomposition w = z1 . . . zk
into disjoint cycles. For a cycle z = (i1, . . . , ik), let {z} denote the set {i1, . . . , ik} ⊆
{1, . . . , n}. For every w ∈ NC(Sn) with cycle decomposition w = z1 . . . zk, the set
{{z1}, . . . , {zk}} induces a non-crossing partition {w} of {1, . . . , n}. Brady proved the
following [Bra01, Le. 3.2].

Lemma 4.2. For all n ∈ N, the map

NC(Sn)→ NCPn, w 7→ P ({w})

is a lattice isomorphism.

We write P (w) for P ({w}) and interpret it as embedded graph, hence we may speak
of edges of P (w). Each connected component of P (w) (i.e. the convex hulls of blocks)
then corresponds to the complete graph on the same vertices (but we only draw the outer
edges).
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Remark 4.3. Combining Proposition 4.1 and Lemma 4.2 gives an embedding of |NCPn|
into the building L(Fn−1

2 ), where the edge (i, j) is mapped to the subspace 〈ei + ej〉 when
j 6= n and to the subspace 〈ei〉 otherwise. Figure 1 on page 2 shows the order complex
of NCP4 and how it sits inside a spherical building. The labeling is chosen in such a way
that it fits with the labeling of the building L(F3

2) in Figure 12 on page 26.

The apartments in |NCPn| have a graphical description. The following is Proposition
4.4 of [HKS16].

Proposition 4.4. The apartments of |NCPn| are in bijection with non-crossing spanning
trees on n vertices on a cycle.

This correspondence enables us to enumerate the apartments.

Corollary 4.5. There are
1

2n− 1

(
3n− 3

n− 1

)
apartments in |NCPn|.

Proof. The number of non-crossing spanning trees on n vertices is well-known to be the
generalized Catalan number 1

2n−1

(
3n−3
n−1

)
, see for example [Noy98, Cor. 1.2].

Example 4.6. By Lemma 3.8 every reduced decomposition of the Coxeter element c =
(1, 2, . . . , n) gives rise to an apartment in |NCPn|. The non-crossing tree describing the
apartment corresponding to the decomposition (13)(35)(12)(34) of the Coxeter element
c = (12345) ∈ S5 is the non-crossing tree in Figure 3. Note that this is also the apartment
corresponding to the decomposition (13)(12)(35)(34).

1

2 3
4  

Figure 3: A labeling of a non-crossing spanning tree given by (13)(35)(12)(34) ∈ RT (c)
induces a chamber in the apartment corresponding to it.

Remark 4.7. The complex |NCPn| is not a building if n > 3. Axiom (B1) of Definition A.1
is not satisfied, as there are simplices, which are not contained in a common apartment.
Crossing edges are an example.

To finish the discussion about type A non-crossing partitions, we reinterpret the su-
persolvability of NCPn in geometric terms and give a new proof of the fact that NC(An) is
supersolvable. Moreover, we characterize the M -chains in NC(W ). The supersolvability
plays a crucial role in computing the radius of the Hurwitz graph H(Sn) in Theorem 5.4.
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Definition 4.8. A finite lattice L is called supersolvable, if there exists a maximal chain
d ⊆ L such that for every chain c ⊆ L the sublattice generated by c and d is distributive.
Such a chain d is called an M -chain.

Before we can state and prove the main result of this subsection, we need some more
definitions.

Definition 4.9. A partition π ∈ NCPn is called universal, if π has exactly one block B
with more than one element and the elements of B are circularly consecutive in P (π). A
chamber in |NCPn| is called universal, if every partition of the corresponding maximal
chain in NCPn is universal. Compare [HKS16, Def. 4.5]. An example for a universal
chamber is shown in Figure 4.

For a non-crossing partition π = {B1, . . . , Bk} ∈ NCPn and a subset M ⊆ {1, . . . , n},
the partition induced by M is defined as the partition πM = {B1∩M, . . . , Bk ∩M}. Note
that the induced partition is again non-crossing and can be identified with a partition in
NCP#M . Induced chambers are defined analogously.

Proposition 4.10. Let D in |NCPn| be a chamber. Then |NCPn| is the union of all
apartments containing D if and only if D is a universal chamber.

An example of a universal chamber D in |NCP4| and all apartments containing it is
displayed in Figure 4. The statement of the proposition can be verified by inspection of
the order complex |NCP4| shown in Figure 1.

chamber D

apartments containing D

Figure 4: A universal chamber D in |NCP4| and all apartments containing it.

Proof. The statement that |NCPn| is the union of all apartments containing the chamber
D is equivalent to the following statement: For every chamber C of |NCPn| there is an
apartment containing both D and C. This means that there is a non-crossing spanning
tree, such that both D and C arise as chambers of this apartment as described in Example
4.6.

If D is not a universal chamber, it is easy to construct a chamber C, such that they
are not in a common apartment: there are crossings or cycles among the edges of the
respective labeled spanning trees.

Now suppose that D is a universal chamber and C = (C1, . . . , Cn−1) is an arbitrary
chamber in NCPn given in their pictorial representations, where Ci is the ith partition in
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the chain defining C. We argue by induction on n. The statement if trivial for n = 2 and
3, and for n = 4, it is shown in Figure 4. Suppose that n > 4.

Let e = (i, j) be the unique edge in C1. First, suppose that i and j are not consecutive
on the circle. Then e divides {1, . . . , n} into two parts M = {m : i 6 m 6 j} and
N = ({1, . . . , n} \M) ∪ {i, j}.

Let CM , CN and DM , DN be the chambers induced by M and N , respectively. Since
i and j are not consecutive, we get that #M,#N < n and we can use induction to find
trees TM and TN corresponding to apartments containing the chambers CM and DM , and
CN and DN , respectively. Since both trees contain the edge e, the merging of TM and TN
along e provides an apartment containing C and D.

If i and j are consecutive, consider the induced chambers on M = {1, . . . , n}\{j} and
use induction to get a tree T for the induced chambers CM and DM . The tree for the
apartment containing D and C is then T with the edge e added.

Remark 4.11. The universal chambers in |NC(W )| and the M -chains in NC(W ) are in
bijection via the canonical map g̃ between maximal chains in NC(W ) and chambers in
|NC(W )| by Remark 3.3.

Corollary 4.12. The lattice NCPn is supersolvable.

Proof. Let D be a universal chamber in |NCPn|. Then every other chamber C in |NCPn|
is in a common apartment A with D. This means, that the corresponding maximal chains
c and d are in a common Boolean lattice, which is distributive by definition. Hence, the
sublattice generated by c and d is distributive and the assertion follows.

Remark 4.13. Björner and Edelman already showed in [Bjö80] that NCPn is shellable
and for general types the analogous result for all finite Coxeter groups (i.e. that NC(W )
is shellable) can be found in [ABW07]. An alternative way of proving shellability is to
construct a linear ordering on the chambers, which is induced by the distance to a fixed
universal chamber.

4.2 Type B

The Coxeter group W of type Bn is the group of all signed permutations of the set
{1, . . . , n,−1, . . . ,−n}. A permutation π of {1, . . . ,−n} is called signed, if π(−i) = −π(i)
for all i. For further details see Chapter 8 of [BB05] or Section 3 of [BW02a].

We use the notation from [BW02a]. Let i1, . . . , ik ∈ {1, . . . ,−n}. If (i1, . . . , ik) is
disjoint from (−i1, . . . ,−ik), then their product is denoted by ((i1, . . . , ik)). If we have
(i1, . . . , ik,−i1, . . . ,−ik) = (−i1, . . . ,−ik, i1, . . . , ik), we will write [i1, . . . , ik] for this per-
mutation. The set of reflections is

T (Bn) = {((i, j)) : 1 6 i < |j| 6 n} ∪ {[i] : 1 6 i 6 n}.

Throughout this section, we will fix the Coxeter element c = s1 . . . sn−1sn = [1, . . . , n]
of W .
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As in type A, we start with explicitly constructing an embedding of |NC(Bn)| into a
finite spherical building. A root system of type Bn in Rn is given by

{±εi ± εj | 1 6 i < j 6 n} ∪ {±εi | 1 6 i 6 n},

where εi ∈ Rn denotes the ith standard basis vector. Under the standard geometric
representation, the reflection [i] corresponds to the root εi, ((i, j)) corresponds to εi − εj
and ((i,−j)) corresponds to εi + εj for positive i and j. Let e1, . . . , en be the standard
basis vectors of Fn3 .

Proposition 4.14. The map f ′ : T (Bn)→ L(Fn3 ) defined by

t 7→


〈ei〉 if t = [i], 1 6 i 6 n

〈ei − ej〉 if t = ((i, j)), 1 6 i < j 6 n

〈ei + ej〉 if t = ((i,−j)), 1 6 i < j 6 n

is injective and induces an embedding f : |NC(Bn)| → |L(F n
3 )| of the complex of non-

crossing partitions of type Bn into a finite building of type An−1 defined over F3.

Proof. The proof is the same as the proof for Proposition 4.1.

We now recall the correspondence between the lattice NC(Bn) and the pictorial pre-
sentation from [Rei97].

Definition 4.15. A partition π = {B1, . . . , Bk} of {1, . . . , n,−1, . . . ,−n} is called a Bn-
partition, if the following two conditions are satisfied:

(i) B ∈ π if and only if −B ∈ π

(ii) there is at most one block B ∈ π with B = −B

A block B ∈ π with B = −B is called zero block.

Since every Bn-partition can be identified with a partition of {1, . . . , 2n} via

{1, . . . , n,−1, . . . , n} → {1, . . . , 2n}, i 7→

{
i if i > 0

n− i if i < 0

the pictorial representation of a Bn-partition is defined analogously to the An-partition.
Hence, for a Bn-partition π, its pictorial representation P (π) is the convex hull of its
blocks, where the vertices of the 2n-gon are labeled with 1, . . . , n,−1, . . . ,−n clockwise
in this order. A Bn-partition π is called non-crossing, if there are no crossing blocks in
P (π). The set of non-crossing partitions of type Bn is denoted by NCBn. This is a graded
lattice, ordered by refinement and rank defined by rk(π) = n− b#π

2
c [Rei97, Prop. 2]. In

analogy to type A, the join is the non-crossing span and the meet is given by intersection.
Brady and Watt showed that the pictorial notion of non-crossing partitions coincides with
the group theoretic definition of NC(Bn) [BW02a, Thm. 4.9].
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Figure 5: The complex |NCB3| embedded into the spherical building |L(F3
3)| of type A2.

Theorem 4.16. For all n ∈ N, the map

NC(Bn)→ NCBn, w 7→ P ({w})

is a lattice isomorphism.

Example 4.17. The combination of Proposition 4.14 and Theorem 4.16 provides an
embedding of |NCBn| into the spherical building L(Fn3 ), which is defined via the images
of edges in the Bn-partitions. Figure 5 illustrates how the complex |NCB3| sits inside the
building |L(F3

3)|. Edges of the building that are not contained in |NCB3| are shown in
light gray.

We now aim to describe the apartments of |NCBn| as graphs on 2n vertices. We
therefore introduce the notion of a Bn-graph. We denote the set of edges on the set
{1, . . . , n,−1, . . . ,−n} by E±n := {(i, j) : 1 6 i < |j| 6 n}.

Definition 4.18. An edge of the form (i,−i) ∈ E±n is called zero edge. A zero part
is either a collection of at most n − 1 zero edges or the polygon spanned by a subset
B ⊆ {1, . . . ,−n} with B = −B.

Let P be a regular 2n-gon and V its vertices, labeled 1, . . . , n,−1, . . . ,−n clockwise in
this order. Let G be an embedded graph on the vertices V . Then G is called a Bn-graph,
if the following conditions are satisfied:

(a) G is invariant under 180◦ rotation
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Figure 6: All apartments of NCB3 containing the chamber corresponding to ((1, 2)) 6 [1, 2].

(b) G has exactly one zero part Z

(c) G is a non-crossing forest outside Z

(d) the convex hull of G equals P

Proposition 4.19. The apartments in NCBn are in one-to-one correspondence with Bn-
graphs.

The proof is the exact analog of the proof of Proposition 4.4 of [HKS16].

Remark 4.20. The complex |NCBn| is not a building if n > 2. As in type A, there are
simplices in |NCBn|, which are not contained in a common apartment. Figure 7 shows
examples for this fact.

Example 4.21. Figure 6 shows all apartments containing the chamber corresponding to
((1, 2)) 6 [1, 2]. Note that there is the following correspondence between reflections in
T (Bn) on the left-hand side and edges or pairs of edges in E±n on the right-hand side:

((i, j))←→ (i, j), (−i,−j)
[i]←→ (i,−i)

In order to investigate the supersolvability in type B, we need a characterization of
supersolvability in terms of left modularity. Let L be a lattice. An element x ∈ L is left
modular, if for all y 6 z

(y ∨ x) ∧ z = y ∨ (x ∧ z).

The lattice L is left modular if there is a maximal chain consisting of left modular elements.
The following characterization is due to [MT06, Thm. 2].

Theorem 4.22. A finite graded lattice supersolvable if and only if it is left modular. In
particular, every M-chain consists of left modular elements.

Now we are in the position to prove the following.

Theorem 4.23. The lattice NCBn is only supersolvable if n 6 3.
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Proof. The complex |NCB2| is a union of four points, hence NCB2 is supersolvable as
apartments correspond to pairs of points. If n = 3, Figure 5 displays |NCB3|. Inspection
of this figure shows that the union of all apartments containing the chamber corresponding
to ((1, 2)) 6 [1, 2] (compare Figure 6) is all of |NCB3|. Hence, ((1, 2)) 6 [1, 2] is an M -chain
in NCB3, which shows supersolvability.

Now let n > 4. Suppose there is an M -chain in NCBn corresponding to a chamber C.
Then every Bn-partition of C has to be in a common apartment with every other element
in |NCBn|. We show that there is no M -chain in NCBn by showing that there is no left
modular element of rank 2 in NCBn.

Figure 7 displays all classes of rank 2 elements of NCB4 in black and respective ob-
structions to left modularity in grey. These partitions can be easily generalized for n > 5.
This proves the claim.

Figure 7: Obstructions to left modularity in NCB4.

As a direct consequence, we get the following.

Corollary 4.24. For n > 4 there is no chamber B ∈ Ch(|NCBn|) such that the union of
all apartments containing B is |NCBn|.

Without going into the details, we want to mention that the non-crossing partitions
of type D can also be interpreted in a pictorial way. This was introduced in [AR04].
With similar considerations, it follows that NC(Dn) is only supersolvable for n 6 3 as
NC(D3) ∼= NC(A3).

5 Hurwitz- and Chamber Graphs

In this section we show that the Hurwitz graph H(W ) of a finite Coxeter group is a
subgraph of the chamber graph Γ∆ of a spherical building ∆, which is a consequence
of the Main Theorem. We use this to compute in Theorem 5.4 bounds on the radius
and diameter of H(W ) for all finite W , which partially answers Question 11.3 of [AR14].
Moreover, we give pictorial interpretations of the shifts σi in type A.

The chamber graph Γ∆ of a chamber complex ∆ is the simplicial graph with vertices
the chambers of ∆ and two different vertices are connected by an edge, if they have a
common codimension one face. The chamber graph is connected by definition of chamber
complexes. Moreover, note that if X is a chamber subcomplex of ∆, then ΓX is a subgraph
of Γ∆.
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Definition 5.1. Let W be a finite Coxeter group. The Hurwitz graph H(W ) is the
undirected graph whose vertices are the maximal chains C(W ), where two chains are
connected by an edge if they differ in exactly one element.

Remark 5.2. Note that [AR14] contains more than one definition of a Hurwitz graph. Our
Definition 5.1 differs from Definition 11.2 in [AR14] for arbitrary finite Coxeter groups
W . In type A the two definitions coincide, but in general they do not. The set of vertices
are in bijection, but we allow more edges. Our definition seems to be more natural and
should be seen as a generalization of the definition of the type A Hurwitz graph, which is
Definition 2.2 in [AR14].

In the following, we will work with Definition 5.1.

Proposition 5.3. Let W be a finite Coxeter group of rank n. The Hurwitz graph H(W )
is isomorphic to a connected subgraph of the chamber graph Γ∆ of a spherical building ∆
of type An−1.

Proof. By Remark 3.3, the maximal chains (i.e. the vertices of H(W )) are in bijection
with the maximal chambers of |NC(W )|, which are the vertices of its chamber graph
Γ|NC(W )|. By Corollaries 2.6 and 3.5, two vertices of H(W ) are connected by an edge if
and only their images under the bijection are. Hence, H(W ) ∼= Γ|NC(W )|. As |NC(W )|
embeds into a spherical building ∆ of type An−1 by our Main Theorem, the assertion
follows.

5.1 Diameter and radius of H(W )

In this subsection we give an estimate on the radius of H(W ) for arbitrary finite W and
compute it explicitly in a couple of cases. Recall that the eccentricity of a vertex v of a
graph G = (V,E) with vertices V and edges E is

ecc(v) := max
w∈V

d(v, w),

where d denotes the standard metric on the vertex set. The diameter of G is the maximal
eccentricity

diam(G) := max
v∈V

ecc(v)

and the radius of G is the minimal eccentricity

rad(G) := min
v∈V

ecc(v).

One obviously always has the inequality rad(G) 6 diam(G). Our main result is the
following theorem.

Theorem 5.4. Let W be a finite Coxeter group of rank n. Then the radius of the Hurwitz
graph of W satisfies (

n

2

)
6 rad(H(W )).
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If W is of type An, then rad(H(W )) =
(
n
2

)
. Moreover, we have for W of type A3 that

diam(H(W )) = 3 and for W being of type A4 that diam(H(W )) = 7. If W is of type B3,
then rad(H(W )) =

(
3
2

)
= 3 and diam(H(W )) = 4.

For type A the statement of the theorem is [AR14, Thm. 10.3]. For the proof of our
theorem we need the following lemma.

Lemma 5.5. For any vertex v in the chamber graph Γ = ΓΣ of a Coxeter complex Σ of
type Ak we have

ecc(v) = diam(Γ) = rad(Γ) =

(
k + 1

2

)
.

The same is true for spherical buildings ∆ of type Ak.

Proof. First consider the case of a Coxeter complex. From standard Coxeter combinatorics
it follows that the eccentricity of any vertex v equals the length of the longest word in the
corresponding Coxeter group W ∼= Sk+1. Hence, ecc(v) =

(
k+1

2

)
for all v, which implies

ecc(v) = diam(Γ) = rad(Γ) for all v. To see that the statement on ∆ is true, recall that
any pair of chambers C,D in ∆ is contained in a common apartment isomorphic to Σ.

The following corollary is immediate.

Corollary 5.6. Denote by ΓA the subgraph of the chamber graph Γ∆ that corresponds to
an apartment A in ∆. Then the ball of radius

(
n
2

)
around a vertex v in H(W ) contains

all ΓA, where A is an apartment containing the chamber Cv in ∆ corresponding to v.

Observe that the other direction is not true (not even in type A). In general, the ball
of radius

(
n
2

)
around a random vertex v in H(W ) is not contained in the union of all ΓA,

where A is an apartment containing the chamber Cv in ∆ corresponding to v. In type A,
it is however true for vertices corresponding to universal chambers by Proposition 4.10.

Proof of Theorem 5.4. By Proposition 5.3 we can identify H(W ) with the graph Γ|NC(W )|.
From Lemma 5.5 (with k = n− 1) we obtain that for every apartment A in |NC(W )| the
radius of the subgraph ΓA is

(
n
2

)
. This implies that the eccentricity of a vertex v in ΓA is(

n
2

)
. Now |NC(W )| is a union of apartments by Corollary 3.11, so every vertex of Γ|NC(W )|

is contained in a subgraph ΓA for some apartment A. Therefore, rad(H(W )) >
(
n
2

)
, as

the radius is the minimal eccentricity.
In type A we know by Proposition 4.10 that there exists a universal chamber B, which

has the property that every other chamber is contained in a common apartment with
B. Therefore, we have equality for the radius in type A. With the same arguments and
Theorem 4.23 equality follows for B3.

The equalities for the diameter are by inspection. For |NCP4| it can be verified in Fig-
ure 1 that the eccentricity is 3 for every chamber. In |NCP5| the maximal eccentricity is for
instance realized by the chambers corresponding to (13)(45)(12)(35) and (24)(15)(23)(14).
In Figure 5 one tests that the maximal eccentricity is for instance realized by the chambers
corresponding to ((1,−2))((2, 3))[1] and [1]((2, 3))((1,−2)).
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5.2 The Hurwitz action in type A

In this subsection we give a pictorial interpretation of the Hurwitz action and interpret
left- and right- shifts σ and σ′ in terms of “sliding edges” in labeled spanning trees
representing chambers. A similar pictorial interpretation can be given for the Hurwitz
action in type Bn using Bn-trees.

Since the Hurwitz graph H(W ) is isomorphic to the chamber graph of |NC(W )| by
Proposition 5.3, the vertices of H(W ) correspond to chambers in |NC(W )|. From now
on, we will use this correspondence frequently.

Let W ∼= Sn and recall from Section 4.1 that the reflections in W are the transpositions
(i, j) with i 6= j ∈ {1, . . . , n}. These transpositions can be represented by an edge
connecting the vertices numbered i and j in a regular n-gon.

Lemma 3.10 implies that every chamber C in |NC(W )| comes with a preferred apart-
ment AC which is given by a non-crossing spanning tree T (C). We use the fact that C is
given by a minimal presentation t1 . . . tn of the Coxeter element c and define T (C) to be
the tree containing all edges (ji, ki) corresponding to the transpositions ti. We may label
the edge (ji, ki) by i. This labeling then determines C uniquely.

Lemma 5.7. Suppose T is a non-crossing labeled spanning tree representing a chamber C
in H(Sn). Two edges in T do not intersect if and only if the corresponding transpositions
commute.

Proof. If the edges do not intersect in T , then they represent two transposition (i, j) and
(k, l) with i, j, k and l all pairwise distinct. Hence they commute. Similarly obtain the
converse.

The next proposition gives a characterization of the braid group action on the Hurwitz
graph in terms of trees and could be taken as an alternative definition in type A. The
second author discussed this idea first with Thomas Haettel and Dawid Kielak in 2014.

Proposition 5.8. Suppose T is a non-crossing labeled spanning tree representing the
chamber C in H(Sn) and let ti = {j, k} and ti+1 = {l,m} be the edges labeled i and i+ 1,
respectively.
Then a non-crossing labeled spanning tree σi(T ) representing σi(C) can be obtained from
T as follows:

• If the edges labeled i and i + 1 do not share a vertex (i.e. j, k, l, m are pairwise
different), swap their labeling and keep all other edges.

• If the edges labeled i and i + 1 do share a vertex, say k = m, then label {j, k} with
i+ 1 and replace the edge {l,m} by the edge {l, j} and label it with i. Keep all other
edges.

A non-crossing labeled spanning tree σ′i(T ) representing σ′i(C) can be obtained from T as
follows:
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• If the edges labeled i and i + 1 do not share a vertex (i.e. j, k, l, m are pairwise
different), swap their labeling and keep all other edges.

• If the edges labeled i and i+ 1 do share a vertex, say k = m, then label {l,m} with
i and replace the edge {j, k} by the edge {j, l} and label it with i+ 1. Keep all other
edges.

Proof. We only prove the assertion for σi. The rest follows using analogous arguments.
Lemma 5.7 implies the first bullet point. To see the second, argue as follows. From
Lemma 2.1 we know that if two minimal presentations differ by a single shift, then the
corresponding sequence of transpositions differ in the i-th and i + 1-st entry. Moreover,
we know that the i+ 1-st transposition in σi(C) equals the i-th transposition in C, as σi
shifts the i-th transposition to the right. In terms of edges in the tree T this means that
the edge {l,m} stays and obtains a new label i+ 1 in σi(T ). The transposition at index i
in C is replaced by the ti-conjugate of ti+1. Recall that ti swaps j and k while ti+1 swaps
l and k = m. Hence titi+1ti swaps j and l. Hence the tree σi(T ) contains an edge {j, l}
labeled i. Finally, to see that the tree σi(T ) is non-crossing observe that the convex hull
in the regular polygon on the three vertices j, k = m, l is a triangle that is not cut by
any other edge of T . Compare Figure 8. Hence, we may choose any two of the bounding
edges and still obtain a non-crossing tree.

k

j

l k

j

l

i
i+ 1

k

j

l
i+ 1

i
i

i+ 1σi σi

σi

Figure 8: This illustrates the orbit of σi in case the i-th and i + 1-st transposition of a
maximal chain do not commute. The gray shaded regions represent the remaining vertices
which are connected to j, k and l in such a way that none of the edges crosses the triangle
spanned by j, k and l.

Let us illustrate the assertion of Proposition 5.8 with an example.

Example 5.9. Suppose we would like to apply σi to a given non-crossing labeled spanning
tree in case n = 5. Figure 9 shows such an example. In the pictures we omit all the labels
of the vertices as well as the labels of the edges which do not affect the application of σi.

The situation shown is the one where the edges labeled i and i + 1 do intersect in a
vertex k. In this case the new tree σi(T ) is obtained from the old tree by first swapping
the labels i and i+ 1 and then “sliding” the edge labeled i along the edge labeled i+ 1 so
that they now share the other vertex of the edge (newly named) i+ 1. Such a slide move
corresponds to the conjugation of the edge labeled i+ 1 by the edge labeled i.
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i i+ 1

i

i+ 1

σi

ii+ 1

σ′i = σ−1
i

i+ 1

i

i+ 1

i

i

i+ 1

Figure 9: This figure illustrates how trees characterizing vertices in H(S5) change under
an application of σi and σ′i. For details see Example 5.9.

The image σ′i is the inverse of the map σi. Here we first swap labels of the edges and
then slide edge number i+ 1 along edge i, which “undoes” what σi changed in the labeled
spanning tree.

Using the pictorial interpretation of the σi given in Proposition 5.8 and a characteri-
zation of all the non-crossing labeled spanning trees that correspond to a vertex in H(Sn)
given in Theorem 2.2 of [GY02] (see also [AR14, Prop. 3.5.]), one can give (yet another)
proof of the fact that the Hurwitz graph is connected. As it very much depends on the
pictorial interpretation of type A, we only sketch how to proceed.

Theorem 5.10. The Hurwitz graph H(Sn) is connected.

Sketch of proof. Let {1, . . . , n} be the vertices of a regular polygon enumerated clockwise.
The following non-crossing labeled spanning tree T0 represents a universal chamber v0 in
the set of vertices of the Hurwitz graph: Let T0 be the tree containing all outer edges
{i, i+ 1} of the polygon for i = 1, . . . , n− 1 where the edge {i, i+ 1} is labeled with i.

We will argue that any tree T representing a vertex of H(Sn) can be deformed into T0

by a sequence of si’s. This then gives us edge-paths in H(Sn) connecting every vertex v
with v0. Following such a path backwards using σ′i applications in place of σi, we obtain
connectivity.

We will write ei for the edge labeled i in any given tree. First observe that one can
deform any tree into a tree containing only outer edges by applying σi’s. The reason is the
following: any such labeled spanning tree contains at least one outer edge ei and suppose
that ei+1 shares a vertex with ei and is not an outer edge. Then we can use (repeated)
applications of σi’s and σ′i’s to deform the tree such that we move the edge labeled i+ 1
previously to an outer edge. Compare Figure 9.

In case ei+1 does not share a vertex with ei, we can swap labels of non-intersecting edges
in order to obtain a situation for which we have intersecting edges that share consecutive
labels. Note that this step requires n > 5. This is not a big restriction as the case n = 4
can be checked by hand.

Suppose we have moved all edges so that the spanning tree only contains outer edges.
It remains to see that we can move the edges around the circle so that the missing edge
is {n− 1, 1}. Compare Figure 10 for how to do this.
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Finally, we can rearrange the labels on the edges so that we arrive in the tree T0

representing the universal chamber v0. Again as n > 5, we have enough room to swap
even labels of adjacent edges. This step is shown in Figure 11.

i1i2

i3

i4

i2
i1

i3

i4

i3

i1

i2

i4

i4

i1

i2

i3

→ → →

Figure 10: Rearranging the outer edges in a labeled spanning tree using slide moves.

The property of the shifts σi stated in the following corollary was already observed in
[AR14] and can easily be obtained directly from the definition of σi. We include it here as
one can also prove it using the labeled-tree slide-move characterization of the σi as well.

Corollary 5.11. If the edges labeled i and i + 1 in a tree T do not share a vertex,
σ2
i (T ) = T and if they do share a vertex, then σ3

i (T ) = T .

Proof. We use notation as in the proof of Proposition 5.8. If they do share a vertex of T ,
say vertex k, then σi is transitive on all spanning subtrees on the three vertices j, k, l of
these two edges. As no other edge of T crosses the convex hull of j, k, l the resulting trees
are all non-crossing. Compare Figure 8.

A Spherical Buildings of type An

In this appendix we collect some basic facts about spherical buildings. We do not go much
into the details but refer the reader to Brown’s book [Bro89] or to the book of Abramenko
and Brown [AB08] instead.

Definition A.1. A simplicial complex ∆ is a building if there exists a collection A(∆) of
subcomplexes of ∆, called apartments, such that the following axioms are satisfied.

(B0) Each apartment is a Coxeter complex.

(B1) For any two simplices in ∆ there is an apartment containing both.

→
i1

i2i4

i3

i4

i2i1

i3

i4

i1i2

i3

i2

i1i4

i3

→ →

Figure 11: Swapping the labels of the adjacent edges i1 and i2.
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(B2) If two simplices a, b ∈ ∆ are both contained in the apartments A and A′, then there
is an isomorphism A→ A′ fixing a and b pointwise.

The maximal simplices in ∆ are called chambers.

It follows from (B2) that any two apartments are isomorphic. This allows us to define
the type of a building, which is the type of the Coxeter group associated to (one of)
its apartments. A building is called spherical, if the apartments are spherical Coxeter
complexes, i.e. arise from a finite Coxeter group. An example of a building is given in
Figure 12.

Coxeter Complexes are chamber complexes, i.e. all maximal simplices have the same
dimension and any two of them can be connected by gallery. A gallery in ∆ is a sequence
of chambers (C1, . . . , Cn) such that Ci and Ci+1 are either equal or share a codimension
one face. In particular, chamber complexes are connected. Axioms (B2) and (B3) imply
that buildings are chamber complexes as well. The set of chambers of a building ∆ is
denoted by Ch(∆).

A subcomplex Y of a chamber complex X is called chamber subcomplex, if it is a
chamber complex and dim(X) = dim(Y ). Hence, apartments are chamber subcomplexes
of the building.

〈e1〉 〈e1, e2〉
〈e1 + e2〉

〈e1 + e3〉

〈e1 + e2, e1 + e3〉

〈e2, e1 + e3〉

〈e2〉
〈e2 + e3〉 〈e2, e3〉

〈e1, e2 + e3〉

〈e3〉

〈e1 + e2 + e3〉

〈e1 + e2, e3〉

〈e1, e3〉

Figure 12: The spherical building |L(F3
2)| of type A2. The vertices are labeled by the

linear subspaces they represent. The vector ei is the i-th unit vector.

The next corollary is an immediate consequence of the axiom (B1).

Corollary A.2. Let C be an arbitrary chamber of a building ∆. Then ∆ is the union of
all apartments containing C.

The following construction is a fundamental example of a spherical building of type
An−1. For more details and a proof of Proposition A.3 see [AB08, chap. 4.3].

Let V be a vector space of dimension n > 2 and L(V ) the lattice of linear subspaces of
V . Recall that L(V ) is ordered by inclusion and ranked by dimension. The meet is given
by intersection and the join by the sum of subspaces. The minimal element is {0} ⊆ V
and the maximal element is V .
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For a lattice L, the order complex |L| is the abstract simplical complex with vertices
L\{0, 1} and the simplices are the chains in L.

Proposition A.3. For any vector space V of dimension n > 2 the order complex |L(V )|
of the lattice of linear subspaces of V is a spherical building of type An−1.

We now want to describe the apartments and chambers in terms of V and start with
the Coxeter complex of type An−1.

The Coxeter complex Σ of type An−1 is a simplicial complex isomorphic to the barycen-
tric subdivision of the boundary of an (n− 1)-simplex ∆n−1 denoted by sd(∂∆n−1). The
vertices of sd(∂∆n−1) can be labeled with proper nonempty subsets of {1, . . . , n} where
the cardinality of a vertex label is the rank of the corresponding face in ∂∆n. The faces
of sd(∂∆n−1) are labeled with chains of labels of its vertices. These are other words to
say that Σ is isomorphic to a Boolean lattice Bn, i.e. the order complex of the power set
of {1, . . . , n} ordered by inclusion.

The apartments of L(V ) correspond to sublattices of L(V ) that are isomorphic to
Boolean lattices generated by n elements. These n elements are one-dimensional subspaces
L1, . . . , Ln such that L1⊕ . . .⊕Ln = V . Such a set {L1, . . . , Ln} is called frame of V . We
summarize these properties in the following proposition.

Proposition A.4. Let V be an n-dimensional vector space. Then the following is true.
The frames of V are in one-to-one correspondence with apartments of |L(V )|. Moreover,
every basis of V determines a frame and hence an apartment of L(V ). Chambers in
the building |L(V )| correspond to maximal chains in L(V ) and the chambers of a fixed
apartment Σ are given by total orderings of the frame associated with Σ.
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Corrigendum – Added May 17 2018

The paper contains an error in Proposition 2.11 and (as a consequence of this) an error
in Lemma 3.8 and Lemma 3.9. The rest of the paper is not affected.

Proposition 2.11 should be replaced by the following Lemma 2.11. Recall that the set
of all maximal Boolean lattices in NC(W ) is denoted by B(NC(W )).

Lemma 2.11. The map h : RT (c)→ B(NC(W )) defined by

t1 . . . tn 7→

{∨
i∈I

ti : I ⊆ {1, . . . , n}

}

assigns to every reduced decomposition of the Coxeter element c a maximal Boolean
lattice in NC(W ).

Proof. By the subword property 2.2 and the compatibility of taking products and the join
in NC(W ), which was shown in Lemma 2.4, this map is well-defined.

In type A the map is known to be surjective. But surjectivity fails in other types. With
the usual notation for type B, the Boolean lattice spanned by the reflections [1], [2], . . . , [n]
is for instance not contained in the image of h, since no product of the above reflections
is the Coxeter element c = [12 . . . n] of type Bn.

The corrected version of Lemma 3.8 reads as follows:

Lemma 3.8. The map h′ : RT (c)→ A(W ) defined by

t1 . . . tn 7→

∣∣∣∣∣
{∨
i∈I

ti : I ⊆ {1, . . . , n}

}∣∣∣∣∣
assigns to every reduced decomposition of the Coxeter element c an apartment contained
in |NC(W )|.

Since the map h is not surjective, not every apartment in NC(W ) corresponds to a
reduced decomposition of the Coxeter elementt c. Hence the description of the apartments
as stated in Lemma 3.9 holds only for apartments in the image of h. The corrected version
of Lemma 3.9 is as follows. The proof is not affected.

Lemma 3.9. Let A ∈ A(W ) be the apartment corresponding to a reduced decomposition
t1 . . . tn of c. The set of chambers of A is given by

Ch(A) =
{∣∣{tτ(1), tτ(1) ∨ tτ(2), . . . , tτ(1) ∨ . . . ∨ tτ(n)}

∣∣ : τ ∈ Sn
}
.
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