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Abstract

Consider for a random walk on a group, the order from most to least likely
element of the walk at each step, called the likelihood order. Up to periodicity
issues, this order stabilizes after a sufficient number of steps. Here discrete Fourier
analysis and the representations of the symmetric group, particularly formulas for
the characters, are used to find the order after sufficient time for the random walks
on the symmetric group generated by p-cycles for any p fixed, n sufficiently large.
For the transposition walk, generated by all the 2-cycles, at various levels of laziness,
it is shown that order n2 steps suffice for the order to stabilize. Likelihood orders
can aid in finding the total variation or separation distance mixing times.

Keywords: random walks; symmetric groups; character polynomial; likelihood
order

1 Introduction

A random walk on the symmetric group Sn is determined by a probability distribution
P for its generators. Starting at time zero at the identity, at each step a permutation is
chosen according to P and appended to the left of the current state. The distribution of
the tth step of the walk is given by the tth convolution power of P :

P ∗t(g) =
∑
h∈Sn

P (gh−1)P t−1(h)

This is an example of Markov chain with transition matrix K(h, g) = P (gh−1).
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A short argument from unpublished work of Diaconis and Isaacs [6] using Cauchy-
Schwartz shows that at even times the identity element of a group is the most likely
element of any symmetric random walk. Assume for all g ∈ G, P (g) = P (g−1) then:

P 2t(g) =
∑
h∈G

P ∗t(gh−1)P ∗t(h) 6
∑
h∈G

(
P ∗t(h)

)2
=
∑
h∈G

P ∗t(h−1)P ∗t(h) = P ∗2t(e)

Using induction, Diaconis and Isaacs go on to explore several walks, including on the
cyclic group and hypercube, with in which they can describe a total order that describes
the most likely to least likely element of the walk at every step. We call such an order at
a given step of the walk a likelihood order, and will explore what can be said about them
for random walks on the symmetric group.

Two motivating notions of distance between a random walk on a group after t steps
and its uniform stationary distribution, π(·) = 1

|G| , are separation distance and total

variation distance defined as (see e.g. [12]):

sep(t) = max
g∈G

1− |G|P ∗t(g)

||P ∗t − π||TV =
∑

g∈G:P ∗t(g)>π(g)

P ∗t(g)− π(g).

The separation distance is attained at the least likely element. The related l∞ distance
is attained at either the most or least likely element. For total variation, useful bounds,
especially lower bounds, frequently originate from understanding the likelihood of the
elements relative to the uniform distribution. It is then natural and of interest to know
the most and least likely elements of a random walk as well as the likelihood order.

In his thesis, Lulov [14] found the likelihood order after sufficient time for the trans-
position walk on the symmetric group at even steps using a monotonicity relation on the
characters of the symmetric group evaluated at transpositions utilized by Diaconis and
Shahshahani [6]. Here we extend his work on the transposition walk by providing a suffi-
cient time for the likelihood order to stabilize, and exploring how the laziness of the walk
effects the likelihood order. Other walks in which likelihood orders are known include: a
random walk on the symmetric group generated by involutions with the same likelihood
order after sufficient time as the transposition walk [2], and random walks on Coxeter
groups with P uniform on the Coxeter generators where weak Bruhat order is always a
likelihood order [21].

Diaconis and Shahshahani [7] showed how the representation theory of the symmetric
group can be used to diagonalize such walks. For a special class of distributions P called
class functions that are constant on each conjugacy class, the theory is especially nice. For
class functions, the discrete Fourier transform [5] gives a formula for the distribution of
the tth step of the walk, P ∗t in terms of the characters and dimensions of the irreducible
representations of the symmetric group.

The key to the analysis in this paper is the determination of of the largest eigenvalue
with non-zero coefficient in the Fourier inversion formula expansion of P ∗t, as presented
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in Proposition 7. This is accomplished through classification of representations as i-cycle
detectors defined in section 3. This will yield for these walks the set of representations
that determine the likelihood order. Fine control on the terms in the Fourier inversion
formula for the transposition walk lead to an upper bound on when the likelihood order
stabilizes.

The likelihood orders in this paper are all variants of a cycle lexicographic order. The
following definitions are in terms of the cycle structures of two conjugacy classes α and β
of the symmetric group, where α has ai i-cycles.

Definition 1. [Cycle lexicographic order] Letα = (1a1 , 2a2 , . . . , nan),β = (1b1 , 2b2 , . . . , nbn)
define α >CL β when for mink(ak 6= bk) = i, ai > bi. α =CL β exactly when α = β.

Definition 2. [Alternating cycle lexicographic order] Let α = (1a1 , 2a2 , . . . , nan), β =
(1b1 , 2b2 , . . . , nbn) define α >(−1)i+1CL β when for mink(ak 6= bk) = i, (−1)i+1ai > (−1)i+1bi.
α =(−1)i+1CL β exactly when α = β.

For instance, the identity is larger than a transposition, respectively α = (1n) and
β = (1n−2, 2) in both orders, since they both first differ at 1-cycles which is odd. While
for α = (1n−4, 22) two 2-cycles, β = (1n−4, 41), α >CL β but β >(−1)i+1CL since they first
differ at a 2-cycle and −2 < 0.

As the level of laziness, P (e), varies for the transposition walk, the importance of parity
and cycle structure vary. For instance, when P (e) = 0 and so only transpositions are
generators, at even (and respectively, odd) steps of the walk, only even (and respectively,
odd) permutations can be made. When P (e) > 1

2
, parity plays no role. In between these,

there is a cycle size under which differing at that size cycles trumps parity, and over which
parity determines likelihood order. This will be explored in section 5.4.

Definition 3. [1-zippered cycle lexicographic order] Let α = (1a1 , 2a2 , . . . , nan), β =
(1b1 , 2b2 , . . . , nbn) define α >1CL β when for mink(ak 6= bk) = i, if i = 1 or sg(α) = sg(β)
the same parity, ai > bi. Otherwise, α >1CL β if (−1)t sg(α) > (−1)t sg(β). Finally,
α =1CL β exactly when α = β.

Theorem 4. There exists a constant C such that for t > Cn2, the transposition walk

1. with P (e) = 0 has the likelihood order order the cycle lexicographic order restricted
to even (odd) elements at even (odd) times

2. with P (e) = 1
n

has likelihood order the 1-zippered cycle lexicographic order

3. with P (e) > 1
2
, bounded away from 1, has likelihood order the cycle lexicographic

order

It is suspected that for the transposition walk at even steps the n-cycles are always
the least likely elements. It is trivially true up to n − 2 steps, and Theorem 4 shows it
holds after order n2 steps. However, the likelihood order, as a whole, breaks frequently
for t < n− 2. Whether the n-cycles are the least likely and the likelihood order holds in
this gap are open.
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For p-cycle walks for fixed p and sufficiently large n, the asymptotic likelihood order
is found via refining an estimate from Wasserman’s thesis [20], reprinted in [8].

Theorem 5. For t sufficiently large and p > 1 odd, the likelihood order for the p-cycle
walk is the (−1)i+1 cycle lexicographic order.
For t sufficiently large and p > 2 even, the likelihood order for the p-cycle walk breaks

into two parts. There exists a C, such that for i 6 Cn
p−3
p−2 for the likelihood order is the

(−1)i+1 cycle lexicographic order, for i > Cn
p−3
p−2 the order is cycle lexicographic.

As a result, the least likely element of these walks after sufficient time is a conjugacy
class made up of 2-cycles and possibly another 3, 4 or 5 cycle according to parity of n
and t.

Corollary 6. For p > 2 fixed, n and t sufficiently large, the least likely element of the
p-cycle walk at time t is:

(2n/2) n even, (p− 1)t even

(2n/2−2, 4) n even, (p− 1)t odd

(2(n−3)/2, 3) n odd, n+1
2

same parity as(p− 1)t

(2(n−5)/2, 5) n odd, n+3
2

same parity as(p− 1)t

Section 2 outlines the techniques, discrete Fourier analysis and character theory for
the symmetric group. Section 3 establishes the i-cycle detectors as the representations
that determine the likelihood orders. Following that, in section 4 discusses the cycle
lexicographical orders that will appear as likelihood orders and compares them with other
partial orders on partitions. Then in section 5 we find sufficient time for the likelihood
order for the transposition walk to stabilize. Following this, two brief digressions, section
5.4 discusses how the likelihood order varies with degrees of laziness, while section 5.5
gives method for finding the states more likely than the stationary distribution. Finally,
in section 6 careful bounds on the eigenvalues of the p-cycle walk lead to their likelihood
orders.

2 Background

2.1 Notation

The letters λ, ρ, γ will always refer to partitions. The letters α, β, κ to conjugacy classes
of the symmetric group on n letters denoted Sn, with with cycle structure written in one
of two partition notations α = [α1, . . . , αr] = (1a1 , . . . , nan) where α is a permutation with
cycles lengths α1 > · · · > αr and ai i-cycles. The following partitions occur repeatedly
and will be denoted by [n − i, i] = λi,[n − i, i − k, 1, . . . , 1] = λi,k, and [n − i, 1, . . . , 1] =
ρi = λi,i−1.

Since these random walks are generated by conjugacy classes the probability func-
tion is a class function. This means that probabilities are constant on each conjugacy
class. Formulas will be written in terms of conjugacy classes referring to probability of
an individual element of the conjugacy class.
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2.2 Discrete Fourier inversion formula

The Fourier inversion formula gives an expression for the distribution of a random walk on
the symmetric group in terms of characters of irreducible representations of the symmetric
group. These irreducibles are indexed by partitions of n. See chapter 2 of [5] for a more
thorough treatment.

Proposition 7 (Fourier inversion formula). For a random walk on the symmetric group
starting at the identity with distribution at time one, P (·), a class function, the probability
distribution for tth step is given by

P ∗t(α) =
1

n!

∑
λ

χλ(α)dλ(rλ)
t

Where r is as follows. The sum below is over conjugacy classes κ of size |κ|,

rλ =
∑
κ

|κ|P (κ)
χλ(κ)

dλ

Proof. Starting from the Fourier inversion theorem on page 13 of [5] and using G = Sn,
for any function f on Sn,

f(g) =
1

n!

∑
λ

dλ Tr(λ(g−1)f̂(ρi))

where the Fourier transform, f̂(λ) =
∑

g f(g)λ(g). We will simplify this for the case
f(g) = P ∗t(g) with P is a class function. For class functions, Shur’s lemma implies that
P̂ (λ) = rλIdλ where Idλ is the dλ dimensional identity matrix and rλ is as in the statement
of the theorem. Moreover, the Fourier transform turns convolution into multiplication,

so P̂ ∗t(λ) =
(
P̂ (λ)

)t
. Finally, by definition Tr(λ(g−1) = χλ(g

−1) using that for the

symmetric group g and g−1 are in the same conjugacy class and the character is constant
on conjugacy class, this is equal to χλ(g).

In the event that P is constant and supported on a single conjugacy class, κ, the
eigenvalue rλ = χλ(κ)

dλ
is the character ratio denoted rλ(κ).

This immediately yields a formula for the difference in probability of two permutation
α, β after t steps of the walk.

Proposition 8.

P ∗t(α)− P ∗t(β) =
1

n!

∑
λ

(χλ(α)− χλ(β)) dλ(rλ)
t

Where rλ is defined in Proposition 7.

Note that as 1 > rλ > −1, the terms are decay exponentially in t, and for t sufficiently
large the sign of the equation is determined by the largest rλ for which χλ(α) 6= χλ(β). For
times sufficiently large so that term is larger than the sum of all the terms, the likelihood
order stabilizes.
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2.3 The Murnaghan-Nakayama formula

The irreducible characters for the symmetric group are computable through the recursive
Murnaghan-Nakayama formula arising from the correspondence between representation
theory of Sn and symmetric functions where it gives the decomposition of the Shur poly-
nomials into power sum polynomials (see e.g. I.7 Ex 5 of [15]).

Proposition 9 (Murnaghan-Nayakama).

χλ(α) =
∑
S

(−1)ht(S)

summed over all sequences of partition S = (λ(0), λ(1), . . . , λ(r)) such that r = l(α), 0 =
λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) such that each λ(i) − λ(i−1) is a border strip of length αi and
ht(S) =

∑
i ht(λ(i) − λ(i−1)).

One way of viewing this process is successively removing border strips of length
αr, . . . , α1 in all possible ways from the bottom, right of λ. Alternatively, one can envision
this process as in Littlewood, [13], as successive insertions of α1, . . . , αr into the top,left of
λ. This reversal of the usual visualization was key in defining an i-cycle detector as it em-
phasizes the importance of the large pieces. The following are borrowed from Littlewood
with some change in terminology to match modern usage.

Definition 10. The insertion of i nodes to a partition is called a valid insertion of i nodes
if the nodes are added to any row until they are exhausted or until the number of nodes in
this row exceeds the number in the preceding row by one, the nodes being then added to
the preceding row according to the same rule, and so on until the i nodes are exhausted
provided the final product is a valid partition. If the number of rows involved is even it
is called a negative application, if odd, a positive application.

Proposition 11 (Littlewood). If λ is a partition of n and α denotes a conjugacy class of
the symmetric group with cycles of orders α1, . . . , αr the χλ(α) is obtained form the number
of methods of building the partition λ by consecutive valid insertions of α1, . . . , αr nodes
by subtracting the number of ways which contain an odd number of negative applications
from the number of ways which contain an even number of negative applications.

An insertion of αi nodes from a cycle length αi will be shortened to an insertion of an
αi cycle.

Example 12. To see this, consider calculating χ[4,2](1
2, 4). First to choose which row to

start inserting the largest cycle, the four cycle, into the shape [4, 2]:

Either the the first row or the second row are possible giving (the nodes are enumerated
by the i of the αi that fills it):

1 1 1
1
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1 1 1 1

The first is a negative insertion since it covers an even number of rows, while the second
confined to the first row is a positive insertion. It remains to place the two 1-cycles. In
the first, the first 1-cycle can go into either the first or second row to be valid, and the
second 1-cycle must go in the remaining spot.

1 1 1 2
1 3

1 1 1 3
1 2

While our second way of placing the 4-cycle leaves only the second row for each 1-cycle
insertion.

1 1 1 1
2 3

So this sums to two ways with an odd number of negative insertions and one way with
an even number of negative insertions. This gives χ[4,2](1

2, 4) = −2 + 1 = −1

2.4 Character Polynomials

Another useful tool for insight into the characters is the character polynomial. For more
information, see [10], which forms the basis of this subsection. For each character χλ the
character polynomial is the unique polynomial that evaluated on the cycle structure of
a permutation, evaluates to the character. For example, the most well known character
polynomial is the one for the irreduscible representation indexed by [n − 1, 1], that its
character is χ[n−1,1](α) = a1−1, so that the number of fixed points completely determines
this character.

Definition 13. The character polynomial of µ a partition of n is

qµ(x1, . . . , xn) =↓

(∑
αan

χµ(α)

zα

n∏
i=1

(ixi − 1)ai

)

where zα =
∏

i ai!i
ai and ↓ (xa11 · · ·xann ) = (x1)a1 · · · (xn)an .

Proposition 14.
χλ(α) = q[λ2,...,λr](a1, . . . , an−λ1)

Example 15. To continue using χ[4,2](1
2, 4) as an example, find the character polynomial

corresponding to χ[4,2](α). This corresponds to removing the first row of the partition, so
we compute q[2].

q[2](x1, x2) =↓

(∑
αa2

χ[2](α)

zα

2∏
i=1

(ixi − 1)ai

)
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Since χ[2](·) = 1 and the only partitions of 2 are [2] and [1] with z[2] = (1!)(2),z[1,1] =
(2!)(12) = 2, this gives,

q[2](x1, x2) =↓
(

1

2
(2x2 − 1) +

1

2
(x1 − 1)2

)
= x2−

1

2
+

1

2
(↓ x21)−x1 +

1

2
= x2 +

(
x1
2

)
−x1

Applying this to (12, 4) gives χ[4,2](1
2, 4) = 0 +

(
2
2

)
− 2 = −1.

3 Detecting Cycle Structure

As motivated by the formula for the difference in probabilities, the goal here is to describe,
for fixed conjugacy classes α, β, partitions, λ, for which we know χλ(α)−χλ(β) = 0. Each
the character for each partition has a granularity to detect cycle structure up to a size
beyond which it is indiscriminate. For example, above it was noted that χ[n−1,1] is deter-
mined by fixed points and it was computed that χ[n−2,2] is given in terms of fixed points
and 2-cycles. This leads to three equivalent conditions motivated by both Murnaghan-
Nakayama and character polynomials characterizing a partition with the potential to be
effected by i-cycles, to be called an i-cycle detector. In turn, a partition that is not an
i-cycle detector will not be able to detect if α, β only differ in cycle decompositions for
cycles > i. The definitions below reflect the property that χλ(α) = sgn(α)χλ′(α), so being
an i-cycle detector is a dual statement about a partition and its conjugate.

Definition 16. An insertion of cycles lengths α1, . . . , αk into λ is trivial if they insert
with nodes in the same order as from inserting a cycle length α1 + . . .+ αk.

Example 17. Recall the examples of insertions above.

1 1 1 2
1 3

1 1 1 3
1 2

1 1 1 1
2 3

As always, the first cycle, α1 inserts trivially in all three examples. Now, looking at the
first two cycles insertions, only the first example is trivial since in this case the second
cycle was inserted following the first cycle in the same row. The second example fails to
be trivial is there is no was to insert one cycle length α1 + α2 = 5 into the shape α1, α2

fill, [3, 2]. And the third fails since the first cycle does not fill the entire first column. The
three cycles insert trivially in none of these examples.

Definition 18. Call λ a i-cycle detector if there is a non-trivial insertion of cycles lengths
> i into λ and λ′

Implicit in this definition is that i-cycle detectors only exist for i 6 n
2
, since it is

impossible to insert two cycles size > n
2

into a partition of n.

Lemma 19. The following are equivalent:

1. λ is an i-cycle detector
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2. h2,1, h1,2 > i (where hx,y is the length of the hook starting at (x, y) in λ)

3. some xj for j > i occurs in a monomial with non-zero coefficient in both q[λ2,...,λr](x),
q[λ′2,...,λ′r′ ](x)

Proof. The equivalence of the first two statements will mostly be a proof by diagram.
The first two rows and columns of λ take on one of five shapes where the captial letters
stand for any number of boxes, and the lower case a single box. These capital letters and
h1,2, h2,1 will be used abusively to stand for both the boxes they represent and the number
of boxes they represent.

Case (1):

x D
C Case (2):

x y D
w v
C Case (3):

x y A z D
w v A u
C

Case (4):

x y D
w v
B B
r s
C Case (5):

x y A z D
w v A u
B B
r s
C

First to show if h2,1, h1,2 > i, then two cycles can be inserted into the first two rows
and columns of λ with the second inserting non-trivially. Then it will also clearly work
for λ′ as it has the same property.

In case (1), D = h1,2 > i, C = h2,1 > i so inserting the first i-cycle into the first row
and the second into C is possible.

For case (2), D + 2 = h1,2 > i, C + 2 = h2,1 > i, so inserting the first i-cycle into the
first row and the second into h2,1 is possible.

For case (3), h1,2 = 3 +A+D > i, h2,1 = 3 +A+C > i, so the first i-cycle fits in the
first row and the second in the h2,1.

In case (4), h1,2 = 3 + B + D > i, h2,1 = 3 + B + C > i. The first column then is
the same length as h2,1, so insert the first i-cycle vertically. And the second can insert
non-trivially into h1,2.

Finally, for case (5), insert trivially into the first row and column along

x y A z D
w
B ,

which is at least i long since this is the same length as h1,2. Insert non-trivially into the
remaining squares, which are the same length as h2,1.

If two cycles of lengths at least i can be inserted with one non-trivial into both λ, λ′,
it needs to be shown that h1,2, h2,1 > i. These same five shapes also describe the shape
these insertions can fill within λ. For one shape only, it can only be shown that inserting
into λ gives h2,1 > i. The insertion into λ′ will then satisfy h1,2 > i. Let the insertion into
λ be one of the shapes:
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For case (1), since the second insertion is assumed to be non-trivial, it must be con-
tained in C. Therefore, h2,1 > C > i. To establish that h1,2 > i use that λ′ satisfies the
non-trivial requirement as well.

Then, for case (2), the non-trivial intersection cannot be in both C and D since this
would leave only one square for the trivial insertion. This means the non-trivial insertion
is contained in either h2,1 or h1,2, leaving the size of the other for the trivial insertion. So
both h2,1 and h1,2 are at least i.

In case (3), if the non-trivial insertion intersects either w,C or z,D it cannot intersect
the other since this would make that insertion longer than the preceding trivial insertion.
This leaves either at most D + A + 3 boxes or C + A + 3 boxes for the trivial insertion,
each contained in h1,2 and h2,1. The remaining space then for a single insertion is at most
C + A + 3 boxes and D + A + 3 boxes. So both hooks are at least i. If instead the
non-trivial insertion did not intersect w,C, z,D, it must fit into v,A, u which is smaller
than either hook, and both hooks are also at least i in length.

Then, in case (4), as the conjugate of the previous shape the proof follows exactly the
same argument with relabeling.

Lastly, in case (5), the non-trivial intersection must contain the hook s, B, v, A, u.
It may additionally contain either z,D or r, C but not both, as that would make it
longer than the trivial insertion. First if it contains r, C. This makes the non-trivial in
C+4+B+A boxes, which is less than the length of h2,1. This leaves D+4+B+A boxes
the trivial fills, less than the length of h2,1. If the non-trivial fills z,D, then similarly it
cannot also touch r, C, and must be in D+ 4 +B +A boxes, less than the length of h1,2.
Again, leaving C + 4 + A + B 6 h2,1 for the trivial insertion. In the final case where
the trivial is just s, B, v, A, u, i 6 A + B + 3 this is less than h2,1 > A + B + D + 4 and
h1,2 > A+B + C + 4.

The equivalence of the latter two statements in the theorem follows from expanding
the character polynomial.

qλ2,...,λr(x) =↓

( ∑
αan−λ1

χµ(α)

zα

n−λ1∏
i=1

(ixi − 1)ai

)
The sum is over α a n − λ1 but when χµ(α) = 0 the α term is 0. By the Murnaghan-
Nakayama rule, the largest cycle inserts first, and the largest cycle that can insert into
[λ2, . . . , λr] is h2,1. The sum can then be restricted to α with parts of size at most h2,1.
An xi occurs in the α term only when α has a part of size i. So no xi term can than occur
in q[λ2,...,λr] for i > h2,1. Next, to show xh2,1 occurs with non-zero coefficient. Taking the
sum over α with α1 = h2,1,

↓

 ∑
αa[n−λ1]:α1=h2,1,i 6=1,αi<h2,1

χ[λ2,...,λr](α)

zα

n−λ1∏
i=1

(aixi − 1)ai

 (1)

=↓

 ∑
βan−λ1−h2,1:βi<h2,1

(−1)r+1χ[λ3−1,...,λr−1](β)

h2,1zβ
(h2,1xh2,1 − 1)

h2,1−1∏
i=1

(ixi − 1)bi

 (2)
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= (−1)r+1(xh2,1 −
1

h2,1
) ↓

 ∑
βan−λ1−h2,1

χ[λ3−1,...,λr−1](β)

zβ

n−λ1−h2,1∏
i=1

(ixi − 1)bi

 (3)

= (−1)r+1(xh2,1 −
1

h2,1
)q[λ3−1,...,λr−1] (4)

No character polynomial can be zero since no character of an irreducible is zero, so the
xh2,1 will have non-zero coefficient in q[λ2,...,λr]. Similarly the xh1,2 term will have non-zero
coefficient in q[λ′2,...,λ′r′ ]

Given a partition, the hook starting at (2, 1) will be called its subhook, and its length,
h2,1 the subhook length of the partition. When h2,1 6 h1,2, the partition is a i-cycle
detector if its subhook length is at least i. The proof above also shows:

Corollary 20. For a partition λ,

• h2,1 is the largest i for which xi occurs in q[λ2,...,λr](x)

• h1,2 is the largest i for which xi occurs in q[λ′2,...,λ′r′ ](x)

Theorem 21. If α, β with the same sign have aj = bj for all j < i and λ is not a i-cycle
detector, then χλ(α)− χλ(β) = 0.

Proof. If λ is not an i-cycle detector, then one of h2,1, h1,2 < i by lemma 19. By corollary
20, this means one of q[λ2,...,λr](x), q[λ′2,...,λ′r′ ](x) has no xj terms for j > i. If it is the
character polynomial for λ, then

χλ(α) = q[λ2,...,λr](a1, . . . , ai−1) = q[λ2,...,λr](b1, . . . , bi−1) = χλ(β)

If it is the character polynomial for λ′,

χλ(α) = sgn(α)χλ′(α) = sgn(α)q[λ′2,...,λ′r′ ](a1, . . . , ai−1)

= sgn(β)q[λ′2,...,λ′r′ ](b1, . . . , bi−1) = sgn(β)χλ′(β) = χλ(β)

The stronger statement that any i-cycle detector can differentiate between two con-
jugacy classes that first differ in their number of i-cycles is not true. For instance, the
character polynomial associated with [n − 3, 2, 1] has no degree two terms despite being
a 2-cycle detector. This means, for example, χ[n−3,2,1](1

n−4, 22) = χ[n−3,2,1](1
n−4, 4).

4 The Cycle Lexicographic Orders and Other Orders on Parti-
tions

Two total orders on partitions will form the underpinnings for the likelihood orders for
the walks generated by p-cycles. The first is cycle lexicographic order denoted 6CL:

the electronic journal of combinatorics 25(1) (2018), #P1.25 11



Definition 22. [Cycle lexicographic order] Let

α = (1a1 , 2a2 , . . . , nan), β = (1b1 , 2b2 , . . . , nbn)

define α >CL β when for mink(ak 6= bk) = i, ai > bi. α =CL β exactly when α = β.

Throughout the paper, i will be used to mean this first differing cycle size for any pair
α, β. CL is distinct from the traditional orders on partitions: majorization/ domination/
natural, reverse lexicographical, and (an usual order) Lulov’s lexicographical. Where
lexicographical without the cycle prefix here refers to the αi’s rather than the ai in the
notation α = [α1, . . . , αr] = (1a1 , . . . , nan).

Definition 23. Majorization order is defined as α D β if for all i,
∑
j6i
αj >

∑
j6i
βj. Equiv-

alently, α D β if boxes in the Ferrers diagram of β can be moved up and to the right to
get the Ferrers diagram of α.

Definition 24. In reverse lexicographical order α >RL β if for the minimum i that
αi 6= βi, αi > βi. [19]

This is a refinement of majorization into a total order.
In Lulov’s thesis [14] this next definition is called reverse lexicographic, which clashes

with the canonical definition used above, [19], [15]. It flips the order of the λi. Lulov
mistakenly equated this order to CL, which he established as stabilized likelihood order
for the transposition walk at even times.

Definition 25. In Lulov’s lexicographical order α >L β if the the maximum i such that
αi 6= βi, αi < βi.

Proposition 26. CL order is not a linear extension of majorization order (and automat-
ically also incompatible with reverse lexicographical). Cycle lexicographical is also distinct
from Lulov’s lexicographical.

Proof. The order under majorization and cycle lexicographical of the following partitions
of 6 are incompatible: [5, 1], [4, 2], [3, 1, 1, 1]. In majorization order,

[5, 1] D [4, 2] D [3, 1, 1, 1]

as one can see how to move boxes down and to the left to get the next shape

D D

while under cycle lexicographic order the order is neither the same or reversed. In each
case, i = 1 and the partitions are ordered by number of fixed points:

[3, 1, 1, 1] >CL [5, 1] >CL [4, 2]
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The order under Lulov’s lexicographical and cycle lexicographical of the following
partitions of 6 are incompatible: [5, 1], [2, 2, 2], [3, 1, 1, 1]

, ,

In Lulov’s lexicographic order these are ordered by number of parts,

[5, 1] >L [2, 2, 2] >L [3, 1, 1, 1]

while in cycle lexicographic the order of the three is again determined by number of fixed
points:

[3, 1, 1, 1] >CL [5, 1] >CL [2, 2, 2]

It is also the case that when CL order is taken on the conjugate of α and majorization
or Lulov’s lexicographical is taken on α, there is still incompatibility. For the first take
[5, 1], [4, 2], [4, 1, 1] and the second again [5, 1],[2, 2, 2],[3, 1, 1, 1].

The variant of cycle lexicographical that arises in this paper as likelihood orders is as
follows.

Definition 27. Define α >(−1)i+1CL β when for mink(ak 6= bk) = i, for i even ai < bi or
for i odd ai > bi. α =(−1)i+1CL β exactly when α = β.

The largest and smallest elements under these orders will be the most and least likely
elements of walks. For reference later, based on the divisibility of n and restricted to
permutations with odd sign, |− or even sign, |+, the largest, 1̂, and smallest, 0̂, elements
of each of these orders are:

Proposition 28. When n is odd:

CL (−1)i+1CL

1̂ (1n) (1n)

1̂+ 1n) (1n)

1̂− (1n−2, 2) (1n−2, 2)

0̂ (n) (2
n−3
2 , 3)

0̂+ (n) if 4|(n+ 1), (2
n−3
2 , 3) else, (2

n−5
2 , 5)

0̂− (n−1
2
, n−1

2
) if 4|(n+ 1), (2

n−5
2 , 5) else, (2

n−3
2 , 3)

When n is even:

CL (−1)i+1CL

1̂ (1n) (1n)

1̂+ (1n) (1n)

1̂− (1n−2, 21) (1n−2, 2)

0̂ (n) (2
n
2 )

0̂+ (n
2
2) if 4|(n), (2

n
2 ) else, (2

n−4
2 , 4)

0̂− (n) if 4|(n), (2
n−4
2 , 4) else, (2

n
2 )
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Proof. In cycle lexicographic order, the elements are first ordered by number of fixed
points, then number of 2-cycles, etc. The largest element in the order is the identity
followed by the transposition, while the smallest elements, those with only the largest
possible cycles, are the n-cycles and then next largest, depending on partity of n, the
permutations with two n/2 cycles or (n+ 1)/2 and (n− 1)/2 cycle.

Alternating cycle lexicographic order can be thought of as rewarding odd cycles and
punishing even cycles. Again, fixed points are the first deciding point, ordering by de-
creasing number of fixed points. Then 2-cycles are the next deciding factor, ordering by
increasing number of 2-cycles. And so on, alternating by cycle parity. The largest element
in the order is the identity, since it will have the most fixed points. The next largest is
the only conjugacy class with n− 2 fixed points, the transpositions.

When n is even, α = (2
n
2 ) is last in this order since for β 6= α, mink(ak 6= bk) is either

1 if β has a fixed point or 2 if not. If i = 1, a1 = 0 < 1 6 b1, and 1 is odd so β is larger.
If i = 2, a2 = n

2
> b2, but 2 is even so having more 2-cycles makes a conjugacy class less

likely under this order. The next smallest element when n is even is (2
n−4
2 , 4) since it is

also fixed point free and has the next most 2 cycles. One of these two is odd while the
other is even, and so they are the respective smallest odd and even elements.

When n is odd, the smallest element is the fixed point free conjugacy class with the
most 2 cycles, (2

n−3
2 , 3), so again in comparison with any other conjugacy class i is 1 or 2.

(2
n−5
2 , 5) has the next most 2-cycles amongst fixed point free conjugacy classes. Exactly

one of these will be odd, the other even.

5 Transposition Walk

Consider building a permutation by at each step appending a randomly selected trans-
position on the left. The goal is to find which permutations are more or less likely than
others after many steps of the walk. The answer for the transposition walk, is that that
the likelihood order after sufficient time is given by cycle lexicographic order, confined to
even (odd) permutations at even (odd) times. The key is finding, given a pair of permu-
tations, the partition(s) indexing the largest character ratio(s) with non-zero character
difference in the decomposition given by Proposition 8. For the transposition walk, when
two permutations first differ at an i-cycle the partitions are [n− i, i] = λi and (λi)′. While
this is enough for the likelihood order to asymptotically be cycle lexicographic, we will
show O(n2) steps suffices. In the author’s thesis[4], an explicit non-optimal constant 2.82
was found in Theorem 44, but the result has been simplified for readability. The method-
ology is extended in section 5.4 to the lazy version of the walk, with a discussion of how
the likelihood order changes as the laziness increases. While it is clear that finding the
least likely element is useful in establishing separation distance, the likelihood order is
also of potential use in finding the total variation distance. In section 5.5 we find where
in the order the uniform distribution would fall, with those permutations below it being
the optimal bad set.

Showing cycle lexicographic order is the likelihood order after sufficient time is the
best that can be hoped for as for all n > 8, the does not hold as the likelihood order
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for some t < n − 1. For example when n is divisible by 4, the conjugacy class of an
(n− 1)-cycle is more likely after sufficient time than the conjugacy class of n/2 2-cycles.
Yet, as it requires n− 2 transpositions to achieve the former and only n/2 to achieve the
latter, for n/2 6 t < n − 2 the order breaks. All known cases, from simulation, of the
order breaking are of this form where the order rights itself when the eventually more
likely element is first possible, thus there is not a known case of the order breaking for
t > n− 1.

5.1 Character Ratio Maximizing Cycle Detector

From Proposition 8, the formula for the difference in probability of two conjugacy classes
α, β is:

P ∗t(α)− P ∗t(β) =
∑
λ

(χλ(α)− χλ(β)) dλ

(
χλ(τ)

dλ

)t
After sufficient time, the sign of this expression will be determined by the partitions

λ with the largest magnitude of character ratio,
∣∣∣χλ(τ)dλ

∣∣∣, and non-zero character difference

χλ(α) − χλ(β). It happens that when mink(ak 6= bk) = i this lead position is taken by
λi = [n − i, i], (λi)′. The relative sizes of character ratios at a transposition are well
understood see e.g. Lemma 10 of [7]:

Proposition 29. When λ D ρ, χλ(τ)
dλ

> χρ(τ)

dρ
. Recall, λ D ρ when boxes in the Ferrers

diagram of ρ can be moved up and to the right to get the Ferrers diagram of λ. The
difference in character ratios is the distance the boxes travel divided by

(
n
2

)
.

Recall that an i cycle detector must have h2,1, h1,2 > i. The goal is to find the i-cycle
detector with largest positive character ratio. For this walk, its conjugate will have the
largest in magnitude character ratio among the i-cycle detectors with negative character
ratios at a transposition.

Proposition 30. λi = [n − i, i] is larger in majorization order than any other i-cycle
detector, and so it and its conjugate are the i-cycle detectors with largest character ratios.

Proof. In order for h2,1 to be > i, at least i blocks must exist in the subhook. The
positioning of these most up and to the right is as in [n− i, i]. Moreover, for any partition
with at least i blocks in its subhook, these i blocks can be moved up and to the right
to be in the second row and all other blocks below the first row moved to the first row
yielding [n − i, i]. If any additional block is moved up and to the right from [n − i, i], it
must be moved out of the subhook making the partition no longer an i-cycle detector.
To be incompatible to [n − i, i] in majorization order, a partition must have both more
blocks in the first row and some blocks in the third row. If it had more than n− i blocks
in the first row this would preclude it from being an i-cycle detector. Thus, all i-cycle
detectors are comparable to and below [n− i, i] in majorization order.
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5.2 Cycle Lexicographical Order

The sign of 5.1 after sufficient time is determined by the signs of the terms for λi and
(λi)′. The λi term will end up controlling the sign, while its conjugate contributes to the
condition that only even partitions can be reached at even times and odd transpositions
at odd times.

Proposition 31. Let α, β be two conjugacy classes and α >CL β with mink(ak 6= bk) = i,
then

χλi(α)− χλi(β) = ai − bi
Proof. From equation (4), the characteristic polynomial has a single monomial containing
xi, namely xi, and no terms xj for any j > i.

And quickly some computations of the characters and dimensions of these partitions,

Proposition 32.

dλi =

(
n

i

)
n− 2i+ 1

n− i+ 1

χλi(τ)

dλi
= 1− i(n− i+ 1)(

n
2

) > 0

Proof. By the hook length formula [19],

dλi =
n!

i!(n− i+ 1) · · · (n− 2i+ 2)(n− 2i) · · · 1
=

n!

i!(n− i)!
n− 2i+ 1

n− i+ 1

Using the formula for the difference in character ratios in Proposition 29, the difference
between the character ratios of λ0 (with character ratio 1) and λi is the distance in the
Ferrers diagram the squares travel up and to the left from λi to become λ0, all divided by(
n
2

)
. In this case, the i blocks need to travel from the second row to the first row, for an

average distance traveled of n− i+ 1. Hence,

χλi(τ)

dλi
=
χλ0(τ)

dλ0
− i(n− i+ 1)(

n
2

) = 1− i(n− i+ 1)(
n
2

)
Proposition 33. The sign of the sum of the λi and (λi)′ terms in 5.1 is positive when
t is the same sign as α, β and α >CL β with mink(ak 6= bk) = i. Thus, after sufficient
time, CL is the likelihood order.

Proof.

(χλi(α)− χλi(β)) dλi

(
χλi(τ)

dλi

)t
+
(
χ(λi)′(α)− χ(λi)′(β)

)
d(λi)′

(
χ(λi)′(τ)

d(λi)′

)t
= (ai − bi)dλi

(
χλi(τ)

dλi

)t
+ sgn(α)(ai − bi)dλi

(
−χλ

i(τ)

dλi

)t
= (ai − bi)(1 + sgn(α)(−1)t)dλi

(
χλi(τ)

dλi

)t
Which is positive when ai > bi and α, β are the same partity as t.
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Proposition 34. After sufficient time the following hold. The identity is the most likely
element at even times, a transposition the most likely at odd times. When n is odd, an
n-cycle is the least likely element at even times and an element of (n−1

2
, n+1

2
) at odd times.

When n is even, at even times an element of (n
2
2) is least likely, while at odd times an

n-cycle is least likely.

Proof. These are the largest and smallest elements of CL order under the required parity
constrainsts, as in Proposition 28.

5.3 Proof of Theorem 4 (1)

The general methodology will be to show in the Fourier inversion theorem from Propo-
sition 7, for two conjugacy classes α, β first differing at an i-cycle, that the λi term in
is greater than the sum of the absolute value of all other terms for partitions λ with
i 6 h2,1 6 h1,2. The symmetry between conjugates handles the remaining partitions. The
λi term will be shown to be at least a scaling factor, cj, times greater than all the λ terms
with λ1 = n− j, where the sum over all the scaling factors will be at most 1. This breaks
down into showing:

cj|χλi(α)−χλi(β)|dλirλi(τ)t >

(
max

λ:λ1=n−j
|χλ(α)− χλ(β)|

)( ∑
λ:λ1=n−j

dλ

)(
max

λ:λ1=n−j
rλ(τ)

)
This will be accomplished through finding good bounds on the difference in character

ratios δi,j = rλi(τ)−(maxλ:λ1=n−j rλ(τ) and writing (using that 1+x > ex/2 for 0 6 x 6 1):(
rλi(τ)

rλ(τ)

)t
6

(
1 +

δi,j
rλ(τ

)t
6 (1 + δi,j)

t 6 e
δi,j
2
t

Using t of order n2, it suffices to show that log(cj), log (maxλ:λ1=n−j |χλ(α)− χλ(β)|)
and log

(∑
λ:λ1=n−j

dλ

dλi

)
are at most order n2δi,j.

Two sets of partitions have to be done as special cases, as their character ratio differ-
ences with λi can be as small as 4

n(n−1) , while all other character ratio differences will be

at least 1
n
. These special cases are the partitions [n− i, i−k, 1k] and for i > n/3, [n−j, j].

For the remaining partitions, a single bound on the character differences and sum of di-
mensions will suffice, though several cases of character ratio differences are needed. We
start with the first special case of the partitions [n−i, i−k, 1k], then move onto the general
case where the second special case will be handled as a separate clause in Propositions
36,37,38, respectively giving bounds for the character differences, dimension ration, and
character ratio differences. The scaling factor will be cj = 2i−j−2 for j other than these
special cases, and 1

2
for the [n− i, i− k, 1k] and 1

4
for the [n− j, j] when i > n/3.

A heuristic for when the likelihood stabilizes is:

t > max
λ

(
χλi(τ)

dλi
− χλ(τ)

dλ

)−1
log(dλ/dλi)

the electronic journal of combinatorics 25(1) (2018), #P1.25 17



This is analogous to the heuristic estimate τ̂n of the mixing time of a random walk
with sufficient symmetry on a group based on its spectral gap, 1−λ2 (where 1 = λ1, λ2, . . .
are the eigenvalues), and multiplicity of the second eigenvalue, δn, [1].

τ̂n = τe(n) log(δn) where τe(n) = −1/ log(λ2)

In these cases, the closest character will have a larger dimension than λi by a factor
between a O(i) and n. While the minimal character ratio difference, playing the part

of the spectral gap, varies inversely at the same time between O(O(i)
n2 ) and O( 1

n
) This

analog of the heuristic describes all the bounds achieved for by the author in her thesis
for the transposition walk, three cycle walk, and n-cycle walk [4]. Note that there exists
cases where the spectral gap heuristic is off by a constant, such as the random-to-random
shuffle [3].

Proposition 35. The λi,k term (χλi,k(α)− χλi,k(β)) dλi,krλi,k(τ)t is:

(−1)k(ai − bi)
(
n

i

)(
i− 1

k

)
n− 2i+ k + 1

n− i+ k + 1

(
1− i(n− i+ k + 1)(

n
2

) )t

The sum of all the λi,k terms is

(ai − bi)
(
n

i

) i−1∑
k=1

(−1)k
(
i− 1

k

)
n− 2i+ k + 1

n− i+ k + 1

(
1− i(n− i+ k + 1)(

n
2

) )t

.

This is less than half of the λi term for t > n2(log(i−1)+1)
i

.

Proof. From the Ferrers diagram of λi, to get to the Ferrers diagram of λi,k k boxes must
be moved each a distance of i. This gives the character ratio. The hook length formula
here gives

dλi,k =
n!

(n− i+ k + 1)(n− i) · · · (n− 2i+ k + 2)(n− 2i+ k) · · · (1)(i)(i− k − 1)!k!

=

(
n

i

)(
i− 1

k

)
n− 2i+ k + 1

n− i+ k + 1

And finally for the character difference, in equation (4) we see the coefficient of xi in the
character polynomial for [n − i, i − k, 1k] is (−1)r = (−1)k+2. All small cycle terms will
cancel in the character difference leaving, (−1)k(ai − bi).

For t > n2(log(i−1)+1)
i

consecutive terms will be shown to fall by half in magnitude.
Taken with the alternating signs this gives the desired result. The i = 1 case is trivial.
Consider 2 6 i 6 n/3, the character differences are the same, and the ratio of dimension
is at least:

dλi,k/dλi,k+1 =

(
i− 1

k

)
/

(
i− 1

k + 1

)
n− 2i+ k + 1

n− i+ k + 1

n− i+ k + 2

n− 2i+ k + 2
>

1

2(i− 1)
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Meanwhile, the ratio of eigenvalues gives:(
1− i(n−i+k+1)

(n2)

)t
(

1− i(n−i+k+2)

(n2)

)t >
(

1 +
i(
n
2

))t

> e
i
n2
t

Taking t > n2(log(i−1)+2)
i

suffices for the product of these terms to be at least 2. Finally,∑i−1
k=0

(−1
2

)k
> 1

2
, for i > 2.

This is a central obstruction to cycle lexicographic order holding at the mixing time
1
2
n log(n) ± cn, let alone by n − 2 steps. When i = 1 this issue does not exist since it is

the sole term with λ1 = n− 1. However, for all other i simulation suggests that although
the sum of the λi and λi,k terms may be positive by O(n log(n)) time, it will not be a a

constant fraction of the λi term until O(n
2 log(i)
i

). For i > n
3

there is another impediment
to showing the likelihood order holds after O(n log(n)) steps.

We now turn to showing general bounds for the character differences, dimension ratios,
and character ratio differences in the next three propositions. These will handle all the
remaining cases of partitions.

Proposition 36. For λ = [n− j, . . .] with j > i and a i-cycle detector and α, β conjugacy
classes of the same parity with mink(ak 6= bk) = i,

χλ(α)− χλ(β) 6 (n− 2i)j−i(j − i+ 1)2
n− i
i

Where there exists a constant C such that,

log(n− 2i)j−i(j − i+ 1)2
n− i
i

6 C((j − i)(n− 2i) + n)

Proof. We bound the valid insertions from the Murnaghan-Nayama rule containing non-
trivial i-cycle insertions independent of sign. Each insertion is determined by how the
cycles that insert below the first row of λ insert. The first insertion must be trivial and
at least i in length, as both cycles must contain an i or larger cycle. There are at most
j − i + 1 places in the first row to start this insertion leaving room for an i-cycle. Any
insertions with no i or larger cycles inserted non-trivially, the first of which is below the
first row, will cancel in the difference, so the sum in Murnaghan-Nakayama is restricted
to insertions where at least one i or larger cycle is inserted non-trivially. This means that
one of α, β has at least two cycles of size > i. Then since

∑
j<i j(aj) =

∑
j<i j(bj) both

are at most n−2i. Following this first non-trivial i or larger cycle at most j− i cycles can
then additionally insert below the first row and there are at most n− 2i of these. There
are at most (j − i)! ways of arranging these. And there are at most n

i
− 1 choices for the

first non-trivial i or larger cycle and j − i+ 1 rows in which to insert it.
Finally, log (n− 2i)j−i 6 (j− i) log(n−2i) 6 (j− i)(n−2i), and log((j− i+1)2 n−i

i
) 6

3n.
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Proposition 37. Taking the sum over λ = [n− j, . . .] with j > i and h2,1 > i,∑
λ

dλ 6

(
n

j

)(
j

a, b

)
e2(j − i)

where if j > 3
2
i, a = b = j/3 otherwise a = b = i/2.

There exists a constant C such that summing over the same partitions,

log

((∑
λ

dλ

)
/dλi

)
6 C((j − i)(n− 2i) + n(1 + |n− 2j|+))

Proof. The number of standard Young tableau of shape λ is dλ. To upper bound this
count, λ will be separated into three pieces. The first piece is λ1 = n−j. The second piece
is h2,1, of which it is restricted to i 6 h2,1 6 j and is made of λ2 and λ′1 − 2. This leaves
a partition consisting of all blocks not in λ1, λ2, λ

′
1, which contains at most j − i blocks.

Consider all possible ways of placing 1, 2, . . . , n into these parts so that each row/column
inside part is increasing. Not all of these will give valid tableau but all possible tableau
will be present. First choose n− j of n to place in λ1. Then λ2 and λ′1 of the remaining
j. Let a, b be the values of λ2, λ

′
1 − 2 that maximize this over all λ. Finally this leaves a

partition of size at most j − i. The sum of the dimensions of all partitions of j − i is a
combinatorial object called a telephone number and denoted e2(j − i) (the name comes

from a bijection with involutions of Sn). From [11], e2(j − i) 6
(
j−i
e

)(j−i)/2
e
√
j−i. This

gives ∑
λ

dλ 6

(
n

j

)(
j

a, b

)
e2(j − i)

This leaves finding values of a, b.
(

j
a,b,j−a−b

)
is maximized when the parts are as equal as

possible in size, so clearly a = b. Also, i 6 a+ b 6 j. So if j > 3
2
i, all parts can be equal

letting a = b = j/3. Otherwise, it is maximized when a = b = i/2, letting the remaining
part be as large as possible.

Recall from Proposition 32 that dλi =
(
n
i

)
n−2i+1
n−i+1

>
(
n
i

)
1
n
. First take the case that

j 6 n− i. The largest terms from the dimension of each mostly cancel:

log(

(
n

j

)
/

(
n

i

)
) 6 (j − i) log(

n− i
i

) 6 (j − i) log(1 + n− 2i) 6 n+ (j − i)(n− 2i).

It remains to show a similar bound on n,
(
j
a,b

)
and e2(j − i). The first is trivial, and then

log(
(
j
a,b

)
) 6 log(3j) 6 2n. While, using the bound from Knuth for the telephone numbers,

log(e2(j − i)) 6 (j−i)
2

log(j − i) +
√
j − i. Since j 6 n− i, then log(j − i) 6 n− 2i.

Second, we consider the case j > n − i. Now,
(
n
j

)
6
(
n
i

)
, and these terms can be

bounded by 1. The logarithm of n and
(
j
a,b

)
are both bounded by a constant times n.

Lastly, log(e2(j − i)) 6 (j − i) log(j − i), which can be broken into:(
j − n

2

)
log(j − i) +

(n
2
− i
)

log(j − i) 6
(
j − n

2

)
n+ (j − i)

(n
2
− i
)
.
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We finish by showing a difference in the character ratios that matches the bounds in
the previous two propositions.

Proposition 38. For 1 6 i 6 n/2, λ1 = n − j with j > i and either i 6 n/3 or
λ 6= [n− j, j], there exists a constant C such that,

Cn2(rλi − rλ) > (j − i)(n− 2i+ 1) + n(1 + |n− 2j|+)

When i < j 6 n/2 and λ = [n−j, j], there exists a constant C so that Cn2(rλi−rλj) >
(j − i)(n− 2i+ 1).

Proof. For fixed i, j 6 n/2, the smallest character ratio difference occurs for λ = λj with:

rλi − rλj =
(j − i)(n− i− j + 1)(

n
2

) >
2(j − i)(n/2− i+ 1)

n(n− 1)
>

(j − i)(n− 2i+ 1)

n2

This finishes the second statement of the proposition. When i 6 n/3, n−2i+1 > n/3,
so the extra can be used to show the first case. If n/3 < i < j 6 n/2, but λ 6= [n− j, j],
there is a box in the partition λ in the third row. Moving this box down from the second
row of [n−j, j], it travels distance at least j. Then since j is order n, the statement holds.

Finally, if n/3 < i 6 n/2 < j, we will estimate the largest the character ratio for
λ = [n − j, . . .] and then find the differce. the largest eigenvalue corresponds to the
partition λ with b n

n−j c = m rows of n− j boxes and a final row of n− (n− j)m blocks.
These all have non-negative character ratios since they are above their conjugates in
majorization order. Moving boxes down and to the left from [n] to λ, we will count the
distance they travel. In the first row, the first n − j stay in place, while the next n − j
each travel a distance of n− j + 1 from the second row. The third group of n− j travel
2(n − j + 1) from the third row, and so on, ending with the spare n − (n − j)m blocks
each traveling m(n− j + 1). This gives a total distance traveled of(

n

2

)(
1− χλ(τ)

dλ

)
>

(
m−1∑
k=0

k(n− j)(n− j + 1)

)
+m(n− j + 1) (n− (n− j)m) (5)

=
1

2
(m− 1)m(n− j + 1)(n− j) +m(n− j + 1) (n− (n− j)m) (6)

=m(n− j + 1)

(
1

2
(m− 1)(n− j) + (n− (n− j)m)

)
(7)

= (m) (n− j + 1)

(
n− 1

2
(m+ 1) (n− j)

)
(8)

=
1

2
(m) (n− j + 1) (n+ j −m(n− j)) (9)

>
1

2
j(n+ 2) (10)

The inequality (10) follows from viewing it as a downwards parabola in m, and saying
the minimum value must occur at either m = n

n−j or n
n−j − 1. The former reduces to

1
2
j(n+ n/(n− j)) > j(n+ 2) and the latter to 1

2
(j + n

n−j − 1)(n+ 2j).
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Then,(
n

2

)
(rλi − rλ) =

1

2
j(n+ 2)− i(n− i+ 1) = (j − i)(n/2− i+ 1) + (j − n/2)i,

which since i > n/3, is at least as big as the claimed difference in the statement for some
constant.

5.4 The Lazy Version

When the walk is modified to be lazy, the likelihood order integrates even and odd per-
mutations into one total order. The representations λ and λ′ originally worked jointly
to impose the parity restrictions, but now λ will be the sole lead i-cycle detector. How-
ever, the partition [1n] will now act as a sign detector. It will function to make even
permutations more likely than odd or vice versa depending on laziness and parity of time.
Modifications to the previous results give a bound for sufficient time for the likelihood
order to hold. If during a step the chain stays with probability p, and moves via a trans-
position with probability 1− p, the probability function becomes as from Proposition 8:

P ∗t(α) =
∑
λ

χλ(α)dλ

(
p+ (1− p)χλ(τ)

dλ

)t
The i-cycle detector with largest eigenvalue is now solely λi with eigenvalue 1− (1−

p)2i(n−i+1)
n(n−1) instead of jointly λi and (λi)′, as for λ D λ′:

p+ (1− p)χλ(τ)

dλ
>

∣∣∣∣p− (1− p)χλ(τ)

dλ

∣∣∣∣
The sign detector [1n] has eigenvalue 2p − 1, and term in the Fourier Inversion formula
(sg(α)− sg(β))(2p− 1)t.

When p > 1
2
, all eigenvalues are positive, and it is always the case that 1 − (1 −

p)2i(n−i+1)
n(n−1) > |2p− 1|, and so cycle lexicographic order will hold on all permutations after

a sufficient time.
When p < 1

2
, for any i with 1− (1− p)2i(n−i+1)

n(n−1) > 1− 2p, normal CL order holds (the

greater dimension of λi determines it at equality). The inequality simplifies to i(n−i+1)
n(n−1) <

p
1−p . When the inequality is reversed, if α β first differ at i cycles and are of opposite sign,
the even will be more likely at even times, the odd more likely at odd times. CL order will
still hold restricted to the evens and odds respectively after sufficient time. In particular,
for p = 1

n
, the traditional value for the lazy transposition walk, only i = 1 escapes this

split by have the same magnitude of eigenvalue as [1n]. This split can be thought of as
a recalcitrant unzipped zipper. The force you pull on the zipper with is proportional to
p. If p is large, you zip all of the CLeven, CLodd together into CL. When p is small, the
zipper catches above the i were that inequality triggers, leaving some portion of the two
orders zipped together. To read the order, first read the zipped part, then if t is odd the
CLodd part before the CLeven, and vice versa if t is even.

the electronic journal of combinatorics 25(1) (2018), #P1.25 22



The [1n] term will dominate the λi when i(n−i+1)
n(n−1) > p

1−p and for two conjugacy classes
α,β of opposite parity first differing at i. The time bound depends particularly strongly
on the choice of p, as one can make the eigenvalue of [1n] arbitrarily close to that of λi.

We will now extend the proof of order n2 time being sufficient for the likelihood order
to have stabilized to two special cases of laziness, first P (e) = 1

n
the traditional laziness

for the transposition walk as used by Diaconis and Shahshahani [7], and second a large
but constant laziness of P (e) > 1

2
. Both proofs extend the proof of Theorem 4 (1). Both

have to handle the new case of α, β different signs, and transposes of partitions, which
were handled by symmetry before.

Proof of Theorem 4 (2). When α and β are the same sign and first differ at an i-cycle,
we need to show the [n − i, i] term in Proposition 8 dominates all other terms. The
eigenvalues for this walk are rλ = 1

n
+ n−1

n
rλ(τ). For λ D λ′, since rλ(τ) = −rλ′(τ) and

rλ′(τ) > rλ(τ), rλ(τ) > 0 and rλ > 0. Therefore the difference in magnitude between the
eigenvalues of [n − i, i] and such a λ, is n−1

n
of the old difference in magnitude and the

arguments of Theorem 4 (1) carry through with the same scaling coefficients.
We still need to show the [n− i, i] term dominates the term for those partitions λ with

λ / λ′. In particular, we have to handle [n − i, i]′ = [2i, 1n−i]. As noted in the proof of
Proposition 33, χλ(α) = sg(α)χλ′(α), so for the case of α, β the same parity, we can reuse
the bound on the character difference from Proposition 38. The dimensions bound from
Propositions 37 will also be recycled. It suffices to show a large difference in magnitude
of eigenvalues. Since rλ(τ) < 0, if rλ is positive its bounded above by 1

n
, and there is at

least a constant order gap between it and r[n−i,i]. Otherwise, if λ′1 = n − j with j > i,
there exists a constant C so,

n2
(
|r[n−i,i]| − |rλ|

)
= 2n+n(n−1)(r[n−i,i](τ)−rλ′(τ)) 6 C(2n+(j−i)(n−2i)+n|j−n/2|+)

(11)
Note this now holds even if j = i, where we now check that the dimension and character
difference bounds suffice. Note that with a tiny scaling coefficient for these terms, c′j =
2−n−j, − log(cj) is still bounded by a constant times n2 times the eigenvalue gap. The
λ′ = [n − i, i − k, 1l] terms have dimension

(
n
i

)(
i−1
k

)
n−2i+k+1
n−i+k+1

versus λ = [n − i, i] with

dimension
(
n
i

)
n−2i+1
n−i+1

. The dimension ratio is thus bounded by n2i−1. The character
differences are equal up to sign. Using the eigenvalue difference times n2 is order n, this
easily tops the logarithm of the dimension ratio.

When α and β are of difference sign we need to show (a) if they first differ at a 1-cycle
that the [n− 1, 1] term dominates or (b) otherwise that the [1n] term dominates.

In this case if a1 > b1, then the difference of the [n− 1, 1] and [1n] terms is

((a1 − b1)(n− 1)− 2)

(
1− 2

n

)t
> 0.

The same argument as from Theorem 4 (1) handles the remaining partitions with λ D λ′.
We reuse the argument above for the remaining partitions, except we need to adjust the
character difference term. Since χλ(α) = −χλ′(α) and α, β are of different signs,

|χλ(α)− χλ(β)| = |χλ(α) + χλ(β) 6 2dλ
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Fortunately, since we only have to handle i = 1, the eigenvalue difference bound from (11)
suffices. Using if λ′1 = n− j, dλ 6

(
n
j

)
e2(j) 6 nj, then there exists a constant C such that

log(nj) = j log(n) 6 C(j − 1)(n− 2).
Finally, we show that the [1n] term dominates the remaining terms where

max(λ1, λ
′
1) 6 n− 2. It has the same eigenvalue gap as [n− 1, 1] just a smaller coefficient

of 2 rather than (a1 − b1)(n − 1) 6 n2. The argument for the i = 1, j > 2 terms from
Theorem 4 (1) can absorb the difference. Similarly, so can the argument in the prior
paragraph.

When laziness is very large, all eigenvalues are positive, and it is much simpler to show
order n2 time is sufficient for the likelihood order to stabilize to cycle lexicographic.

Proof of Theorem 4 (2). The eigenvalues for this walk are rλ = p + (1 − p)rλ(τ) > 0.
As all the eigenvalues are positive, the difference in magitude between the eigenvalue for
[n− i, i] and the eigenvalue for λ is just the difference between their eigenvalues, and is:(

p+ (1− p)r[n−i,i](τ)
)
− (p+ (1− p)rλ(tau)) = (1− p)

(
r[n−i,i](τ)− rλ(tau)

)
When λ D λ′, this gap is within a constant of what it is in the proof of Theorem 4

(0), and O(n2) time still suffices for [n− i, i] to dominate these λ.
Otherwise, if λ / λ′, we use the following bounds. First |χλ(α)− χλ(β)| 6 2dλ. Incor-

porating this into the sum of dimensions, the sum of dimensions squared of all partitions
of n is n! by the RSK algorithm (see e.g. [18]). Second, rλ(τ) < 0 when λ / λ′ since
rλ(τ) = −rλ′(τ) and rλ′(τ) > rλ(τ), and so

r[n−i,i] − rλ > r[dn/2e,bn/2c] − p >
1

2
(1− p)

(
1− 3

n− 1

)
Since this is bounded from below by a constant, to show t of order n2 is sufficient, this
means we only need an order n2 bound on the logarithm of the scaling factor, character
differences, and sum of dimensions. Letting the scaling factor for these be 2−(n+2), we see
log(2(n+2) 6 n+ 2 and log(n!) 6 n log(n) 6 n2.

5.5 More or Less Likely than Stationary

This style of analysis can also be insightful into total variation distance as well as sepa-
ration distance. One of the equivalent definitions of total variation distance between the
walk at time t and stationary is

||P ∗t − π||TV =
∑

σ∈Sn,P ∗t(σ)>π(σ)

[P ∗t(σ)− π(σ)]

So knowing the permutations that are more likely than stationary leads to being able
to calculate the total variation distance for each of the variants on the transposition
walk discussed: non-lazy at even times, non-lazy at odd times, and lazy. The stationary
distributions are respectively uniform over even permutations, odd permutations, and all
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permutations. The long time behavior is seen in the Fourier inversion formula in the [n]
term giving the stationary distribution, and if P (e) = 0 in the [1n] term as well controlling
periodicity. After sufficient time, the sign of the next non-zero term determines whether
the Fourier inversion formula evaluated at a permutation will be more or less likely than
uniform.

The next non-zero term will be the first of [n−1, 1], [n−2, 2], [n−2, 1, 1] with non-zero
character at α.

λ χλ(α) a1 > 1 a1 = 0 a1 = 1, a2 > 1 a1 = 1, a2 = 0 a1 = 1, a2 = 1
n− 1, 1 a1 − 1 > 0 < 0 0 0 0
n− 2, 2 a2 +

(
a1
2

)
− a1 > 0 < 0 0

n− 2, 1, 1 −a2 +
(
a1
2

)
− a1 + 1 < 0

So after sufficient time, a permutation is more likely than uniform if it has at least two
fixed points, or one fixed point and at least two 2-cycles. And a permutation is less likely
than uniform if it has no fixed points or one fixed point and at most one 2-cycle.

An analysis similar to section 5.3 can be used to show this relationship holds by
O(n log(n)) steps, except for the case a1 = 1, a2 > 1, when to show the [n − 2, 2] eigen-
value overwhelms the [n− 2, 12] eigenvalue O(n2) steps are needed, similar to Proposition
35. The strategy would be similar to the above analysis but with only λ1, λ2, λ2,1 domi-
nating, and with Proposition 7 not Proposition 8, χλ(α) replacing χλ(α) − χλ(β)). The
interested reader pointed towards section 3.5.5 of the author’s thesis in which such analysis
is conducted.

6 Likelihood orders for cycle walks

The likelihood order will be found for any p-cycle walk, for n and t sufficiently large by
extending an approximation for the character ratio rλ(p) from Wasserman’s thesis. This
utilizes a generating function formula for the character ratios introduced by Frobenius[9].
One case that Frobenius explicitly computed was the character ratio for the transpositions.
Formulas for other small values of p, and small mixed cycle structures can be found in
[17]. Unfortunately, though the first order approximation, with error O( 1

n
), Wasserman

computed extends to general cycle structures, the step with multiple cycles cannot be
extended to error of O( 1

n2 ). As we saw for the transposition walk with the eigenvalues for
the [n− 2, 2] and [n− 2, 12] partitions with which differ by 4

n(n−1) , small order differences
in eigenvalues can determine the i-cycle detector.

In his thesis Wasserman [20] found the following formula, reprinted with proof by
Flatto, Odlyzko, and Walkes[8]. It utilizes Frobenius notation for a partition λ, in which
ai := λi − i, bi := λ′i − i.
Theorem 39. [Wasserman] Let γ be a permutation of 1, . . . ,m with γ2 2-cycles, γ3 3-

cycles, etc; thus γ may be considered an element of Sn for n > m. Let λ =

(
a1 · · · as
b1 · · · bs

)
.

Then,

rλ(γ) =
∏
p>2

(
s∑
i=1

[(ai + 1/2)p − (−(bi + 1/2))p] /np)γp +O(1/n)
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Extending this formula to an error margin of O(1/n2) for p-cycles will be sufficient
to show when λ is [n − i, i − k, 1k] for some k this character ratio is maximized over all
i-cycle detectors. Extending to O(1/n3) will show which [n− i, i− k, 1k] is dominant. It
will always be either [n− i, i] or [n− i, 1i]. Through line 6 of the following proof is from
the argument by Wasserman.

Corollary 40.

rλ(p) =
sp − p/2

∑p−2
k=1 sksp−k−1

(n)p
+O(1/n2)

rλ(p) =
1

(n)p

(
sp − p/2

p−2∑
k=1

sksp−k−1 +

(
p3(p− 1)2

8
− p2(p− 1)

24

)
sp−2

+
p2

6

∑
l,m>1

slsmsp−2−l−m

)
+O(1/n3)

where sk =
∑s

i=1

[
(ai + 1/2)k − (−(bi + 1/2))k

]
and s1 = n. The constants are functions

of p.

Proof. From Frobenius [9] as also described in Murnaghan [16], letting xi := ai+1/2, yi :=
bi + 1/2, F (x) :=

∏s
i=1

x+yi
x−xi , then rλ(p) is the coefficient of 1/x in

−(x+ 1/2) · · · (x+ p− 1/2)

p(n)p

F (x+ p)

F (x)
.

For |x| sufficiently large to expand log as a Laurent expansion,

logF (x) =
s∑
i=1

[
log
(

1 +
yi
x

)
− log

(
1− xi

x

)]
=
∞∑
j=1

sj
jxj

.

Where sj is as defined above. Then expanding F (x+p)
F (p)

gives:

exp

{
∞∑
j=1

sj
jxj

[(
1 +

p

x

)−j
− 1

]}
=
∞∑
k=0

1

k!

{
∞∑
j=1

sj
jxj

[
∞∑
l=1

(
−j
l

)(p
x

)l]}k

So rλ(p) is the coefficient of 1/x in

−(x+ 1/2) · · · (x+ p− 1/2)

p(n)p

∞∑
k=0

1

k!

{
∞∑
j=1

sj
jxj

[
∞∑
l=1

(
−j
l

)(p
x

)l]}k

.

Note that |sj| 6
∑s

i=1(x
j
i + yji ) 6 [

∑s
i=1(xi + yi)]

j = nj. For p fixed and n sufficiently
large, the largest contributions to rλ(p)can be ranked by J from terms sj1 · · · sjk where
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j1 + . . .+ jk = J 6 p+ 1−k. There is a unique way to make this sum p, so as Wasserman
observed,

rλ(p) =
sp

(n)p
+O(1/n).

The coefficient of sp−1 is zero, as

−(1/2 + . . .+ (p− 1/2))xp−1

p(n)p

1

1!

sp−1
(p− 1)xp−1

(
−(p− 1)

1

)
p

x

+
−xp

p(n)p

1

1!

sp−1
(p− 1)xp−1

(
−(p− 1)

2

)
p2

x2
= 0.

The remaining solutions to j1 + . . .+ jk = p− 1 6 p+ 1− k give the terms:

−xp

p(n)p

1

2!

(
p−2∑
j=1

sj
jxj

(
−j
1

)
p

x

sp−1−j
(p− 1− j)xp−1−j

(
−(p− 1− j)

1

)
p

x

)
=

1

x

−p/2
∑p−2

j=1 sjsp−1−j

(n)p

There are three ways to arrive at a coefficient of 1
x

from sp−2. These correspond to the

coefficients of xp, xp−1, xp−2 in (x+ 1
2
) · · · (x+ p− 1

2
) and correspondingly

(−(p−2)
3

)
(p/x)3,(−(p−2)

2

)
(p/x)2,

(−(p−2)
1

)
(p/x).

−xp

p

sp−2
(p− 2)xp−2

(
−(p− 2)

3

)
(p/x)3 +

−xp−1 p2
2

p

sp−2
(p− 2)xp−2

(
−(p− 2)

2

)
(p/x)2

+
−p(p−1)(3p2−p−1)

24
xp−2

p

sp−2
(p− 2)xp−2

(
−(p− 2)

1

)
(p/x)1

=
sp−2
x

(
p3(p− 1)2

8
− p2(p− 1)

24

)
In the same way that the sp−1 term vanishes, the

∑
slsp−1−l terms also cancel.

−xp

p

1

2
(

p−1∑
j=1

sj
jxj

(
−j
2

)(p
x

)2 sp−1−j
(p− 1− j)xp−1−j

(
−(p− 1− j)

1

)
p

x

+
sj
jxj

(
−j
1

)(p
x

) sp−1−j
(p− 1− j)xp−1−j

(
−(p− 1− j)

2

)(p
x

)2
)+

−1

p

p2

2
xp−1

1

2

(
p−2∑
j=1

sj
jxj

(
−j
1

)(p
x

) sp−1−j
(p− 1− j)xp−1−j

(
−(p− 1− j)

1

)(p
x

))
=0

The last that can be built, slsmsp−2−l−m, is through a single way:

−1

p
xp

1

6

∑
m,l

sm
mxm

(
−m

1

)
p

x

sl
lxl

(
−l
1

)
p

x

sp−2−l−m
(p− 2− l −m)xp−2−l−m

(
−(p− 2− l −m)

1

)
p

x

=
p2

6

∑
l,m slsmsp−2−l−m

x
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Now that we have fine estimates for the character ratios at p-cycles, we need to compare
them at two partitions. The following corollary takes advantage of some cancellation of
terms to simplify that process.

Corollary 41.

rλ(p)− rρ(p) =
1

(n)p
((sp − s′p)−

p

2

∑
l>1

(sl − s′l)(sp−1−l + s′p−1−l)

+

(
p3(p− 1)2

8
− p2(p− 1)

24

)
(sp−2 − s′p−2)

+
p2

2

∑
l>1,m>1

((sl − s′l)((sm + s′m)(sp−2−l−m + sp−2−l−m)

+
1

3
(sm − s′m)(sp−2−l−m − s′p−2−l−m))))) +O(1/n3)

Where sp corresponds to λ and s′p corresponds to ρ.

Proof. It suffices to check that
∑

l>1 slsp−1−l−s′ls′p−1−l =
∑

l>1(sl−s′l)(sp−1−l+s′p−1−l) and∑
l,m>1 slsmsp−2−l−m−s′ls′ms′p−2−l−m =

∑
l>1,m>1(sl−s′l)((sm+s′m)(sp−2−l−m+s′p−2−l−m)+

1
3
(sm − s′m)(sp−2−l−m − s′p−2−l−m)).

Now to compare rλ(p) for i-cycle detecting λ. The i-cycle partitions with maximal
first row are of the form [n − i, i − k, 1k] which translates in Frobenius notation to, for

k 6 i− 1,

(
n− i− 1 i− k − 2
k + 1 0

)
and for k = i,

(
n− i− 1

i

)
. This gives respectively,

sj = (n− i− 1/2)j + (i− k − 3/2)j − (−(k + 3/2))j − (−1/2)j or

sj = (n− i− 1/2)j − (−(i+ 1/2))j

We the process of finding the likelihood order by showing that the lead i-cycle detector
determining the likelihood order for these walks has a subhook of length i.

Theorem 42. For each i, 1 6 i 6 n/2 − 1, for some k, 0 6 k 6 i − 1, r[n−i,i−k,1k](p) >
rλ(p) for each i-cycle detecting λ.

Proof. When p is even, boxes above the diagonal count positively towards sp and boxes
below count negatively. Then sp is maximized by having the most boxes up and to the
right in the Ferrers diagram of λ. In this case, the maximum sp over [n−i, i−k, 1k] occurs
when k = 0 and is (n− i− 1

2
)p + (i− 3

2
)p −

(
1
2

)p − (3
2

)p
. Over all ρ with ρ1 < n− i, the

largest s′p would be for [n− i− 1, i + 1] with (n− i− 3
2
)p + (i− 1

2
)p −

(
1
2

)p − (3
2

)p
. The

difference between these two is of order p(n− 2i)((n− i− 1
2
)p−2 + · · ·+ (i− 3

2
)p−2).

When p is odd, all boxes count positively. The longer a row or column extends from
the diagonal the more it contributes. The maximum sp over [n− i, i−k, 1k] is for k = i−1
with its column of length i with sp = (n− i− 1

2
)p + (i+ 1

2
)p. Over ρ′ E ρ with ρ1 < n− i,
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the next largest occurs at [n− i− 1, 1i+1] with s′p = (n− i− 3
2
)p + (i+ 3

2
)p. The difference

is at least p(n− 2i− 2)(n− i− 3
2
)p−2.

Its necessary to check that the slsp−1−l terms do not overwhelm these. The only
partitions at risk have one block moved from the first row of a [n − i, i − k, 1k]. For
[n− i− 1, a, 1b], compare it against [n− i, a, 1b−1] or [n− i, a− 1, 1b]. For each p, sp − s′p
is of order p(n − i)p−1 − pap−1 or p(n − i)p−1 + (−1)ppbp−1. Since sl − s′l appears in the
product of two, this difference will also step down a power. Removing from b is avoidable
in each case other than [n− i, 1i] and [n− i− 1, 1i+1]. When i is large, p is odd, and l is
even, the sign change could present a problem. However, since p− 1− l will also be even,
sp−1−l + sp−1−l is of order (n− 2i)(n− i)p−2−l. This means the product of two terms is of
order (n− 2i)(n− i)p−3 compared to the sp − s′p at (n− 2i)(n− i)p−2.

For the case that i is large, its also necessary to check the terms with weight p−2. The
sp−2 term has the same sign and parity as the sp term and will behave the same way. This
leaves the products of three terms. A product of the form (sl − s′l)(sm + s′m)(sp−2−l−m +
s′p−2−m−l) will drop, as in the product of two. For the second kind of product of three,
(sl − s′l)(sm − s′m)(sp−2−l−m − s′p−2−m−l), the only concern is again the p odd [n − i, 1i]
versus [n − i − 1, 1i+1]. In this event, p − 2 is odd, so one of l,m,p − 2 − l − m is odd
introducing the same step down in degree.

Next, we determine which of the partitions with a subhook of length i is the lead
i-cycle detector that determines the likelihood order.

Proposition 43. Let p be fixed and n sufficiently large. The lead i-cycle detector is

[n− i, 1i] for all odd p and even p > 4 for i < Cn
p−3
p−2 . For these i, the likelihood order for

cycles of size i is the (−1)i−1 cycle lexicographic order. For even p > 4 and i > Cn
p−3
p−2 ,

the lead i-cycle detector [n − i, i] and the likelihood order for cycles of size i is the cycle
lexicographic order.

Proof. The difference between rn−i,i and rn−i,1i when p is even is

1

np

(
(2ip)− p

2

∑
l even

2il(n− i)p−l−1
(

1− p

n− i

)
+
∑

l even,m

(
il(n− i)p−2−l

))
+O

(
1

n3

)

When i < Cn
p−3
p−2 for some C the second terms dominate, principally the l = 2 term of

order 2i2(n− i)p−3, and this will be negative. When i is above this threshold, the 2ip term
dominates and rn−i,i will be larger than rn−i,1i .

When p is odd, the difference is

1

np

(
(−2pip−1 − p

2

∑
l even

2il
(
(n− i)p−l−1 − p(n− i)p−l−2

)
+
p2

6

∑
l,m

2il(n− i)p−l−2
(

1− p

n− i

))
+O

(
1

n3

)
.
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This is always negative for n sufficiently large, meaning ρi = [n− i, 1i] is the lead i-cycle
detector, which gives (−1)i−1 cycle lexicographic order.

Its left to rule out the other [n − i, i − k, 1k] terms. The difference between the sk−1
and sk terms is

((i− k − 1

2
)p−1 − (i− k − 3

2
)p−1) + (−1)p((k +

1

2
)p−1 + · · ·+ (k +

3

2
)p−1)

In the case p is even, this is always positive and k = 0 is maximal, k = i − 1 minimal.
When p is odd this is of order p(i− 2k − 2)((kp−2 + · · · + (i− k)p−2). This makes k = 0
or i − 1 maximal. When i is small, −p

2
(s2 − s′2)(sp−3 − sp−3) dominates. Since k = i − 1

minimizes s2, [n − i, 1i] will beat out each other k. When i is large, sp − s′p instead is
largest, giving [n− i, i] for p even, [n− i, 1i] for p odd.

As a result, we can identify the least likely elements of the walk as described in
Corollary 6 of the introduction.

Proof of Corollary 6. Both parities of p have (−1)i+1CL as the likelihood order for p > 4,
i 6 5 for n sufficiently large. When p is odd, the walk is restricted to An, so the least
likely element must be of odd parity. The above four elements have the maximal number
of 2-cycles with no fixed points for the given parity of n and parity of Cayley distance.
Therefore, when compared to any other element of Sn the minimal i-cycle they differ at
will be 1 or 2. Since all four are fixed point free, the other permutation must have more
one cycles or fewer two cycles and be larger in (−1)i+1CL order.

7 Other Remarks

Many other random walks generated by a conjugacy class fail in various ways to have
such nice likelihood orders after sufficient time. There may not be a unique largest i-cycle
detector or various values of i may share a single partition. Or indeed, the largest i-cycle
detector may be blind to i-cycles (as observed following Theorem 21) [n − 3, 2, 1] is to
2-cycles. When the lead i-cycle detector fails to differentiate conjugacy classes, it falls to
the next largest i-cycle detector and so on. Another issue is in adding a lazy component
to a walk the likelihood order may change decidedly when for some i the largest i-cycle
detectors all have negative character ratios. [n − i, i], [n − i, 1i] are particularly nice in
these regards, though the latter fails to be nice for lazy walks. These failures can lead to
partial or partially describable likelihood orders rather than total ones.

For example, in the case of the random walk generated by (n−1)-cycles, the character
ratio is zero except at λ = [n], [1n], [n− i, 2, 1i−2]. Where [n− i, 2, 1i] is a i-cycle detector.
[n − 2, 2] doubles as the lead 1 and 2-cycle detector where χ[n−2,2](α) = a2 +

(
a1
2

)
− a1.

And the sign of ai in χ[n−i,2,i](α) is (−1)i. The order after sufficient time is first based on

(a2 − b2) + (a1−b1)(a1+b1−3)
2

> 0, but if this does not resolve the 1,2-cycle detection, it falls
to the 3-cycle detector now the lead 1, 2, 3-cycle detector to resolve the dispute and so on.
In the case that both conjugacy classes have no 1 or 2-cycles at even times it becomes
just (−1)iCL order.

the electronic journal of combinatorics 25(1) (2018), #P1.25 30



For the case of non-conjugacy class walks, though a version of the Fourier inversion
theorem holds, the walk does not act as a constant on the irreducible representations, and
so P̂ (λ)t is not a constant times the identity, and Tr(λ(g−1)P̂ (λ)t) does not simplify to
χλ(g)(rλ)

t. With sufficient knowledge of the eigenvectors of such a walk, some information
about the likelihood order might still be recoverable. In particular, χ[n−1,1] is likely not
a good test function to find a tight lower bound. Diagonalizing just the permutation
representation and understanding those terms in the Fourier inversion formula, might
yield a very strong lower bound.
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