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Abstract

In this paper, we present grammatical descriptions of several polynomials as-
sociated with Eulerian polynomials, including q-Eulerian polynomials, alternating
run polynomials and derangement polynomials. As applications, we get several
convolution formulas involving these polynomials.

Keywords: Eulerian polynomials; Alternating runs; Derangement polynomials;
Context-free grammars

1 Introduction

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in
monomials formed from letters in A. Following [6], a context-free grammar over A is a
function G : A → Q[[A]] that replaces a letter in A by a formal function over A. The
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formal derivative D is a linear operator defined with respect to a context-free grammar
G. More precisely, the derivative D = DG: Q[[A]] → Q[[A]] is defined as follows: for
x ∈ A, we have D(x) = G(x); for a monomial u in Q[[A]], D(u) is defined so that D is a
derivation, and for a general element q ∈ Q[[A]], D(q) is defined by linearity.

Many combinatorial structures can be generated by using context-free grammars, such
as set partitions [6], permutations [12, 16], Stirling permutations [8, 19], increasing trees [8,
12], rooted trees [13] and perfect matchings [15]. In this paper, using a grammatical
labeling introduced by Chen and Fu [8], we study several polynomials associated with the
Eulerian polynomials.

LetSn be the symmetric group on the set [n] = {1, 2, . . . , n}, and letπ = π(1) · · · π(n) ∈
Sn. We say that the index i ∈ [n− 1] is an excedance of π if π(i) > i. Denote by exc (π)
the number of excedances of π. The Eulerian polynomials are defined by

A0(x) = 1, An(x) =
∑
π∈Sn

xexc (π) =
n−1∑
k=0

〈
n

k

〉
xk for n > 1,

where
〈
n
k

〉
are the Eulerian numbers. The numbers

〈
n
k

〉
satisfy the recurrence relation〈

n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n− 1

k − 1

〉
,

with the initial conditions
〈

0
0

〉
= 1 and

〈
0
k

〉
= 0 for k > 1.

The hyperoctahedral group Bn is the group of signed permutations of the set ±[n] such
that π(−i) = −π(i) for all i, where ±[n] = {±1,±2, . . . ,±n}. Throughout this paper, we
always identify a signed permutation π = π(1) · · · π(n) with the word π(0)π(1) · · · π(n),
where π(0) = 0. Let

des B(π) = #{i ∈ {0, 1, 2, . . . , n− 1}|π(i) > π(i+ 1)}.

The Eulerian polynomials of type B are defined by

Bn(x) =
∑
π∈Bn

xdes B(π) =
n∑
k=0

B(n, k)xk,

where B(n, k) are called the Eulerian numbers of type B. The numbers B(n, k) satisfy
the recurrence relation

B(n+ 1, k) = (2k + 1)B(n, k) + (2n− 2k + 3)B(n, k − 1),

with the initial conditions B(0, 0) = 1 and B(0, k) = 0 for k > 1. Let us now recall two
results on context-free grammars.

Proposition 1 ([12, Section 2.1]). If A = {x, y} and G = {x → xy, y → xy}, then for
n > 1

Dn(x) = x
n−1∑
k=0

〈
n

k

〉
xkyn−k.
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Proposition 2 ([15, Theorem 10]). If A = {x, y} and G = {x→ xy2, y → x2y}, then for
n > 1,

Dn(x2) = 2n
n−1∑
k=0

〈
n

k

〉
x2n−2ky2k+2,

Dn(xy) =
n∑
k=0

B(n, k)x2n−2k+1y2k+1.

The q-Eulerian polynomials of types A and B are respectively defined by

An(x; q) =
∑
π∈Sn

xexc (π)qcyc (π),

Bn(x; q) =
∑
π∈Bn

xdes B(π)qN(π),

where cyc (π) is the number of cycles in π and N(π) = #{i ∈ [n] : π(i) < 0}. Follow-
ing [11, 157-162] and [24, Theorem 4.3.3], the alternating run polynomials of types A and
B can be respectively defined by

Rn(x) = (1− w)

(
1 + x

2

)n−1

(1 + w)nAn

(
1− w
1 + w

)
,

Tn(x) =
x

2

(
1 + x

2

)n−1

(1 + w)nBn

(
1− w
1 + w

)
for n > 2, where w =

√
1−x
1+x

. Following [3, Proposition 5] and [9, Theorem 3.2], the

derangement polynomials of types A and B can be respectively defined by

dn(x) =
n∑
k=0

(−1)n−k
(
n

k

)
Ak(x),

dBn (x) =
n∑
k=0

(−1)n−kxn−k
(
n

k

)
Bk(x).

The purpose of this paper is to explore grammatical descriptions of the q-Eulerian
polynomials, the alternating run polynomials and the derangement polynomials.

2 q-Eulerian polynomials

According to [5, Proposition 7.2], the polynomials An(x; q) satisfy the recurrence relation

An+1(x; q) = (nx+ q)An(x; q) + x(1− x)
∂

∂x
An(x; q), (1)
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with the initial condition A0(x; q) = 1. In [4, Theorem 3.4], Brenti showed that the
polynomials Bn(x; q) satisfy the recurrence relation

Bn+1(x; q) = ((n+ nq + q)x+ 1)Bn(x; q) + (1 + q)x(1− x)
∂

∂x
Bn(x; q), (2)

with the initial condition B0(x; q) = 1. The polynomials An(x; q) and Bn(x; q) have been
extensively studied (see [2, 17] for instance).

2.1 Context-free grammar for An(x; q)

A standard cycle decomposition of π ∈ Sn is defined by requiring that each cycle is
written with its smallest element first, and the cycles are written in increasing order of
their smallest element. In the following discussion, we always write π in standard cycle
decomposition. We say that the index i ∈ [n] is an anti-excedance of π if π(i) 6 i. Denote
by aexc (π) the number of anti-excedances of π. It is clear that exc (π) + aexc (π) = n.
We now give a labeling of π as follows:

(i) Put a superscript label z right after each excedance;

(ii) Put a superscript label y right after each anti-excedance;

(iii) Put a superscript label q before each cycle of π;

(iv) Put a superscript label x at the end of π.

For example, the permutation (1, 3, 4)(2)(5, 6) can be labeled as q(1z3z4y)q(2y)q(5z6y)x.
The weight of π is the product of its labels.

Let Sn(i, j, k) = {π ∈ Sn : aexc (π) = i, exc (π) = j, cyc (π) = k}. When n = 1,
we have S1(1, 0, 1) = {q(1y)x}. When n = 2, we have S2(2, 0, 2) = {q(1y)q(2y)x} and
S2(1, 1, 1) = {q(1z2y)x}. Suppose we get all labeled permutations in Sn(i, j, k) for all
i, j, k. Let π′ ∈ Sn+1 be obtained from π ∈ Sn(i, j, k) by inserting the entry n+ 1 into π.
We distinguish the following three cases:

(c1) If the entry n+ 1 is inserted as a new cycle (n+ 1), then π′ ∈ Sn+1(i+ 1, j, k + 1).
In this case, the insertion of n+ 1 corresponds to the operation x→ qxy;

(c2) If the entry n + 1 is inserted right after an excedance, then π′ ∈ Sn+1(i + 1, j, k).
In this case, the insertion of n+ 1 corresponds to the operation z → yz;

(c3) If the entry n+1 is inserted right after an anti-excedance, then π′ ∈ Sn+1(i, j+1, k).
In this case, the insertion of n+ 1 corresponds to the operation y → yz.

By induction, we get the following result.

Theorem 3. If A = {x, y, z} and G = {x→ qxy, y → yz, z → yz}, then

Dn(x) = x
∑
π∈Sn

yaexc (π)zexc (π)qcyc (π). (3)
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Setting y = 1 in (3), we get

Dn(x)|y=1 = xAn(z; q).

Furthermore, setting y = z = 1 in (3), we get

Dn(x)|y=z=1 = x
∑
π∈Sn

qcyc (π) = xq(q + 1)(q + 2) · · · (q + n− 1).

Corollary 4. For n > 1, we have

An+1(x; q) = qAn(x; q) + qx
n−1∑
k=0

(
n

k

)
Ak(x; q)An−k(x).

Proof. Using the Leibniz’s formula, we get

Dn+1(x) = Dn(qxy) = qDn(xy) = q
n∑
k=0

(
n

k

)
Dk(x)Dn−k(y).

Combining Proposition 1 and Theorem 3, we obtain

An+1(x; q) = q
n∑
k=0

(
n

k

)
Ak(x; q)xn−kAn−k

(
1

x

)
.

Recall that An(x) are symmetric, i.e., xnAn
(

1
x

)
= xAn(x) for n > 1. Thus we get the

desired result.

2.2 Context-free grammar for Bn(x; q)

For a permutation π ∈ Bn, we define an ascent (resp. a descent) to be a position i ∈
{0, 1, 2 . . . , n − 1} such that π(i) < π(i + 1) (resp. π(i) > π(i + 1)). Let asc B(π) be
the number of ascents of π ∈ Bn. As usual, denote by i the negative element −i. Let
A = {x, y, z, u}. We shall show that the following grammar

G = {x→ qxyu, y → xyz, z → yzu, u→ qxzu} (4)

can be used to generate permutations of Bn. Now we give a labeling of π ∈ Bn as follows:

(L1) If i is an ascent and π(i + 1) > 0, then put a superscript label z and a subscript x
right after π(i);

(L2) If i is a descent and π(i + 1) > 0, then put a superscript label y and a subscript u
right after π(i);

(L3) If i is an ascent and π(i+ 1) < 0, then put a superscript label z and a subscript qx
right after π(i);
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(L4) If i is a descent and π(i+ 1) < 0, then put a superscript label y and a subscript qu
right after π(i);

(L5) Put a superscript label y and a subscript x at the end of π.

Note that the weight of π is given by

w(π) = xy(xz)asc B(π)(yu)des B(π)qN(π).

Let
Bn(i, j, k) = {π ∈ Bn : asc B(π) = i, des B(π) = j,N(π) = k}.

When n = 1, we have B1(1, 0, 0) = {0zx1yx} and B1(0, 1, 1) = {0yqu1
y
x}. Note that

D(xy) = x2yz + qxy2u.

Thus the sum of weights of the elements of B1 is given by D(xy).
Suppose we get all labeled permutations in Bn(i, j, k) for all i, j, k, where n > 1. Let

π′ ∈ Bn+1 be obtained from π ∈ Bn(i, j, k) by inserting the entry n + 1 or n+ 1. We
distinguish the following six cases:

(c1) If i is an ascent and we insert n + 1 right after π(i), then π′ ∈ Bn+1(i, j + 1, k). In
this case, the insertion of n + 1 corresponds to applying the rule z → yzu to the
label z associated with π(i);

(c2) If i is an ascent and we insert n+ 1 right after π(i), then π′ ∈ Bn+1(i, j + 1, k + 1).
In this case, the insertion of n+ 1 corresponds to applying the rule x → qxyu to
the label x associated with π(i);

(c3) If i is a descent and we insert n + 1 right after π(i), then π′ ∈ Bn+1(i + 1, j, k). In
this case, the insertion of n + 1 corresponds to applying the rule y → xyz to the
label y associated with π(i);

(c4) If i is a descent and we insert n+ 1 right after π(i), then π′ ∈ Bn+1(i+ 1, j, k + 1).
In this case, the insertion of n+ 1 corresponds to applying the rule u → qxzu to
the label u associated with π(i);

(c5) If we insert n + 1 at the end of π, then π′ ∈ Bn+1(i + 1, j, k). In this case, the
insertion of n + 1 corresponds to applying the rule y → xyz to the label y at the
end of π;

(c6) If we insert n+ 1 at the end of π, then π′ ∈ Bn+1(i, j + 1, k + 1). In this case, the
insertion of n+ 1 corresponds to applying the rule x → qxyu to the label x at the
end of π.

In general, the insertion of n+ 1 (resp. n+ 1) into π corresponds to the action of the
formal derivative D on a superscript label (resp. subscript label). By induction, we get
the following result.
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Theorem 5. If D is the formal derivative with respect to the grammar (4), then

Dn(xy) = xy
∑
π∈Bn

(xz)asc B(π)(yu)des B(π)qN(π). (5)

Setting x = y = z = 1 in (5), we get

Dn(xy)|x=y=z=1 = Bn(u; q).

A perfect matching of [2n] is a partition of [2n] into n blocks of size 2. Denote by
N(n, k) the number of perfect matchings of [2n] with the restriction that only k matching
pairs have even larger entries. The numbers N(n, k) satisfy the recurrence relation

N(n+ 1, k) = 2kN(n, k) + (2n− 2k + 3)N(n, k − 1)

for n, k > 1, whereN(1, 1) = 1 andN(1, k) = 0 for k > 2 or k 6 0 (see [18, Proposition 1]).
Let Nn(x) =

∑n
k=1 N(n, k)xk. Set N0(x) = 1 and

Ñn(x) = xnNn

(
1

x

)
for n > 0.

From [15, Corollary 11], we have

Bn(x) =
n∑
k=0

(
n

k

)
Nk(x)Ñn−k(x). (6)

We end this section by giving a dual of (6). By the same way as in the proof of
Theorem 5, it is routine to check that if A = {x, y, z, u} and G = {x → xyu, y →
xyz, z → yzu, u→ xzu}, then

Dn(x) = u
n∑
k=0

N(n, k)(yu)k(xz)n−k,

Dn(u) = u
n∑
k=0

N(n, k)(xz)k(yu)n−k,

Dn(xy) = xy
n∑
k=0

B(n, k)(yu)k(xz)n−k.

Note that

Dn+1(x) = Dn(xyu) =
n∑
k=0

(
n

k

)
Dk(u)Dn−k(xy).

Therefore, we get the following result.

Proposition 6. For n > 0, we have

Nn+1(x) = x
n∑
k=0

(
n

k

)
Ñk(x)Bn−k(x). (7)

It should be noted that the convolution formulas (6) and (7) reveal that there exist
some connections between Brauer algebra and Coxeter groups.
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3 Alternating run polynomials

For π ∈ Sn, a left peak index is an index i ∈ [n− 1] such that π(i− 1) < π(i) > π(i+ 1),
where we take π(0) = 0, and the entry π(i) is called a left peak. Let P (n, k) be the number
of permutations of Sn with k left peaks. It is well known that the numbers P (n, k) satisfy
the recurrence relation

P (n, k) = (2k + 1)P (n− 1, k) + (n− 2k + 1)P (n− 1, k − 1),

with the initial conditions P (1, 0) = 1 and P (1, k) = 0 for k > 1 (see [16] for instance).
We say that π ∈ Sn changes direction at position i if either π(i− 1) < π(i) > π(i + 1),
or π(i− 1) > π(i) < π(i+ 1), where i ∈ {2, 3, . . . , n− 1}. We say that π has k alternating
runs if there are k− 1 indices i such that π changes direction at these positions. The up-
down runs of a permutation π are the alternating runs of π endowed with a 0 in the front.
Let R(n, k) (resp. M(n, k)) be the number of permutations of Sn with k alternating
runs (resp. up-down runs). The numbers R(n, k) and M(n, k) respectively satisfy the
recurrence relations

R(n, k) = kR(n− 1, k) + 2R(n− 1, k − 1) + (n− k)R(n− 1, k − 2), (8)

M(n, k) = kM(n− 1, k) +M(n− 1, k − 1) + (n− k + 1)M(n− 1, k − 2) (9)

for n, k > 1, where R(1, 0) = M(0, 0) = M(1, 1) = 1 and R(1, k) = M(n, 0) = M(0, k) = 0
for n, k > 1 (see [16, 21]). Let Rn(x) =

∑n−1
k=1 R(n, k)xk and Mn(x) =

∑n
k=1M(n, k)xk.

There is a unified grammatical descriptions of Rn(x) and Mn(x).

Proposition 7 ([16, Theorem 6]). If A = {x, y, z} and G = {x → xy, y → yz, z → y2},
then

Dn(x2) = x2

n∑
k=0

R(n+ 1, k)ykzn−k,

Dn(x) = x
n∑
k=1

M(n, k)ykzn−k.

In particular, Dn(x2)|z=1 = x2Rn+1(y), Dn(x)|z=1 = xMn(y).

A run of a signed permutation π ∈ Bn is defined as a maximal interval of consecutive
elements on which the elements of π are monotonic in the order · · · < 2 < 1 < 0 <
1 < 2 < · · · . The up signed permutations are signed permutations with π(1) > 0. For
example, the up signed permutation 031245 ∈ B5 has four runs, i.e., 03, 31, 124 and
45. Let T (n, k) denote the number of up signed permutations in Bn with k alternating
runs. Zhao [24, Theorem 4.2.1] showed that the numbers T (n, k) satisfy the the following
recurrence relation

T (n, k) = (2k − 1)T (n− 1, k) + 3T (n− 1, k − 1) + (2n− 2k + 2)T (n− 1, k − 2) (10)
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for n > 2 and 1 6 k 6 n, where T (1, 1) = 1 and T (1, k) = 0 for k > 1. The alternating
run polynomials of type B are defined by Tn(x) =

∑n
k=1 T (n, k)xk. The first few of the

polynomials Tn(x) are given as follows:

T1(x) = x, T2(x) = x+ 3x2, T3(x) = x+ 12x2 + 11x3, T4(x) = x+ 39x2 + 95x3 + 57x4.

The similarity of the recurrence relations (8), (9) and (10) suggests the existence of a
context-free grammar for Tn(x). We now present the third main result of this paper.

Theorem 8. If A = {x, y, z} and G = {x 7→ xy2, y 7→ yz2, z 7→ y4z−1}, then for n > 1,

Dn(x3y) = x3y

n+1∑
k=1

T (n+ 1, k)y2k−2z2n−2k+2,

Dn(xy) = xy(y2 + z2)
n∑
k=1

T (n, k)y2k−2z2n−2k,

Dn(x2) = 2nx2

n∑
k=0

M(n, k)y2kz2n−2k,

Dn(x2y2) = 2n−1x2(y2 + z2)
n∑
k=1

R(n+ 1, k)y2kz2n−2k,

Dn(y2) = 2ny2

bn/2c∑
k=0

P (n, k)y4kz2n−4k.

Proof. We only prove the assertion for Dn(x3y) and the others can be proved in a similar
way. Note that D(x3y) = x3y(z2 +3y2) and D2(x3y) = x3y(z4 +12y2z2 +11y4). we define

T̃ (n, k) by

Dn(x3y) = x3y
n+1∑
k=0

T̃ (n+ 1, k)y2k−2z2n−2k+2. (11)

Then T̃ (2, 0) = 0, T̃ (2, 1) = T (2, 1) = 1 and T̃ (2, 2) = T (2, 2) = 3. It follows from (11)
that

Dn+1(x3y) = D(Dn(x3y))

= x3y

n+1∑
k=1

(2k − 1)T̃ (n+ 1, k)y2k−2z2n−2k+4 + x3y

n+1∑
k=1

3T̃ (n+ 1, k)y2kz2n−2k+2

+ x3y

n+1∑
k=1

(2n− 2k + 2)T̃ (n+ 1, k)y2k+2z2n−2k.

Hence

T̃ (n+ 2, k) = (2k− 1)T̃ (n+ 1, k) + 3T̃ (n+ 1, k− 1) + (2n− 2k+ 6)T̃ (n+ 1, k− 2). (12)

By comparing (12) with (10), we see that the numbers T̃ (n, k) satisfy the same recurrence
relation and initial conditions as T (n, k), so they agree.
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It follows from the Leibniz’s formula that

Dn(x3y) =
n∑
k=0

(
n

k

)
Dk(xy)Dn−k(x2)

= xyDn(x2) +
n∑
k=1

(
n

k

)
Dk(xy)Dn−k(x2).

So the following corollary is immediate.

Corollary 9. We have

Tn+1(x) = 2nxMn(x) + (1 + x)
n∑
k=1

2n−k
(
n

k

)
Tk(x)Mn−k(x).

By using the fact that

Dn(x2y2) =
n∑
k=0

(
n

k

)
Dk(xy)Dn−k(xy)

= 2xyDn(xy) +
n−1∑
k=1

(
n

k

)
Dk(xy)Dn−k(xy),

we get a grammatical proof of the following result.

Proposition 10 ([10, Theorem 13]). For n > 2, we have

2n−1Rn+1(x) = 2Tn(x) +
1 + x

x

n−1∑
k=1

(
n

k

)
Tk(x)Tn−k(x).

Let Pn(x) =
∑bn/2c

k=0 P (n, k)xk. From

Dn(x2y2) =
n∑
k=0

(
n

k

)
Dk(x2)Dn−k(y2),

we obtain

(1 + x)Rn+1(x) = 2x
n∑
k=0

(
n

k

)
Mk(x)Pn−k(x

2).

Recall that Bóna [1, Section 1.3.2] obtained the following identity:

Mn(x) =
1

2
(1 + x)Rn(x) for n > 2.

Therefore,

Mn+1(x) = x
n∑
k=0

(
n

k

)
Mk(x)Pn−k(x

2).
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4 Derangement polynomials

There is a larger literature devoted to derangement polynomials (see [3, 7, 9, 14] for
instance). We now recall some basic definitions, notation and results. We say that
a permutation π is a derangement if π(i) 6= i for any i ∈ [n]. Let Dn be the set of
derangements of Sn. The derangement polynomials are defined by

dn(x) =
∑
π∈Dn

xexc (π).

The polynomials dn(x) satisfy the following recurrence relation

dn+1(x) = nx (dn(x) + dn−1(x)) + x(1− x)d′n(x)

for n > 1, with the initial conditions d0(x) = 1, d1(x) = 0 (see [23]). Brenti [3, Proposition
5] showed that ∑

n>0

dn(x)
zn

n!
=

1− x
exz − xez

.

For π ∈ Sn, we define

fix (π) = #{i ∈ [n] : π(i) = i},

dc (π) = #{i ∈ [n] : π(i) < i}.
Clearly, exc (π) + fix (π) + dc (π) = n. In [12, Section 2.2], Dumont proved that if A =
{x, y, z, e} and G = {x→ xy, y → xy, z → xy, e→ ez}, then

Dn(e) = e
∑
π∈Sn

xexc (π)ydc (π)zfix (π). (13)

In particular, setting y = e = 1, z = 0 in (13), we get Dn(e)|y=e=1,z=0 = dn(x).
In [4, p. 431], Brenti introduced a definition of type B weak excedance. Let π ∈ Bn.

We say that i ∈ [n] is a type B weak excedance of π if π(i) = i or π(|π(i)|) > π(i). Let
wexc (π) be the number of weak excedances of π. It follows from [4, Theorem 3.15] that

Bn(x) =
∑
π∈Bn

xwexc (π).

A fixed point of π ∈ Bn is an index i ∈ [n] such that π(i) = i. A derangement of type B
is a signed permutation π ∈ Bn with no fixed points. Let DBn be the set of derangements
of Bn. Following [9], the type B derangement polynomials dBn (x) are defined by

dB0 (x) = 1, dBn (x) =
∑
π∈DB

n

xwexc (π) for n > 1.

The first few of the polynomials dBn (x) are given as follows:

dB1 (x) = 1, dB2 (x) = 1 + 4x, dB3 (x) = 1 + 20x+ 8x2, dB4 (x) = 1 + 72x+ 144x2 + 16x3.
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Chow [9, Theorem 3.2] proved that∑
n>0

dBn (x)
zn

n!
=

1− x
e(2x−1)z − xez

.

Moreover, the polynomials dBn (x) satisfy the following recurrence relation

dBn+1(x) = 2nx
(
dBn (x) + dBn−1(x)

)
+ dBn (x) + 2x(1− x)

d

dx
dBn (x).

for n > 2, with the initial conditions d0(x) = 1, d1(x) = 0 (see [9, Proposition 3.1]). Chen
et al. [7] showed that the limiting distribution of the coefficients of dBn (x) is normal.

Given π ∈ DBn . Clearly,

wexc (π) = #{i ∈ [n] : π(|π(i)|) > π(i)}.

We say that i is an anti-excedance of π if π(|π(i)|) < π(i). Let aexc (π) be the number of
anti-excedances of π. We say that i is a singleton if (i) is a cycle of π. Let single (π) be
the number of singletons of π. Then

wexc (π) + aexc (π) + single (π) = n. (14)

In the following discussion, we always write π by using its standard cycle decomposition,
in which each cycle is written with its largest entry last and the cycles are written in
ascending order of their last entry. For example, 351726 4 ∈ DB7 can be written as
(6)(7, 4)(3, 1)(2, 5). Let (c1, c2, . . . , ci) be a cycle in standard cycle decomposition of π.
We say that cj is an ascent in the cycle if cj < cj+1, where 1 6 j < i. We say that cj is
a descent in the cycle if cj > cj+1, where 1 6 j 6 i and we set ci+1 = c1. As pointed out
by Chow [9, p. 819], if π ∈ DBn with no singletons, then wexc (π) equals the sum of the
number of ascents in each cycle and aexc (π) equals the sum of the number of descents in
each cycle. Let d(n, i, j) be the number of derangements of type B with i weak excedances
and j anti-excedances.

We can now conclude the fourth main result of this paper from the discussion above.

Theorem 11. Let A = {x, y, z, e} and

G = {x→ xy2, y → x2y, z → x2y2z−3, e→ ez4}. (15)

Then
Dn(e) = e

∑
π∈DB

n

x2wexc (π)y2aexc (π)z4single (π).

Equivalently,

Dn(e) = e
∑
i,j>0

d(n, i, j)x2iy2jz4(n−i−j). (16)

Setting y = z = 1 in (16), we get

Dn(e)|y=z=1 = edBn (x2).
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Proof. Now we give a labeling of π ∈ DBn as follows:

(L1) If i is a singleton, then put a superscript label z4 right after i;

(L2) If ci is an ascent in a cycle, then put a superscript label x2 right after ci;

(L3) If ci is a descent in a cycle, then put a superscript label y2 right after ci;

(L4) Put a superscript label e in the front of π.

The weight of π is defined by

w(π) = ex2wexc (π)y2aexc (π)z4single (π).

Note that DB1 = {e(1z
4

)} and DB2 = {e(2z
4

)(1
z4

),e (1
x2

2y
2
),e (1x

2
2y

2
),e (2

x2
1
y2

),e (2
x2

1y
2
)}.

Thus the weight of e(1
z4

) is given by D(e) and the sum of weights of the permutations in
DB2 is given by D2(e), since D(e) = ez4 and D2(e) = e(z8 + 4x2y2).

To illustrate the relation between the action of the formal derivative D of the gram-
mar (15) and the insertion of n + 1 or n+ 1 into a permutation π ∈ DBn , we give the
following example. Let π = (6)(7, 4)(3, 1)(2, 5) ∈ DB7 . Then π can be labeled as

e(6
z4

)(7
x2

4
y2

)(3
x2

1y
2

)(2x
2

5y
2

).

We distinguish the following four cases:

(c1) If we insert 8 as a new cycle, then the resulting permutation is given below,

e(8
z4

)(6
z4

)(7
x2

4
y2

)(3
x2

1y
2

)(2x
2

5y
2

).

This case corresponds to applying the rule e→ ez4 to the label e.

(c2) If we insert 8 or 8 into the cycle (6), then the resulting permutations are given
below,

e(8
x2

6
y2

)(7
x2

4
y2

)(3
x2

1y
2

)(2x
2

5y
2

),

e(6
x2

8y
2

)(7
x2

4
y2

)(3
x2

1y
2

)(2x
2

5y
2

),

e(6x
2

8y
2

)(7
x2

4
y2

)(3
x2

1y
2

)(2x
2

5y
2

),

e(8
x2

6y
2

)(7
x2

4
y2

)(3
x2

1y
2

)(2x
2

5y
2

).

It should be noted that in the latter two permutations, we need to replace 6 by
6. This case corresponds to applying the rule z → x2y2z−3 to the label z4, since
D(z4) = 4x2y2.
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(c3) If we insert 8 or 8 right after 7, then the resulting permutations are given below,

e(6
z4

)(7
y2

8
x2

4
y2

)(3
x2

1y
2

)(2x
2

5y
2

),

e(6
z4

)(7
x2

8y
2

4
y2

)(3
x2

1y
2

)(2x
2

5y
2

).

This case corresponds to applying the rule x → xy2 to the label x2, since D(x2) =
2x2y2.

(c4) If we insert 8 or 8 right after 4, then the resulting permutations are given below,

e(6
z4

)(7
x2

4
y2

8
x2

)(3
x2

1y
2

)(2x
2

5y
2

),

e(6
z4

)(7
x2

4
x2

8y
2

)(3
x2

1y
2

)(2x
2

5y
2

).

This case corresponds to applying the rule y → x2y to the label y2, since D(y2) =
2x2y2.

In general, the insertion of n + 1 or n+ 1 into π ∈ DBn corresponds to the action of
the formal derivative D on a superscript label. By induction, we see that grammar (15)
generates all of the derangements of type B.

Let D be the formal derivative with respect to the grammar (15). Clearly, D(z4) =
4x2y2. It is easy to verify that

Dn(x2y2) = 2n
n∑
k=0

〈
n+ 1

k

〉
x2k+2y2n−2k+2.

Hence

Dn(z4) = 4Dn−1(x2y2) = 2n+1

n−1∑
k=0

〈
n

k

〉
x2k+2y2n−2k for n > 1. (17)

Note that

Dn+1(e) = Dn(ez4)

=
n∑
k=0

(
n

k

)
Dk(e)Dn−k(z4)

= z4Dn(e) +
n−1∑
k=0

(
n

k

)
Dk(e)Dn−k(z4).

Combining (17) and Theorem 11, we get the following corollary.

Corollary 12. For n > 1, we have

dBn+1(x) = dBn (x) + x

n−1∑
k=0

2n−k+1

(
n

k

)
dBk (x)An−k(x).
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Set dBn = dBn (1). We have

dBn+1 = dBn + n!
n−1∑
k=0

2n−k+1d
B
k

k!
.

Moreover, from (16), the following result is immediate.

Corollary 13. For n > 0, we have

d(n+1, i, j) = d(n, i, j)+2id(n, i, j−1)+2jd(n, i−1, j)+4(n−i−j+2)d(n, i−1, j−1), (18)

with initial conditions d(1, 0, 0) = 1 and d(1, i, j) = 0 for i 6= 0 or j 6= 0.

Let

G(x, y; t) =
∑
n>0

∑
π∈DB

n

xwexc (π)yaexc (π) t
n

n!
.

Proposition 14. We have

G(x, y; t) =
e(1−2x)t

1− x
y−x(e2(y−x)t − 1)

. (19)

Proof. Let dn(x, y) =
∑

i,j>0 d(n, i, j)xiyj. It follows from (18) that the polynomials
dn(x, y) satisfy the recurrence relation

dn+1(x, y) = (1+4nxy)dn(x, y)+(2xy−4x2y)
∂

∂x
dn(x, y)+(2xy−4xy2)

∂

∂y
dn(x, y), (20)

with the initial conditions d0(x, y) = d1(x, y) = 1. By rewriting (20) in terms of the
generating function G, we get

(1− 4xyt)Gt = G+ (2xy − 4x2y)Gx + (2xy − 4xy2)Gy. (21)

It is routine to check that

G̃(x, y; t) =
e(1−2x)t

1− x
y−x(e2(y−x)t − 1)

satisfies (21). Also, G̃(x, y; 0) = 1 and G̃(0, y; t) = G̃(x, 0; t) = et. Hence G = G̃.

Let P (π) = #{i ∈ [n] : π(i) > 0}. Then N(π) + P (π) = n. It is not hard to check
that ∑

n>0

∑
π∈DB

n

xwexc (π)yaexc (π)zsingle (π)uP (π)vN(π) t
n

n!
=

e(vz−(u+v)x)t

1− x
y−x (e(u+v)(y−x)t − 1)

.

In the proof of Theorem 11, if we further put a superscript label q before each cycle
of π ∈ DBn , then we get the following result.

Proposition 15. Let A = {x, y, z, e} and

G = {x→ xy2, y → x2y, z → x2y2z−3, e→ qez4}.
Then

Dn(e) = e
∑
π∈DB

n

x2wexc (π)y2aexc (π)z4single (π)qcyc (π).
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5 Concluding remarks

In this paper, we present grammatical descriptions of several polynomials associated with
the Eulerian polynomials. There are various q-analogue of the Eulerian polynomials. A
challenging work is to study grammatical descriptions of several enumerative polynomials
of Euler-Mahonian statistics (see [20] for instance). The Robinson-Schensted-Knuth cor-
respondence associates with any permutation a pair of paths in a Young graph. It would
be interesting to encode Young tableaux by introducing a grammatical labeling. One of
the possible ways is based on the work of Stembridge [22, Section 4], which established a
connection between permutations and pairs of a marked tableau and a standard tableau
of the same shape.

Acknowledgements

This work was finished while Y.-N. Yeh was visiting the School of Mathematical Sciences,
Dalian University of Technology, Dalian, P.R. China. The authors thank the referee for
valuable suggestions which led to a substantial improvement of the paper.

References
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