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Abstract

We introduce the Z-polynomial of a matroid, which we define in terms of the
Kazhdan-Lusztig polynomial. We then exploit a symmetry of the Z-polynomial to
derive a new recursion for Kazhdan-Lusztig coefficients. We solve this recursion,
obtaining a closed formula for Kazhdan-Lusztig coefficients as alternating sums of
multi-indexed Whitney numbers. For realizable matroids, we give a cohomological
interpretation of the Z-polynomial in which the symmetry is a manifestation of
Poincaré duality.

1 Introduction

The Kazhdan-Lusztig polynomial PM(t) of a matroid M was introduced by Elias, Wake-
field, and the first author in [EPW16]. This invariant has shown itself to be surprisingly
rich, with many beautiful properties (most of them still conjectural). For example, the
coefficients of PM(t) are conjecturally non-negative; in the case where M is realizable, this
is proved by interpreting the coefficients as intersection cohomology Betti numbers of the
reciprocal plane of the realization [EPW16, Theorem 3.10]. The polynomial PM(t) is con-
jecturally log concave [EPW16, Conjecture 2.5] and, even stronger, real rooted [GPY17b,
Conjecture 3.2]. Furthermore, if M ′ is obtained from M by contracting a single element,
the roots of PM ′(t) are conjectured to interlace with those of PM(t) [GPY17b, Remark
3.5].

If the matroid M has a finite symmetry group Γ, then one can study the equivariant
Kazhdan-Lusztig polynomial P Γ

M(t) [GPY17a], whose coefficients are virtual representa-
tions of Γ with dimension equal to the coefficients of PM(t). In the case where M is
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equivariantly realizable over the complex numbers, the same cohomological interpretation
allows us to prove that the coefficients are honest representations [GPY17a, Corollary
2.12]. The equivariant polynomial P Γ

M(t) is conjectured to be equivariantly log concave
[GPY17a, Conjecture 5.3(2)].

Despite all of the surprising structure that these polynomials are conjectured to
have, very few examples are completely understood. Kazhdan-Lusztig polynomials of
thagomizer matroids coincide with Dyck path polynomials [Ged17, Theorem 1.1(1)], and
Kazhdan-Lusztig polynomials of fan matroids conjecturally coincide with Motzkin poly-
nomials [Ged]. The equivariant Kazhdan-Lusztig coefficients of uniform matroids have
been computed explicitly [GPY17a, Theorem 3.1] and shown to admit the structure of
finitely generated FI-modules. In contrast, the equivariant Kazhdan-Lusztig coefficients
of braid matroids admit the structure of finitely generated FSop-modules [PY17, Theorem
6.1], and no explicit formula has appeared. Indeed, the problem of computing Kazhdan-
Lusztig coefficients of braid matroids was the main motivation for this work.

In this paper we introduce the Z-polynomial ZM(t), which is defined as a weighted sum
of the Kazhdan-Lusztig polynomials of all possible contractions of M . The Z-polynomial
is palindromic (Proposition 2.3), reflecting the fact that, when M is realizable, the co-
efficients of ZM(t) may be interpreted as intersection cohomology Betti numbers of a
projective variety (Theorem 7.2), for which Poincaré duality holds.

Surprisingly, this symmetry of the Z-polynomial translates into a recursive formula
for Kazhdan-Lusztig coefficients that is different from any of the recursive formulas seen
before (Corollary 3.2). In particular, it yields a method for computing Kazhdan-Lusztig
coefficients of braid matroids that is much faster than any previously available approach.
Furthermore, we are able to use this recursion to obtain a formula that expresses each
Kazhdan-Lusztig coefficient of M as a finite alternating sum of multi-indexed Whitney
numbers (Theorem 3.3). In the case of braid matroids, this becomes a finite alternating
sum of products of Stirling numbers of the second kind (Corollary 4.5). We also obtain
an equivariant version of our formula (Theorem 6.1), which takes a particularly nice form
for uniform matroids (Proposition 6.3).

Our Theorem 3.3 bears a close resemblance to a recent result of Wakefield [Wak, The-
orem 5.1], who also obtained a formula for Kazhdan-Lusztig coefficients as alternating
sums of multi-indexed Whitney numbers. It is likely that our formula is equivalent to
Wakefield’s, but the combinatorics involved in the two formulas are very different; see
Remark 3.6 for further discussion of this point.

The paper structure is as follows: Section 2 contains the definition of the Z-polynomial,
the proof of palindromicity, and the recursion for Kazhdan-Lusztig coefficients that follows
from this symmetry. Section 3 uses this recursion to derive the formula for Kazhdan-
Lusztig coefficients in terms of multi-indexed Whitney numbers. Section 4 interprets these
results in the case where we have a family of matroids that is closed under contractions,
such as braid matroids or uniform matroids. One of the results of this section is that
Narayana polynomials are special cases of Z-polynomials (Proposition 4.9). Section 5

the electronic journal of combinatorics 25(1) (2018), #P1.26 2



contains conjectures about the roots of the Z-polynomial, analogous to the conjectures
in [GPY17b] about the roots of the Kazhdan-Lusztig polynomial. Section 6 explains how
to extend our results and conjectures to the equivariant setting.

Finally, Section 7 contains the cohomological interpretation of the Z-polynomial. This
section provides the key motivation for the definition of the Z-polynomial, so in some sense
it ought to appear at the very beginning of the paper. However, the methods used Section
7 are quite technical, in contrast with the elementary and purely combinatorial methods
employed in the rest of the paper, so we relegated it to the end.

2 Definition and palindromicity

Let M be a matroid on the ground set I, and let L be the lattice of flats of M . Given
a flat F ∈ L, let MF be the localization of M at F ; this is the matroid on the ground
set F whose lattice of flats is isomorphic to LF := {G ∈ L | G 6 F}. Dually, let MF be
the contraction of M at F ; this is the matroid on the ground set I r F whose lattice
of flats is isomorphic to LF := {G ∈ L | G > F}. For any flat F , we have the rank
rkF := rkMF and the corank crkF := rkMF = rkM − rkF .

Let χM(t) ∈ Z[t] be the characteristic polynomial of M , and let PM(t) ∈ Z[t] be the
Kazhdan-Lusztig polynomial of M , as defined in [EPW16, Theorem 2.2]. The Kazhdan-
Lusztig polynomial is characterized by the following three properties:

• If rkM = 0, then PM(t) = 1.

• If rkM > 0, then degPM(t) < 1
2

rkM .

• For every M , trkMPM(t−1) =
∑
F

χMF
(t)PMF (t).

Definition 2.1. For any matroid M , we define the Z-polynomial

ZM(t) :=
∑
F

trkFPMF (t).

Lemma 2.2. We have
PM(t) =

∑
F

µ(∅, F )trkFZMF (t),

where µ : L× L→ Z is the Möbius function.

Proof. We have∑
F

µ(∅, F )trkFZMF (t) =
∑
F

µ(∅, F )trkF
∑
F6G

trkG−rkFPMG(t)

=
∑
G

trkGPMG(t)
∑
F6G

µ(∅, F ).

Since
∑

F6G µ(∅, F ) = δ(∅, G), this is equal to trk ∅PM∅(t) = PM(t).
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Proposition 2.3. For any matroid M , ZM(t) is palindromic of degree rkM . That is,

trkMZM(t−1) = ZM(t).

Proof. We have

trkMZM(t−1) = trkM
∑
F

t− rkFPMF (t−1)

=
∑
F

trkMF

PMF (t−1)

=
∑
F

∑
F6G

χMF
G

(t)PMG(t)

=
∑
G

PMG(t)
∑
F6G

χMF
G

(t)

=
∑
G

PMG(t) trkMG

= ZM(t).

This completes the proof.

Remark 2.4. In Section 7, we will give a geometric interpretation of the Z-polynomial of
a realizable matroid, and in this context Proposition 2.3 can be interpreted as Poincaré
duality (see Remark 7.3).

Despite the simplicity of the proof, Proposition 2.3 implies a previously unknown recur-
sive formula for Kazhdan-Lusztig coefficients. Let cM(i) and zM(i) denote the coefficients
of ti in PM(t) and ZM(t), respectively.

Corollary 2.5. For any matroid M and natural number i, we have

cM(i) =
∑
F

cMF (crkF − i)−
∑
F 6=∅

cMF (i− rkF ).

Proof. We have∑
F

cMF (i− rkF ) = zM(i) = zM(rkM − i) =
∑
F

cMF (crkF − i).

Isolating the first term in the left-hand sum, we obtain the desired equation.
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Remark 2.6. Suppose that 2i < rkM , which is a necessary condition for cM(i) to be
nonzero provided that rkM > 0. Then the F = ∅ term vanishes from the first sum, and
we in fact have

cM(i) =
∑
F 6=∅

cMF (crkF − i)−
∑
F 6=∅

cMF (i− rkF ).

Furthermore, if i > 0, then cMF (crkF − i) = 0 unless crkF < 2i, which means that
crkF − i < i. This tells us that our recursion expresses cM(i) in terms of other Kazhdan-
Lusztig coefficeints cN(j) where j is strictly smaller than i and N has strictly smaller
rank than M .

3 Kazhdan-Lusztig coefficients and Whitney numbers

In this section we will regard c(i) as a function that takes as input a matroid and produces
as output an integer. As we observed in Remark 2.6, the function c(i) can be expressed
recursively in terms of the functions c(0), . . . , c(i−1). If we iterate this procedure i times,
we obtain an expression for c(i) that does not involve any Kazhdan-Lusztig coefficients
except for c(0), which is the constant function with value 1 [EPW16, Proposition 2.11].
This is exactly what we do in this section.

Given a sequence ir, . . . , i1 of integers and a matroid M with lattice of flats L, we
define the r-Whitney number

WM(ir, . . . , i1) :=
∣∣∣{(Fr, . . . , F1) ∈ Lr | Fr 6 · · · 6 F1 and crkFj = ij for all j

}∣∣∣.
We will usually just write W (ir, . . . , i1), which we regard as a function that takes matroids
to numbers. For example, W (i) is the function that counts the number of flats of corank
i, while W (i2, i1) is the function that counts the number of pairs of comparable flats with
coranks i2 and i1.

Remark 3.1. Our conventions differ from the usual ones in that we index our Whitney
numbers by corank rather than rank; this will make Theorem 3.3 significantly simpler to
state.

Lemma 3.2. Let M be a matroid and ir, . . . , i1 a sequence of integers. Then

WM(ir, . . . , i1) =
∑

crkF=ir

WMF (ir−1, . . . , i1).

Proof. This is immediate from our description of the lattice of flats of MF .

Given positive integers j and r along with a subset S ⊂ [r], let

tj(S) := min{ k | k > j and k /∈ S} ∈ {1, . . . , r + 1}.
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Theorem 3.3. For all i > 0, we have

c(i) =
i∑

r=1

∑
S⊂[r]

(−1)|S|
∑

a0<a1<···<ar<ar+1
a0=0
ar=i

ar+1=rk−i

W
(
atr(S) + ar−1, . . . , at1(S) + a0

)
.

Remark 3.4. If we try to compute cM(i) for a matroid M that does not satisfy the inequal-
ity 2i < rkM , then the sum will be empty, because the condition i = ar < ar+1 = rk−i
is not satisfied. We will therefore obtain the number zero, which is what we expect.
Similarly, we can replace the sum over r from 1 to i with a sum over all r, because the
conditions 0 = a0 < · · · < ar = i can only be satisfied if 1 6 r 6 i.

Remark 3.5. Assuming that we are evaluating this function on a matroid whose rank is
greater than 2i, the number of tuples (a0, . . . , ar+1) satisfying the given conditions is equal
to the number of compositions of i into r parts, which is in turn equal to the binomial
coefficient

(
i−1
r−1

)
. Thus the total number of terms in our expression for c(i) is equal to

i∑
r=1

2r

(
i− 1

r − 1

)
= 2

i−1∑
s=0

2s

(
i− 1

s

)
= 2(1 + 2)i−1 = 2 · 3i−1.

Remark 3.6. Theorem 3.3 bears a strong similarity to [Wak, Theorem 5.1], where c(i) is
also expressed as an alternating sum of r-Whitney numbers. It seems likely that there is a
bijection between our index set and Wakefield’s index set that makes the signed Whitney
numbers in our formula match with those in his. However, this bijection is not at all
obvious; in particular, it is not even clear to us how to compute the size of Wakefield’s
index set for general i. Using a computer, Gedeon determined that the index sets do have
the same size when i 6 4.

Proof of Theorem 3.3: We induct on i. When i = 1, our formula says

c(1) =
∑
S⊂[1]

(−1)|S|W
(
at1(S) + a0

)
.

We have t1(∅) = 1 and t1([1]) = 2, so this says c(1) = W (1) − W (rk−1), which was
proved in [EPW16, Proposition 2.12].

Now assume that our formula holds for all j < i. Fix a matroid M . By Remark
2.6, we may assume that 2i < rkM , for otherwise cM(i) = 0 and the sum is empty. By
Remarks 2.6 and 3.4, we have

cM(i) =
∑
F 6=∅

cMF (crkF − i)−
∑
F 6=∅

cMF (i− rkF )
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=
∑
F 6=∅

∑
r

∑
S⊂[r]

(−1)|S|
∑

a0<a1<···<ar<ar+1
a0=0

ar=crkF−i
ar+1=i

WMF

(
atr(S) + ar−1, . . . , at1(S) + a0

)

−
∑
F 6=∅

∑
r

∑
S⊂[r]

(−1)|S|
∑

a0<a1<···<ar<ar+1
a0=0

ar=i−rkF
ar+1=rkM−i

WMF

(
atr(S) + ar−1, . . . , at1(S) + a0

)
.

We can simplify these expressions by first fixing the corank of F to be some number k
and then applying Lemma 3.2. This gives us the formula

cM(i) =
∑
r

∑
S⊂[r]

(−1)|S|
rkM−1∑
k=0

∑
a0<a1<···<ar<ar+1

a0=0
ar=k−i
ar+1=i

WM

(
k, atr(S) + ar−1, . . . , at1(S) + a0

)

−
∑
r

∑
S⊂[r]

(−1)|S|
rkM−1∑
k=0

∑
a0<a1<···<ar<ar+1

a0=0
ar=i+k−rkM
ar+1=rkM−i

WM

(
k, atr(S) + ar−1, . . . , at1(S) + a0

)
.

Next, we eliminate k from both sums by observing that k = ar+1 + ar = atr+1(S) + ar, and
the inequality k < rkM turns into an inequality involving ar. In the first sum, we get the
inequality ar < rkM − i, but this is implied by the fact that ar < ar+1 = i < rkM − i. In
the second sum, we get the inequality ar < i, which is not implied by the other conditions.
Thus we have

cM (i) =
∑
r

∑
S⊂[r]

(−1)|S|
∑

a0<a1<···<ar<ar+1
a0=0
ar+1=i

WM

(
atr+1(S) + ar, atr(S) + ar−1, . . . , at1(S) + a0

)

−
∑
r

∑
S⊂[r]

(−1)|S|
∑

a0<a1<···<ar<ar+1
a0=0
ar<i

ar+1=rkM−i

WM

(
atr+1(S) + ar, atr(S) + ar−1, . . . , at1(S) + a0

)
.

We now proceed to reindex the two sums. Given a natural number r and a subset
S ⊂ [r], let S0 := S and S1 := S ∪ {r + 1}, both regarded as subsets of [r + 1]. Then

tj(S0) = min{ k | k > j and k /∈ S0} = min{ k | k > j and k /∈ S} = tj(S)

for all j, so we can replace S with S0 in the first sum. On the other hand,

tj(S1) =

{
tj(S) if tj(S) 6 r

r + 2 if tj(S) = r + 1.
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Let bj = aj for j 6 r, br+1 = i, and br+2 = rkM − i. Then atj(S) = btj(S1), and the second
sum becomes∑

r

∑
S⊂[r]

(−1)|S1|
∑

b0<b1<···<br+1<br+2
b0=0
br+1=i

br+2=rkM−i

WM

(
btr+1(S1) + br, btr(S1) + br−1, . . . , bt1(S1) + b0

)
.

(Note that, by replacing (−1)|S| with (−1)|S1|, we have absorbed the external minus sign.)
All together, this gives us

cM (i) =
∑
r

∑
S⊂[r]

(−1)|S0|
∑

a0<a1<···<ar+1
a0=0
ar+1=i

WM

(
atr+1(S0) + ar, atr(S0) + ar−1, . . . , at1(S0) + a0

)

+
∑
r

∑
S⊂[r]

(−1)|S1|
∑

b0<b1<···<br+1<br+2
b0=0
br+1=i

br+2=rkM−i

WM

(
btr+1(S1) + br, btr(S1) + br−1, . . . , bt1(S1) + b0

)
.

Finally, we observe that summing over all subsets S ⊂ [r] and then separately considering
S0 and S1 is the same as summing over all subsets of [r+ 1]. If we now re-index the outer
sum by letting s = r + 1, we obtain the desired formula for cM(i), and the induction is
complete.

4 Nice families

Given two matroids M and M ′, we will write M 'M ′ if M and M ′ have isomorphic sim-
plifications, or (equivalently) if they have isomorphic lattices of flats. Since the Kazhdan-
Lusztig polynomial is defined in terms of the lattice of flats, we have PM(t) = PM ′(t)
whenever M 'M ′.

We define a nice family to be a sequence of matroids {Md | d > 0} with the property
that rkMd = d and, for any corank k flat F of Md, we have MF

d 'Mk. Examples of nice
families include the following.

1. Md is the braid matroid of rank d. Equivalently, this is the matroid associated with
the complete graph on d + 1 vertices, or the matroid associated with the Coxeter
arrangement of type Ad.

2. Md is the matroid associated with the Coxeter arrangement of type Bd.

3. Md = Um,d is the uniform matroid of rank d on m+ d elements, where m is fixed.

4. Md is the matroid represented by all vectors in Fd
q , where q is a fixed prime power.

Remark 4.1. The matroids associated with Coxeter arrangements of type D do not form a
nice family. For such a matroid, the contraction of a flat of rank 1 is no longer a matroid
associated with any Coxeter arrangement.
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Fix a nice family. For ease of notation, we will write Pd = PMd
, Zd = ZMd

, Wd = WMd
,

and cd = cMd
. Recall that Wd(k) is the number of flats of Md of corank k, and let

wd(k) :=
∑

crkF=k µ(∅, F ) be the coefficient of tk in the characteristic polynomial of Md.
Then Definition 2.1 and Lemma 2.2 tell us that

Zd(t) =
d∑

k=0

Wd(k)td−kPk(t) and Pd(t) =
d∑

k=0

wd(k)td−kZk(t). (1)

In the four families described above, we have the following.

1. For the braid matroid, Wd(k) = S(d + 1, k + 1) and wd(k) = s(d + 1, k + 1) are
Stirling numbers of the second and first kind, respectively.

2. For the matroid associated with the type Bd Coxeter arrangement,

Wk(d) =
d∑

j=k

2j−k
(
d

j

)
S(j, k) and wk(d) = (−1)d−k

d∑
j=k

(−2)d−j
(
j

k

)
s(d, j).

The first formula appears in [Sut00, Proposition 3]. The second appears in [Slo14,
Sequence A028338], using the fact that the exponents of this arrangement are
1, 3, . . . , 2d− 1.

3. For the uniform matroid Um,d,

Wd(k) =

{(
d+m
k+m

)
if k > 0

1 if k = 0

and

wd(k) =

{
(−1)d−k

(
d+m
k+m

)
if k > 0 or d = k = 0∑m

j=0(−1)d+j
(
d+m
d+j

)
if d > k = 0.

4. For the matroid represented by all vectors in Fd
q , Wd(k) =

(
d

k

)
q

and

wd(k) = (−1)d−kq(
d−k
2 )
(
d

k

)
q

.

Corollary 2.5 and Remark 2.6 translate to the following statement.

Corollary 4.2. If 2i < d, then

cd(i) =
d−1∑
k=0

Wd(k)ck(k − i)−
d−1∑
k=0

Wd(k)ck(i− d+ k).
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Remark 4.3. Corollary 4.2 has proved to be faster than any previously known formula for
computing the Kazhdan-Lusztig coefficients of the braid matroid.

We may also interpret r-Whitney numbers in terms of the numbers Wd(k). The
following result follows from Lemma 3.2.

Corollary 4.4. If we set ir+1 := d, then we have

Wd(ir, . . . , i1) =
r∏

j=1

Wij+1
(ij).

Combining Corollary 4.4 with Theorem 3.3, we obtain the following result.

Corollary 4.5. We have

cd(i) =
i∑

r=1

∑
S⊂[r]

(−1)|S|
∑

0<a1<···<ar<ar+1
a0=0
ar=i

ar+1=rk−i

r∏
j=1

Watj+1(S)+aj

(
atj(S) + aj−1

)
.

Given a nice family, it is natural to use generating functions to collect the Kazhdan-
Lusztig polynomials and the Z-polynomials. Let

P (t, u) :=
∞∑
d=0

Pd(t)u
d and Z(t, u) :=

∞∑
d=0

Zd(t)u
d.

We will also be interested in the exponential generating functions

P̃ (t, u) :=
∞∑
d=0

Pd(t)
ud

d!
and Z̃(t, u) :=

∞∑
d=0

Zd(t)
ud

d!
.

In addition, consider the generating functions

gk(x) :=
∞∑
d=k

wd(k)xd and Gk(x) :=
∞∑
d=k

Wd(k)xd,

along with their exponential analogues

g̃k(x) :=
∞∑
d=k

wd(k)
xd

d!
and G̃k(x) :=

∞∑
d=k

Wd(k)
xd

d!
.
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Proposition 4.6. We have

P (t, u) =
∞∑
k=0

t−kZk(t)gk(tu) and Z(t, u) =
∞∑
k=0

t−kPk(t)Gk(tu),

and also

P̃ (t, u) =
∞∑
k=0

t−kZk(t)g̃k(tu) and Z̃(t, u) =
∞∑
k=0

t−kPk(t)G̃k(tu).

Proof. We have

∞∑
k=0

t−kZk(t)gk(tz) =
∞∑
k=0

t−kZk(t)
∞∑
d=k

wd(k)(tu)d =
∞∑
d=0

d∑
k=0

wd(k)td−kZk(t)ud,

which is equal to P (t, u) by Equation (1). The proofs of the other three statements are
identical.

Example 4.7. In type A (the first example), Proposition 4.6 is most elegant in its expo-
nential version. We have

g̃k(x) =
1

1 + x

log(1 + x)k

k!
and G̃k(x) = ex

(ex − 1)k

k!
,

so Proposition 4.6 says that

P̃ (t, u) =
1

1 + tu

∞∑
k=0

log(1 + tu)k

tk
Zk(t)

k!
and Z̃(t, u) = etu

∞∑
k=0

(etu − 1)k

tk
Pk(t)

k!
.

Example 4.8. In type B (the second example), we have

g̃k(x) =
1√

1 + 2x

log(1 + 2x)k

2k k!
and G̃k(x) = ex

(e2x − 1)k

2k k!
,

so Proposition 4.6 says that

P̃ (t, u) =
1√

1 + tu

∞∑
k=0

log(1 + 2tu)k

(2t)k
Zk(t)

k!
and Z̃(t, u) = etu

∞∑
k=0

(e2tu − 1)k

(2t)k
Pk(t)

k!
.

We next consider the third example when m = 1, so that Md is the uniform matroid
of rank d on d + 1 elements. In this case, we can use Proposition 4.6 to derive a precise
formula for the Z-polynomial.
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Proposition 4.9. If Md is the uniform matroid of rank d on d+1 elements, then the coef-
ficient zd(i) of ti in Zd(t) is equal to the Narayana number N(d+1, i+1) = 1

d+1

(
d+1
i+1

)(
d+1
i

)
.

Proof. We have

Gk(x) =
∞∑
d=k

(
d+ 1

k + 1

)
xd =

xk

(1− x)k+2

if k > 0, and

G0(x) =
∞∑
d=k

xd =
1

1− x
.

Proposition 4.6 therefore tells us that

Z(t, u) =
∞∑
k=0

t−kPk(t)Gk(tu)

=
1

1− tu
+

1

(1− tu)2

∞∑
k=1

Pk(t)

(
u

1− tu

)k

=
1

1− tu
+

1

(1− tu)2

(
P

(
t,

u

1− tu

)
− 1

)
.

In [PY16, Section 2], we showed that

P (t, v)− 1 =
2

v
·

(2tv + 1)v − 1 +
√

1− 2 (2tv + 1)v + v2

1− (2tv + 1)2 .

Setting v = u
1−tu , we obtain an explicit algebraic expression for Z(t, u). On the other

hand, it is shown in [Pet15, Equation (2.6)] that

∞∑
d=0

∞∑
i=0

N(d+ 1, i+ 1)tiud = −1

u
+

1 + u(t− 1)−
√

1− 2u(t+ 1) + u2(t− 1)2

2tu2
.

It is an elementary exercise to check that this formula coincides with our expression for
Z(t, u).

Example 4.10. Finally, we consider the fourth example, where Md is the matroid rep-
resented by all vectors in Fd

q . This matroid is modular, so we have Pd(t) = 1 for all d
[EPW16, Proposition 2.14]. It follows that

Zd(t) =
d∑

k=0

Wd(d− k)tk =
d∑

k=0

(
d

k

)
q

tk.
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5 Roots of the Z-polynomial

In [GPY17b, Conjecture 3.2], we conjectured that the polynomial PM(t) is real rooted.
Here we make the analogous conjecture for the Z-polynomial.

Conjecture 5.1. For any matroid M , all of the roots of ZM(t) lie on the negative real
axis.

We also gave a conjectural relationship between the roots of PM(t) and the roots of
a contraction of PM/e(t), where e ∈ I is a non-loop of M [GPY17b, Conjecture 3.3],
assuming certain nondegeneracy conditions. Here we make a similar conjecture for Z-
polynomials, but rather than attempting to formulate the correct nondegeneracy condi-
tions, we focus on the case of a nice family, where the conjecture takes a particularly
clean form. If f(t) is a polynomial of degree d with roots α1 6 · · · 6 αd and g(t) is a
polynomial of degree d − 1 with roots β1 6 · · · 6 βd−1, we say that f(t) interlaces g(t)
if αi 6 βi 6 αi+1 for all 0 < i < d. If the inequalities are strict, we say that f(t) strictly
interlaces g(t).

Conjecture 5.2. If {Md | d > 0} is a nice family, then for all d, Zd(t) interlaces Zd−1(t).

Example 5.3. Suppose that Md is the uniform matroid of rank d on d+ 1 elements. We
showed in Proposition 4.9 that Zd(t) =

∑d
i=0N(d+ 1, i+ 1)ti is a Narayana polynomial,

and these polynomials are known to have interlacing negative real roots [Pet15, Problem
4.7]. Thus Conjectures 5.1 and 5.2 hold for this nice family.

Remark 5.4. It is interesting to compare the state of affairs for the Kazhdan-Lusztig poly-
nomials and the Z-polynomials of the matroids in Example 5.3. The Kazhdan-Lusztig
polynomials are known to have negative real roots [GPY17b, Theorem 3.3], but the inter-
lacing property for Kazhdan-Lusztig polynomials [GPY17b, Conjecture 3.4] is still open,
even in this simple example.

Proposition 5.5. Fix a prime power q. If Md is the matroid represented by all vectors
in Fd

q, then Conjectures 5.1 and 5.2 hold for the nice family {Md | d > 0}.

Proof. We will prove a slightly stronger statement by induction on d. We will prove that,
for every d, Zd(t) has roots α1, . . . , αd < 0 with αi < qαi+1 for all 0 < i < d, and that
Zd(t) strictly interlaces Zd−1(t). The statement is trivial when d = 1.

Assume that Zd−1(t) has roots β1, . . . , βd−1 < 0 with βi < qβi+1 for all 0 < i < d− 1.
Since Zd−1(t) has d−1 distinct real roots, it changes sign at each root. Since βi−1 < qβi <
βi for all 1 < i < d and Zd−1(0) = 1, this implies that (−1)dZd−1(qβi) is positive when i
is even and negative when i is odd.

As observed in Example 4.10, we have

Zd(t) =
d∑

k=0

(
d

k

)
q

tk.
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Using the identity (
d

k

)
q

=

(
d− 1

k

)
q

qk +

(
d− 1

k − 1

)
q

,

this implies that
Zd(t) = Zd−1(qt) + tZd−1(t).

In particular, we have

Zd(βi) = Zd−1(qβi) + βiZd−1(βi) = Zd−1(qβi).

This tells us that the numbers Zd(βi) alternate in sign, and therefore that for all 1 < i < d
there exists a root αi of Zd(t) with αi ∈ (βi−1, βi). In addition, we know that Zd(βd−1) =
Zd−1(qβd−1) < 0 but Zd(0) = 1, so there must exist a root αd of Zd(t) with βd−1 < αd < 0.
Similarly, we know that (−1)dZd(β1) = (−1)dZ−1(qβ1) < 0 but (−1)dZd(t) is positive for
t sufficiently negative, so there must exist a root α1 < β1. This proves that the roots of
Zd(t) lie on the negative real axis and Zd(t) strictly interlaces Zd−1(t).

To complete the induction, we still need to prove that αi < qαi+1 for all 0 < i < d.
For all such i, we have

0 = Zd(αi) = Zd−1(qαi) + αiZd−1(αi)

and
0 = Zd(αi+1) = Zd−1(qαi+1) + αi+1Zd−1(αi+1).

Since αiZd−1(αi) and αi+1Zd−1(αi+1) have opposite signs, so do Zd−1(qαi) and Zd−1(qαi+1).
It follows there there is a root βji of Zd−1(t) in between qαi and qαi+1. Since βj1 < · · · <
βjd−1

, we must have ji = i, and therefore αi < βi < qαi+1.

Remark 5.6. We have proved Conjectures 5.1 and 5.2 for our third family when m = 1
(Example 5.3) and for our fourth family (Proposition 5.5). For the first two families, and
for the third family when 2 6 m 6 10, we have checked the conjectures on a computer
for all d 6 30.

6 Equivariant matroids

An equivariant matroid Γ yM consists of a finite group Γ, a matroid M with ground
set I, and an action of Γ on I that takes flats of M to flats of M . In [GPY17a], we
defined the Kazhdan-Lusztig polynomial P Γ

M(t) of an equivariant matroid1 Γ yM . This
is a polynomial whose coefficients are virtual representations of Γ; equivalently, it is a
graded virtual representation. If we forget the action of Γ and take the graded dimension,
we recover the ordinary Kazhdan-Lusztig polynomial of M .

1In [GPY17a], we always denoted our group by W . Here we use the letter Γ to avoid conflict with our
notation for Whitney numbers.
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All of the material in Sections 2 and 3 generalizes easily to equivariant matroids,
starting with the definition of the Z-polynomial. Let L denote the lattice of flats of M .
For any flat F ∈ L, let ΓF ⊂ Γ denote the stabilizer of M . We may then define

ZΓ
M(t) :=

⊕
[F ]∈L/Γ

trkF IndΓ
ΓF
P ΓF

MF (t).

The generalization of Theorem 3.3 comes from interpreting r-Whitney numbers as per-
mutation representations. More precisely, given an equivariant matroid Γ y M and a
sequence of integers ir, . . . , i1, let W Γ

M(ir, . . . , i1) be the representation of Γ with basis{
(Fr, . . . , F1) ∈ Lr | Fr 6 · · · 6 Fr and crkFj = ij for all j

}
.

We omit the proof of the following result, as it does not differ significantly from the proof
of Theorem 3.3.

Theorem 6.1. For all i > 0, we have

cΓ
M(i) ∼=

i∑
r=1

∑
S⊂[r]

(−1)|S|
∑

a0<a1<···<ar<ar+1
a0=0
ar=i

ar+1=rk−i

W Γ
M

(
atr(S) + ar−1, . . . , at1(S) + a0

)
.

Theorem 6.1 takes a particularly nice form for uniform matroids. Let chn be the
Frobenius characteristic, which takes representations of the symmetric group Sn to
symmetric functions of degree n in infinitely many variables. Let s[n] := chn triv be the
complete homogeneous symmetric function of degree n.

Proposition 6.2. We have

chm+dW
Sm+d

Um,d
(ir, . . . , i1) = s[d− ir]s[ir − ir−1] · · · s[i2 − i1]s[m+ i1].

Proof. The symmetric group Sm+d acts transitively on the set{
(Fr, . . . , F1) ∈ Lr | Fr 6 · · · 6 F1 and crkFj = ij for all j

}
,

with stabilizers conjugate to the Young subgroup G := Sd−ir × Sir−ir−1 × · · · × Si2−i1 ×
Sm+i1 . It follows that W

Sm+d

Um,d
(ir, . . . , i1) is isomorphic to Ind

Sm+d

G triv, and the Frobenius
characteristic of the induction of the trivial representation from a Young subgroup is equal
to the product of the corresponding complete homogeneous symmetric polynomials.

Corollary 6.3. For all i > 0, we have

c
Sm+d

Um,d
(i) ∼=

i∑
r=1

∑
S⊂[r]

(−1)|S|
∑

a0<a1<···<ar<ar+1
a0=0
ar=i

ar+1=d−i

s[m+at1(S)]·
∏
j∈S

s[aj−aj−1]·
∏

j∈[r]rS

s[atj+1(S)−aj−1].
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Proof. By Theorem 6.1 and Proposition 6.2, we need to show that

s[d−atr(S)−ar−1]s[atr(S)+ar−1−atr−1(S)−ar−2] · · · s[at2(S)+a1−at1(S)−a0]s[m+at1(S)+a0]

is equal to the summand in the statement of the corollary. First, we note that a0 = 0, so
the last factor is equal to s[m+ at1(S)]. Next, we note that d = ar+1 + ar = atr+1(S) + ar,
so the first r factors of the product may be written uniformly as∏

j∈[r]

s[atj+1(S) + aj − atj(S) − aj−1].

For each j ∈ [r], we have

tj(S) = min{ k | k > j and k /∈ S} =

{
j if j /∈ S
tj+1(S) if j ∈ S,

therefore the expression atj+1(S) + aj − atj(S)− aj−1 is equal to atj+1(S)− aj−1 if j /∈ S and
aj − aj−1 if j ∈ S. The result follows.

Remark 6.4. A positive formula for c
Sm+d

Um,d
(i) was given in [GPY17a, Theorem 3.1]. It

would be interesting to see if one could give an alternative proof of that result using
Corollary 6.3.

If V = ⊕Vi is a graded virtual representation of a group Γ, we say that V is equivari-
antly log concave if, for all i, V ⊗2

i −Vi−1⊗Vi+1 is isomorphic to an honest representation.
We say that V is strongly equivariantly log concave if, for all i 6 j 6 k 6 l with
i+ l = j+k, Vj⊗Vk−Vi⊗Vl is isomorphic to an honest representation. If Γ is the trivial
group, then log concavity and strong log concavity are equivalent, and agree with the
usual notion of log concavity for a sequence of integers. For nontrivial Γ, however, strong
equivariant log concavity is a strictly stronger condition with the desirable property of
being preserved under tensor product [GPY17a, Remark 5.8]. The following conjecture
is the Z-version of [GPY17a, Conjecture 5.3(2)].

Conjecture 6.5. For any equivariant matroid Γ y M , ZΓ
M(t) is strongly equivariantly

log concave.

Remark 6.6. Polynomials whose roots lie on the negative real axis are log concave in
the usual sense, hence if Γ is the trivial group, Conjecture 6.5 is a weaker version of
Conjecture 5.1.

Proposition 6.7. Fix a natural number d and a prime power q. Let M be the matroid
represented by all vectors in Fd

q and let Γ = GLn(Fq). Conjecture 6.5 holds for Γ yM .
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Proof. As we observed in Remark 5.6, M is modular, so the equivariant Kazhdan-Lusztig
polynomial of M (and of all of its contractions) is the trivial representation in degree
zero. This means that the coefficient zΓ

M(k) of tk in ZΓ
M(t) is equal to W Γ

M(d − k), the
permutation representation on the set Gq(d, k) of k-dimensional linear subspaces of Fd

q .
Fix indices i 6 j 6 k 6 l with i+ l = j + k. Let

S :=
{

(Vj, Vk) ∈ Gq(d, j)×Gq(d, k)
∣∣∣ dimVj ∩ Vk = i

}
.

Since S is a Γ-equivariant subset of Gq(d, j) × Gq(d, k), the permutation representation
C[S] is naturally a direct summand of C

[
Gq(d, j)×Gq(d, k)

]
.

The map (Vj, Vk) 7→ (Vj∩Vk, Vj +Vk) is a Γ-equivariant surjection from S to Gq(d, i)×
Gq(d, l). Pulling back functions, we obtain an injection

zΓ
M(i)⊗zΓ

M(l) ∼= C
[
Gq(d, i)×Gq(d, l)

]
↪→ C[S] ⊂ C

[
Gq(d, j)×Gq(d, k)

] ∼= zΓ
M(j)⊗zΓ

M(k).

This completes the proof.

Remark 6.8. Propositions 5.5 and 6.7 each strengthen in a different direction the well
known fact that the polynomial

∑d
k=0

(
d
k

)
q
tk is log concave in the usual sense.

Remark 6.9. The proof of Proposition 6.7 generalizes to any modular matroid. One only
has to replace Gq(d, k) with the set of flats of rank k, replace intersection with meet, and
replace sum with join, and the proof goes through verbatim in the more general setting.

7 Geometric interpretation

Let k be any field, and let V ⊂ AIk be a linear subspace. The matroid M(V ) on the ground
set I is characterized by the condition that F ⊂ I is a flat if and only if there exists an
element v = (vi)i∈I ∈ V such that F = {i | vi = 0}. The Kazhdan-Lusztig polynomial
of M(V ) has a geometric interpretation [EPW16, Section 3], and a similar interpretation
exists for the Z-polynomial, as we explain below. This section is independent of the rest
of the paper, but Theorem 7.2 provides motivation for the definition of the Z-polynomial.

Let Y (V ) be the closure of V inside of (P1
k)I ; this variety was studied in [AB16]2 as

well as in [HW, Section 4]. We call Y (V ) the Schubert variety of V , in analogy with
Schubert varieties in the flag variety of a semisimple algebraic group. Let X(V ) ⊂ Y (V )
be the locus where no coordinate is equal to zero. This is called the reciprocal plane of
V . The following theorem appeared in [EPW16, Theorem 3.10 and Proposition 3.12].

Theorem 7.1. If k is a finite field and ` is a prime not equal to the characteristic of k,
then the `-adic étale intersection cohomology of X(V ) vanishes in odd degree, and

PM(V )(t) =
∑
i>0

ti dim IH2i
(
X(V );Q`

)
.

If k = C, the same result holds for topological intersection cohomology.

2In [AB16], the authors define the matroid associated with V to be the dual of the matroid that we
have defined.
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In this section we prove the analogous result for the Z-polynomial.

Theorem 7.2. If k is a finite field and ` is a prime not equal to the characteristic of k,
then the `-adic étale intersection cohomology of Y (V ) vanishes in odd degree, and

ZM(V )(t) =
∑
i>0

ti dim IH2i
(
Y (V );Q`

)
.

If k = C, the same result holds for topological intersection cohomology.

Remark 7.3. In light of Theorem 7.2, Proposition 2.3 for M(V ) may be interpreted as
Poincaré duality for the intersection cohomology of the projective variety Y (V ).

Remark 7.4. Any matroid that can be realized over some field can be realized over a finite
field, so Theorems 7.1 and 7.2 apply to all realizable matroids.

A nonempty subset C ⊂ I is called a circuit if and only if, for every flat F , |C∩F c| 6=
1. Conversely, a subset F ⊂ I is a flat if and only if, for every circuit C, |C ∩ F c| 6= 1.
Given a circuit C, there exist elements (Ci)i∈C ⊂ (k×)C such that

∑
iCivi = 0 for all

v ∈ V , and these elements are unique up to scale. The homogeneous coordinate ring of
Y (V ) ⊂ (P1

k)I has the following description [AB16, Theorem 1.3(a)]:

k[Y (V )] = k[xi, yi]i∈I

/〈
fC(x, y)

∣∣∣ C a circuit
〉
,

where
fC(x, y) =

∑
i∈C

CixiyCr{i} and yS :=
∏
i∈S

yi.

Given a point p ∈ Y (V ), let Fp := {i ∈ I | pi 6=∞}.

Lemma 7.5. The set Fp is a flat.

Proof. If Fp is not a flat, then there exists a circuit C and an element i ∈ I such that
F c
p ∩ C = {i}. For all j ∈ C r {i}, yCr{j} is a multiple of yi, which vanishes at p. But xi

does not vanish at p, nor does yCr{i}. This contradicts the fact that fC vanishes at p.

For any flat F , let V F ⊂ AF c

k be the intersection of V with AF c

k inside of AIk , and let
VF ⊂ AF

k be the image of V along the projection from AIk . Concretely, VF is cut out of AF
k

by the linear equations fC(x, 1) for all circuits C ⊂ F . Then we have M(V F ) = M(V )F

and M(VF ) = M(V )F . Let Y (V )F := {p ∈ Y (V ) | Fp = F}, so that Y (V ) =
⊔

F Y (V )F .

Lemma 7.6. For any flat F , there is a canonical isomorphism Y (V )F ∼= VF .

Proof. The affine coordinate ring of Y (V )F is obtained from k[Y (V )] by setting xi = 1
and yi = 0 for all i ∈ F c and yj = 1 for all j ∈ F . This ring is isomorphic to

k[xi]i∈F

/〈
fC(x, 1)

∣∣∣ C ⊂ F a circuit
〉
.

As observed above, these are exactly the equations that define VF inside of AF
k .
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Fix a prime ` different from the characteristic of k. The `-adic étale intersection
cohomology group of Y (V ) is defined as

IH∗
(
Y (V );Q`

)
:= H∗−dimY (V )

(
Y (V ); ICY (V )

)
.

For any point p ∈ Y (V ), we define

IH∗p
(
Y (V );Q`

)
:= H∗−dimY (V )

(
ICY (V ),p

)
to be the cohomology of the stalk of the IC sheaf at p.

Lemma 7.7. For any point p ∈ Y (V ), IH∗p
(
Y (V );Q`

)
is isomorphic to IH∗

(
X(V Fp);Q`

)
.

Proof. Since the IC sheaf is locally constant along strata, we may assume that pi 6= 0 for all
i, which means that p lies in the open subscheme X(V ) ⊂ Y (V ). The result then follows
from the analogous statement for X(V ), which is proved in [EPW16, Lemma 3.8].

Proof of Theorem 7.2: We follow a slightly modified version of the argument in [PY16,
Section 3]. For any flat F , let ιF : Y (V )F → Y (V ) be the inclusion of the stratum indexed
by F . There is a first quadrant cohomological spectral sequence E with

Ep,q
1 =

⊕
crkF=p

Hp+q
(
ι!F ICY (V )

)
and

⊕
p+q=m

Ep,q
∞ = IHm

(
Y (V );Q`

)
for all m [BGS96, §3.4]. By Lemmas 7.6 and 7.7 and Poincaré duality,

Hp+q
(
ι!F ICY (V )

) ∼= IHp+q
c

(
X(V F );Q`

) ∼= IHp−q(X(V F );Q`

)
.

We know that IHp−q(X(V F );Q`

)
vanishes unless p− q is even [EPW16, Proposition 3.9].

This implies that the spectral sequence degenerates at the E1 page, IHm
(
Y (V );Q`

)
= 0

unless m is even, and

IH2i
(
Y (V );Q`

) ∼= ⊕
p+q=2i

⊕
crkF=p

IHp−q(X(V F );Q`

)
=
⊕
F

IH2(crkF−i)(X(V F );Q`

)
.

We now apply Poincaré duality for IH∗
(
Y (V );Q`

)
to see that we can replace i with

rkM − i, which has the effect of replacing crkF − i with i− rkF . Thus

IH2i
(
Y (V );Q`

) ∼= ⊕
F

IH2(i−rkF )
(
X(V F );Q`

)
.

By Theorem 7.1, dim IH2(i−rkF )
(
X(V F );Q`

)
= cM(V F )(i− rkF ) = cM(V )F (i− rkF ), thus∑

i>0

ti dim IH2i
(
Y (V );Q`

)
=

∑
i>0

ti
∑
F

cM(V )F (i− rkF )

=
∑
F

trkF
∑
i>0

cM(V )F (i− rkF )ti−rkF
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=
∑
F

trkFPM(V )F (t)

= ZM(V )(t).

The same argument works for topological intersection cohomology when k = C.

Remark 7.8. Theorems 7.1 and 7.2 also hold equivariantly. That is, if Γ acts on I in such
a way so that V ⊂ kI is a subrepresentation, then Γ acts on M(V ), X(V ), and Y (V ),
and we have

P Γ
M(V )(t)

∼=
⊕
i>0

ti IH2i
(
X(V )) and ZΓ

M(V )(t)
∼=
⊕
i>0

ti IH2i
(
Y (V ))

as graded representations of Γ. This holds for `-adic intersection cohomology when k is a
finite field as well as for topological intersection cohomology when k = C.

The first statement for k = C appears in [GPY17a, Corollary 2.12]; see also [PY17,
Theorem 3.1]. The finite field version can be proved similarly; the only technical point is
that in the k = C case we argue that the maps in a certain spectral sequence3 must strictly
preserve weights in the mixed Hodge filtration, and in the finite field version we instead
use the fact that these maps are equivariant for the action of the Frobenius automorphism.

Once we know the first statement, the proof of Theorem 7.2 extends without modifi-
cation to the equivariant setting, and the second statement is proved, as well.

Remark 7.9. Consider the category O(V ) of perverse sheaves on Y (V ) that are smooth
with respect to the stratification described in this section. This category has some very
nice properties; see for example [BGS96, 3.3.1] when k = C and [BGS96, 4.4.4] when k is
a finite field. In particular,

PM(V )(t) =
∑
i>0

ti dim IH2i
(
X(V );Q`

)
=
∑
i>0

ti dim IH2i
∞
(
Y (V );Q`

)
,

which in turn is given by the (backward) graded dimension of the Ext group from the
skyscraper sheaf at the point∞ to the IC sheaf of Y (V ). Other Ext groups from standard
objects to simple objects are measured by Kazhdan-Lusztig polynomials of localizations
of contractions of M(V ).
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