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Abstract

The Ehrhart polynomial of a lattice polygon P is completely determined by the
pair (b(P),i(P)) where b(P) equals the number of lattice points on the boundary
and i(P) equals the number of interior lattice points. All possible pairs (b(P),i(P))
are completely described by a theorem due to Scott. In this note, we describe the
shape of the set of pairs (b(T'),i(T)) for lattice triangles T' by finding infinitely many
new Scott-type inequalities.

Keywords: Lattice triangles; Ehrhart polynomial; h*-vector; toric surfaces; sec-
tional genus; Scott’s inequality

1 Introduction

A lattice polygon P C R? is the two-dimensional convex hull of finitely many lattice points,
i.e., points in Z?. Two lattice polygons are equivalent if they are mapped onto each other by
an affine-linear automorphism of R? which maps Z? onto Z?. Let b = b(P) (resp. i = i(P))
be the number of lattice points contained in the boundary (resp. in the interior) of P.
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Figure 1: The points (b(T"),i(T")) for lattice triangles T" together with the open cones o?.

Pick’s Theorem [7] allows to compute the area a(P) of a lattice polygon P from b(P)
and i(P):

a(P) =i(P)+ %2 1, (1)
The Ehrhart polynomial of P is given by |(kP)NZ?| = a(P)k*+ @lﬂ- 1 (for k € Z=p). We
refer to the textbook [1]. Therefore, the study of Ehrhart polynomials of lattice polygons

reduces to the study of the set P of tuples (b(P),i(P)) for lattice polygons P. In 1976
Scott showed the following result:

Theorem 1 (Scott). For a lattice polygon P with i(P) > 1 either (b(P),i(P)) = (9,1) or
b(P) < 2i(P) + 6 holds.

THE ELECTRONIC JOURNAL OF COMBINATORICS 25(1) (2018), #P1.3 2



As described in [3], this implies a complete description of Ehrhart polynomials of lattice
polygons:

P=1{(b0):beZyyU{(bi):3<b<2i+6 1<i}u{(91)}.

In this note, we investigate the subset 7 C P of tuples (b(T),i(T")) for lattice triangles
T C R?. Since in Ehrhart theory results are often reduced to the case of lattice simplices,
we are interested in understanding what this reduction means for the set of Ehrhart
polynomials in the simplest case of dimension two. Rather surprisingly, it turns out that
the structure of the set 7T is richer than one might have expected, as the reader can see in
Figure 1 and Figure 4. While the structure of 7T is still to be fully understood, we explain
here the appearance of the conspicuous “spikes”.

For this, let us introduce the following open affine cones (see Figure 1 and Figure 4).

Definition 2. We set 02 == {(b,i) € RZ): b — (c—1) <i< $b—c(c+2)} C R? for
cE Z}l.

It is straightforward to check that the closures of these cones are pairwise disjoint. In
our notation, Scott’s theorem (Theorem 1) is equivalent to PNof = {(9,1)}. As suggested
by Figure 1, T avoids the interiors of all of the other infinitely many cones.

Theorem 3. We have T Noy ={(9,1)} and T No =0 for c € Zss.

For ¢ € Z~, let 0. be the translate of the closure of ¢ so its apex is at the origin. As
the cones g, cover the positive orthant, we see that there are no two-dimensional open
affine cones in R% that are disjoint from all of the cones o?.

Remark 4.

1. There is a purely number-theoretic criterion to check whether a given pair (b,1) is in
T. We have (b,7) € T if and only if there exist integers A, B,C' € Z with A > 0 and
0 < B < C such that b= A+ ged(B,C) + ged(B — A,C) and ¢ = (AC —b)/2 + 1.
In this case, the triangle with vertices (0,0), (A,0), (B, C) can be chosen. These
statements follow easily by considering Hermite normal forms (for details, see [6]).

2. Let us note that for ¢ > 1, the apex of the closure of the cone ¢ is (2¢*+2¢+2, > —c) €
T, realized by the lattice triangle with vertices (0,0),(2¢* + 2¢,0),(1, ¢). Moreover,
every pair (b,i) € Z? on the lower facet of the closure of the cone o2 lies in T
and is realized by the lattice triangle with vertices (0,0),((2i + b — 2)/c,0),(B, ¢) for
B € Z-y with ged(B,¢) = ged(B — (20 +b—2)/c,c) = 1. We also find infinitely
many pairs (k(c + 1), kc(c +1)/2 —c(c+2)) € T (for k € Zzg.11) on the upper
face of the closure of the cone o7, realized by the lattice triangles with vertices
(0,0),((k—2)(c+1),0),(0,c+ 1). These statements follow from elementary number-
theoretic considerations.
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3. The reader might notice many missing lines of slope —1/2 in Figure 4. The reason
is that there are only two lattice triangles of prime normalized volume 2a. More
precisely, for odd primes p we have TN {i=—3b+ 5+ 1} = {(3, ’%1), (p+2,0)},
for details see [6]. This follows also from Higashitani’s study of lattice simplices with
prime normalized volume [4].

4. From the pictures, it is visible that the points of 7 in the “spikes” form periodic
patterns. It seems to be an interesting open question to make this observation
precise.

5. Scott’s inequality (Theorem 1) follows from inequalities by del Pezzo and Jung [5, 2]
(see also [8]): any rational projective surface with degree d and sectional genus p > 0
satisfies d < 4p+4if (d, p) # (9,1). Now, Theorem 3 can be translated into algebraic
geometry as follows: there exists no toric projective surface with Picard number one,
degree d, and sectional genus p that satisfies

—2(0:1) (c+p) <d<Zp
for an integer ¢ > 2. It would be interesting to see whether this is a special case of a
more general algebro-geometric statement.

We remark that in an upcoming paper of the first author and Higashitani Theorem 3
will be used as the base case of a generalization for lattice simplices of dimension greater
than two.

2 Proof of Theorem 3

Our proof uses the ideas of Scott’s original proof of Theorem 1. For the convenience of
the reader we will give complete arguments without assuming prior knowledge of [9]. Let
T be a lattice triangle with area a, number of boundary lattice points b, and number of
interior lattice points 7. We assume that T satisfies for some ¢ > 1 the inequalities

c(2-1)<a<ict+1)—(c+1) (2)

or equivalently,

24+ 2(c+1)<b< 242 (3)

We will show that this situation cannot exist except if ¢ =1 with b =9 and a = 4.5.

By replacing T" with an equivalent lattice triangle, we may assume that 7" is contained
in a bounding box (i.e., a rectangle whose edges are parallel to the coordinate axes and
that is minimal with respect to the inclusion of T') with vertical side length p such that p
is minimal among all such choices. For an illustration, see Figure 2. Let us note that p
equals the lattice width of T. We denote the horizontal side length of the bounding box
by p’. We observe that necessarily p’ > p since switching coordinates yields an equivalent
triangle.
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Figure 2: Two examples of bounding boxes used in the proof of Theorem 3.

Let us prove ,

az (4)

For this, we denote by J the minimal distance of the x-coordinate of a vertex of T’
(denoted by vy) on the top edge of the rectangle from the z-coordinate of a vertex of T
(denoted by v;) on the bottom edge of the rectangle. By an integral, unimodular shear
leaving the horizontal line through the bottom edge of the rectangle invariant, we can
achieve § < §. By possibly flipping along the horizontal or vertical axis, we may also
assume that vy has z-coordinate greater than or equal to that of vy, and the third vertex
of T' (denoted by vj3) has z-coordinate greater than or equal to that of vy (recall that
P =p>0).

Now, we move the bottom vertex v; horizontally to the right until it has the same
x-coordinate as that of vo. We observe that the area of the obtained triangle is bounded
by the area of T' (see Figure 3), i.e.,

P
4

a> p(p;—fS) >

where for the second inequality we used § < § and p’ > p. This finishes the proof of (4).

:\ L \ ~ \p\.

Figure 3: Illustration of the proof of inequality (4).

We may assume that there is only one vertex of 7" on the top edge of the bounding
box (otherwise, flip horizontally). Let us denote by ¢ the length of the intersection of T’
with the bottom edge of the bounding box, so ¢ = 0 if and only if there is only one vertex
of T on the bottom edge.

As each horizontal line between y = 0 and y = p cuts the boundary of T" in two points
(see Figure 2), we obtain

b< g+ 2p. (5)
By Pick’s Theorem (1), we have a € %N , and thus the strict inequality on the left hand of

a c+1)? .. . . .
(3) becomes % < b. Combining this with (5) gives

L), < b < g+ 2p. (6)
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Let us assume g = 0. Plugging in (4) yields

p?/24+1+42(c+1)?

= <2p=p*—4lc+Dp+2+4(c+1)2<0.

This is a contradiction as the discriminant of this quadratic polynomial in p is negative.

Hence, ¢ > 0, so a = £!. Plugging this into (6) implies

2
B ) g

Solving for q yields
(p—c—1Dg<2c+)(p—c—1)—1. (7)

We see that p # ¢+ 1.
Let us assume p < ¢+ 1, i.e., p < c. Clearly, b > ¢ + 2. We plug this in the inequality
on the left hand side of (2) and get a contradiction, namely

LS
s}

<a=21

cq
5 <5

Hence, we have p > ¢+ 1. We deduce from (7)
q<2(c+1). (8)

Let us translate the left bottom vertex of T" into the origin. By applying an integral,
unimodular shear leaving the horizontal line through the bottom edge of the rectangle
invariant, we can get an equivalent triangle such that the z-coordinate of the top vertex of
T isin [0,p). As p' > p, this implies ¢ = p/, e.g., as in the left example of Figure 2.

As a=pq/2 € %N, the strict inequality on the right hand side of (3) becomes

b2l p 2 =Pt 42
Combining this with the inequality on the left hand side of (6), we obtain

+1+2(c+1)2 -1
= c+1 < b < qu +2.

Solving for pq yields 2¢(c* + ¢+ 1) +1 < pg. As q=p' > p and p > c+ 1, the previous

inequality combined with (8) implies

2c(P+c+1)<pg <P <dlc+1)? =227 —6c—4<0. (9)

A straightforward computation shows that this is only possible for ¢ < 2. In the case ¢ = 2,
plugging this again into (9) we obtain 28 < ¢? < 36, a contradiction. In the remaining
case ¢ = 1, we get 6 < ¢> < 16, i.e., g = 3. Sincep >c+1=2and ¢ =p > p, we
deduce p=3. Asa =5 = 4.5, we get b =9 from (6). In fact, it is now straightforward
to deduce that there is even only one such lattice triangle up to equivalence (e.g., with

vertices (0,0), (3,0), (0,3)). O
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Figure 4: Zooming into Figure 1 for the values 0 < b < 250.
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