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Abstract

For a partition λ of an integer, we associate λ with a slender poset P the Hasse
diagram of which resembles the Ferrers diagram of λ. Let X be the set of maximal
chains of P . We consider Stanley’s involution ϵ : X → X, which is extended from
Schützenberger’s evacuation on linear extensions of a finite poset. We present an
explicit characterization of the fixed points of the map ϵ : X → X when λ is a
stretched staircase or a rectangular shape. Unexpectedly, the fixed points have a
nice structure, i.e., a fixed point can be decomposed in half into two chains such that
the first half and the second half are the evacuation of each other. As a consequence,
we prove anew Stembridge’s q = −1 phenomenon for the maximal chains of P under
the involution ϵ for the restricted shapes.

Keywords: promotion; evacuation; slender posets; linear extensions; maximal
chains; cyclic sieving phenomenon

1 Introduction

1.1 Schützenberger’s evacuation

Promotion and evacuation are bijections on the set of linear extensions of a finite poset.
It is well known that the RSK algorithm establishes a bijection between the permutations
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of {1, 2, . . . , n} and ordered pairs of n-cell standard Young tableaux of the same shape
[10, pp. 320-321]. Evacuation was originally devised by Schützenberger to describe this
bijection without involving the RSK algorithm [6]. Later Schützenberger extended the
definition of evacuation to the linear extensions of a finite poset, described in terms of an
operation called promotion [7]. One of the fundamental properties Schützenberger proved
is that the evacuation is an involution.

Schützenbeger’s work was simplified by Haiman [3], whose idea is to express linear
extensions as words and then define the promotion and evacuation in terms of elementary
operators on these words. For a finite poset P of p elements, a linear extension f : P →
{1, . . . , p} of P can be expressed as the word u1u2 . . . up, where ui = f−1(i) ∈ P for
1 ! i ! p. Let L(P ) be the set of linear extensions. For 1 ! i ! p − 1, define operators
τi : L(P ) → L(P ) by

τi(u1u2 . . . up) =

{
u1u2 . . . up, if ui and ui+1 are comparable in P

u1u2 . . . ui+1ui . . . up, otherwise.

Clearly, τi is a bijection and τi’s satisfy the following relations.

τ 2i = 1, 1 ! i ! p− 1
τiτj = τjτi, if |i− j| > 1.

(1)

Then Schützenbeger’s promotion is in fact the operator δ := τ1τ2 . . . τp−1 and evacuation
is the operator ϵ := τ1τ2 . . . τp−1 · τ1τ2 . . . τp−2 · · · τ1τ2 · τ1.

1.2 Stanley’s point of view

Stanley noticed that the properties of promotion and evacuation depend only on the
relations of τi’s defined in Eq. (1) and hence the theory of promotion and evacuation can
be extended to a more general context.

It is known that the set J(P ) of all order ideals of P , ordered by inclusion, is a finite
distributive lattice of rank p and that there is a bijection between the maximal chains
∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ip = P of J(P ) and the linear extensions of P [9, §3.5], associated
with this chain the linear extension f : P → {1, . . . , p} defined by f(t) = i if t ∈ Ii− Ii−1.
Moreover, every interval of rank 2 of J(P ) contains either three or four elements. Stanley
[8] described the promotion and evacuation on maximal chains of J(P ) by extending the
definition of τi’s as follows. For a maximal chain C : ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ip = P of
J(P ), either the interval [Ii−1, Ii+1] contains the three elements Ii−1, Ii, Ii+1 or there is
exactly one other element I ′ in this interval, i.e., Ii−1 ⊂ I ′ ⊂ Ii+1. In the former case
define Cτi = C; in the latter case Cτi is obtained from C by replacing Ii with I ′.

As pointed out by Stanley, the same definition of τi works for any finite graded poset
with a unique minimal element 0̂, unique maximal element 1̂ and the property that every
interval of rank 2 contains either three or four elements, called slender posets. He also
mentioned some examples of slender posets, such as intervals in the Bruhat order of
Coxeter groups and face posets of regular CW-spheres.
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1.3 Our work

In this paper we consider some families of slender posets the (tilted) Hasse diagrams of
which resemble Ferrers diagrams of partitions of an integer, elaborate the properties of
the evacuation of maximal chains of the posets and characterize the maximal chains fixed
under evacuation.

For a partition λ = (m1, . . . , mk) of n, denoted by λ ⊢ n, we associate λ with a graded
poset (P,!) on a P of lattice points in the plane Z× Z define as follows (sometimes we
denote the relation by !P when there is a possibility of confusion).

(i) The minimum is 0̂ = (0, 0) and the maximum is 1̂ = (m1, k).

(ii) Two points (x1, y1), (x2, y2) ∈ P are comparable (x1, y1) !P (x2, y2) if and only if
x1 ! x2 and y1 ! y2.

(iii) The Hasse diagram of (P,!) comprises n unit squares in the form of Ferrers diagram
of λ.

For example, the poset associated with λ = (2, 1) ⊢ 3 is shown in Figure 1, with the set
of points P = {(x, y) : 0 ! x, y ! 2, y " x− 1}.

(0, 0)

(2, 2)
τ1

τ2 τ3

Figure 1: The poset associated with the partition λ = (2, 1) ⊢ 3.

A maximal chain of (P,!) forms a lattice path from 0̂ to 1̂ using north step (1, 0) and
east step (0, 1) staying within the Hasse diagram. Let N and E denote a north step and an
east step, respectively. Let p be the rank of (P,!) and let X be the set of maximal chains
of (P,!). For convenience, members of X are written as words on the alphabet {N,E}.
For a maximal chain C = z1 · · · zp ∈ X with zj ∈ {N,E} (1 ! j ! p), the evacuation of
C is another maximal chain in X , denoted by Cϵ. The elementary operators τi : X → X
(1 ! i ! p − 1) that generate evacuation ϵ can be equivalently defined as follows. The
chain Cτi is obtained from C by interchanging the steps zi and zi+1 if the resulting chain
remains to be a member of X ; and Cτi = C otherwise. For example, for the partition
λ = (2, 1) ⊢ 3, the associated poset (P,!) is of rank 4 with three elementary operators
τ1, τ2, τ3 (see Figure 1) and the operator ϵ = τ1τ2τ3 · τ1τ2 · τ1. For the maximal chain
C = NEEN of (P,!), the evacuation of C, Cϵ = NNEE, is obtained through the process
shown in Figure 2.

By a fundamental property of evacuation obtained by Schützenberger [6, 7] (see also
the proof given by Stanley [8, Lemma 2.2]), the operator ϵ establishes an involution on X .
The main result in this paper is that we obtain an explicit characterization of the fixed
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τ1

τ1

τ1

τ2

τ2 τ3

Figure 2: The process of evacuation of a maximal chain of the poset for λ = (2, 1).

points of the map ϵ : X → X when λ = (ns, (n − 1)s, . . . , 1s) is a stretched staircase for
positive integers s, n or λ is a rectangular shape (Theorem 5.4 and Theorem 6.1). As a
consequence, we prove anew Stembridge’s q = −1 phenomenon for the maximal chains of
(P,!) under the involution ϵ for the restricted shapes.

1.4 Cyclic sieving phenomenon

The cyclic sieving phenomenon is an enumerative property that the orbit structures of
a cyclic action on a set X of combinatorial objects are encoded in an enumerator of the
set X . More precisely, a triple (X,X(q), ⟨c⟩) consisting of a finite set X , a polynomial
X(q) ∈ Z[q], and a cyclic group ⟨c⟩, generated by an element c of order n, acting on X is
said to exhibit the cyclic sieving phenomenon (CSP) if for all integers d, the number of
elements fixed by cd equals the evaluation X(ζd), where ζ = e

2πi
n is the root of unity of

order n. The CSP was first defined by Reiner, Stanton and White [4]. The special case
when ⟨c⟩ has order 2 was also known as Stembridge’s q = −1 phenomenon.

Stanley presented an instance of CSP for the linear extensions of a finite poset P under
evacuation. For a linear extension ω = u1 · · ·up ∈ L(P ), the descent set Des(ω) of ω is
defined by Des(ω) = {i : ui > ui+1, 1 ! i ! p}. The CSP involves the enumerator W (q)
of L(P ) respecting the comajor index comaj(ω),

W (q) =
∑

ω∈L(P )

qcomaj(ω), (2)

where comaj(ω) =
∑

i∈Des(ω)(p − i). He proved that W (−1) coincides with the number
of self-evacuating linear extensions of P , i.e., ωϵ = ω, making use of another family of
linear extensions called domino linear extensions as the intermediate stage [8, Theorem
3.1]. For the poset (P,!) associated with λ = (ns, (n− 1)s, . . . , 1s) or λ = (nsn), we give
an alternative proof of the CSP result in terms of the maximal chains of (P,!) under the
action of evacuation ⟨ϵ⟩.

As a q-polynomial for our CSP, we consider the enumerator of the maximal chains of
(P,!) with respect to the statistic area, the number of unit squares above a maximal chain
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C ∈ X within the Hasse diagram of (P,!). Let X(q) =
∑

C∈X qarea(C). For example, with
the partition λ = (2, 1) ⊢ 3, the associated poset contains five maximal chains, shown in
Figure 3, with area-enumerator X(q) = 1+ q + 2q2 + q3. Note that X(−1) = 1 and there
is exactly one maximal chain fixed by ϵ. Hence (X , X(q), ⟨ϵ⟩) exhibits CSP. However, the
map ϵ does not necessarily reverse the parity of the statistic area. As shown in Figure 3,
the maximal chains in each orbit have area of the same parity.

ϵϵ ϵ

Figure 3: The three orbits of the maximal chains of the poset for λ = (2, 1) under evacuation.

With the area-enumerator X(q), a partition λ of an integer is called a good shape if the
triple (X , X(q), ⟨ϵ⟩) of the poset associated with λ exhibits CSP. One can check that the
partition λ = (2, 2, 1) ⊢ 5 is not a good shape. A natural question is that what kind of
partitions is a good shape? In the context of Coxeter combinatorics, there are two families
of fundamental shapes, namely, Fuss shapes of type A and type B. A Fuss shape of type
A is a stretched staircase defined by the partition λ = (ns, (n − 1)s, . . . , 1s) for positive
integers s, n, and a Fuss shape of type B a rectangular shape defined by the partition
λ = (nsn). As a consequence of the main result, Fuss shapes of type A and rectangular
shapes, including Fuss shapes of type B, are good shapes.

1.5 The structure of this paper

The proof for Fuss shapes of type A occupies a large portion of this paper. In section
2, we evaluate X(q) at q = −1. Since X(q) has no closed form, the evaluation makes
use of the generating function of an alternative expression of X(q). Sections 3, 4 and 5
are devoted to characterize and enumerate the fixed points of the map ϵ : X → X . The
characterization of the fixed points is quite neat but the proof is relatively sophisticated.
Subject to a parity-condition, the maximal chains C ∈ X fixed by evacuation can be
factorized in half as C = C1C2 such that C2 is the evacuation of C1 and vice versa. Some
interesting and crucial points of the proof are listed below.

(i) We discover an interesting factor-swapping property of the evacuation of C ∈ X
(see Proposition 3.7), which leads to a factorization of C into building blocks.

(ii) We come up with the notion of primitive factorization of C ∈ X , which enables a
characterization of Cϵ (see Theorem 4.5).

(iii) The characterization of the evacuation of primitive blocks in Proposition 4.3 is
critical, which enables the determination of the primitive blocks fixed by evacuation
(see Proposition 5.1) and the fixed points of the map ϵ : X → X (see Theorem 5.4).

The proof for rectangular shapes is given in section 6. Concluding remarks and some
problems for further studies are given in section 7.
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2 Evaluation of X(−1) for posets of stretched staircases

For positive integers s and n, the Fuss-Catalan number

1

sn+ 1

(
sn + n

n

)

counts the number of lattice paths, called s-Dyck paths of width n, from the origin (0, 0)
to the point (n, sn) using N and E steps staying weakly above the line y = sx. When

s = 1 they are ordinary Dyck paths. Let F (s)
n be the set of s-Dyck paths of width n. We

consider the enumerator of the paths π ∈ F (s)
n with respect to the number α(π) of unit

squares enclosed by π and the line y = sx. Define

f (s)
n (q) =

∑

π∈F(s)
n

qα(π). (3)

The case s = 1, f (1)
n (q), was considered by Carlitz and Riordan [1], and Fürlinger and

Hofbauer [2]. There is no known explicit form for f (s)
n (q).

For two integers m < n, let [m,n] = {m,m+1, . . . , n}. For λ = (ns, (n−1)s, . . . , 1s) ⊢
s
(
n+1
2

)
, let (P(s)

n ,!) denote the poset associated with λ defined on the set of points

P(s)
n = {(x, y) : x ∈ [0, n], y ∈ [0, sn], y " sx− s}.

Note that (P(s)
n ,!) is of rank (s + 1)n. A maximal chain of (P(s)

n ,!) forms a lattice
path from the origin to the point (n, sn) using N and E steps staying weakly above the

line y = sx − s. Let X (s)
n denote the set of all maximal chains of (P(s)

n ,!). Note that

|X (s)
n | = |F (s)

n+1| and the area-enumerator of X (s)
n is

X(q) = qs(
n+1
2 )f (s)

n+1(q
−1) (4)

since a maximal chain of (P(s)
n ,!) is simply a s-Dyck path of width n+1 with the initial s

steps and the terminal step removed. Sometimes members of X (s)
n are also called truncated

s-Dyck paths of width n.
Let p = (s + 1)n, the rank of P(s)

n . Let ϵn : X (s)
n → X (s)

n denote the operator of

evacuation on X (s)
n , which is defined as

ϵn = τ1 · · · τp−1 · τ1 · · · τp−2 · · · τ1τ2 · τ1. (5)

Let ⟨ϵn⟩ be the group of order 2 generated by ϵn. The CSP result is stated as follows.

Theorem 2.1. For positive integers s and n, let (P(s)
n ,!) be the poset associated with

λ = (ns, (n−1)s, . . . , 1s). Let X (s)
n be the set of maximal chains of the poset (P(s)

n ,!). Let
X(q) be the polynomial defined in Eq. (4). Let the group ⟨ϵn⟩, generated by the operator ϵn
of evacuation, act on X (s)

n . Then (X (s)
n , X(q), ⟨ϵn⟩) exhibits the cyclic sieving phenomenon.
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2.1 Evaluation of X(−1)

Define the generating function for {f (s)
n (q)}n"0 as

F (x, q) =
∑

n"0

f (s)
n (q)xn.

Lemma 2.2. The polynomial F (x, q) satisfies the equation

F (x, q) = 1 + xF (x, q)F (qx, q) · · ·F (qsx, q).

Proof. For a s-Dyck path π ∈ F (s)
n , there is a standard factorization of π into s-Dyck

paths π1, · · · , πs+1, with respect to the first east step E returning to the line y = sx, as
π = N1π1 · · ·NsπsEπs+1, where Ni is the last north step before E going from the line
y = sx+ i− 1 to the line y = sx+ i for 1 ! i ! s. We observe that

f (s)
n (q) =

∑

k1+···+ks+1=n−1

qk1+2k2+···+sksf (s)
k1

(q) · · · f (s)
ks

(q)f (s)
ks+1

(q),

with f (s)
0 (q) = 1. The assertion follows from multiplying the equation by xn and summing

over n " 0.

A s-ballot path is a lattice path from the origin to some point above the line y = sx
using N and E steps staying weakly above the line y = sx. The enumeration of the
following s-ballot paths will be useful for the evaluation X(−1) and the enumeration of

maximal chains of (P(s)
n ,!) fixed by the operator ϵn.

Proposition 2.3. For any nonnegative integer h, the number of s-ballot paths from the
original to the point (n, sn + h) is

h+ 1

sn+ h + 1

(
sn+ n+ h

n

)
.

Proof. Let G = G(x) = F (x, 1), which is the generating function for the number of s-Dyck
paths of width n " 0. By Lemma 2.2, G satisfies the equation

G = 1 + xGs+1. (6)

Let rn;h be the number of s-ballot paths from the original to the point (n, sn + h). By
a standard factorization, such a path can be factorized into s-Dyck paths π0, . . . , πh as
π0N1π1 · · ·Nhπh, where Ni is the last north step from the line y = sx + i − 1 to the
line y = sx + i for 1 ! i ! h. By an argument similar to the proof of Lemma 2.2,
we observe that the generating function for {rn;h}n"0 is Gh+1. Setting R = G − 1,
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we have R = x(1 + R)s+1. By Lagrange inversion formula [10, Corollary 5.4.3] with
H(u) = (1 + u)h+1, for n " 1 we have

[xn]Gh+1 = [xn](1 +R)h+1 =
1

n
[un−1]H ′(u)(1 + u)(s+1)n

=
h+ 1

n
[un−1](1 + u)(s+1)n+h

=
h+ 1

n

(
(s+ 1)n+ h

n− 1

)
,

as required.

Proposition 2.4. The evaluation X(−1) is given as follows.

(i) For s odd,

X(−1) =

⎧
⎪⎪⎨

⎪⎪⎩

s+ 1

sn+ s+ 1

( (s+1)n+s−1
2
n
2

)
if n is even

0 if n is odd.

(ii) For s even,

X(−1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s+ 2

sn+ s+ 2

( (s+1)n+s
2
n
2

)
if n is even

2

s(n+ 1) + 2

( (s+1)(n+1)
2

n+1
2

)
if n is odd.

Proof. First, we evaluate f (s)
n+1(−1) = [xn+1]F (x,−1). Let P = F (x,−1) and Q =

F (−x,−1). We discuss the evaluation according to the parity of s.
Case I. For s odd, say s = 2t + 1. By Lemma 2.2, we have P = 1 + x(PQ)t+1 and

Q = 1− x(PQ)t+1. Then PQ = 1− x2(PQ)s+1, consisting only of the even degree terms.
Comparing this equation with Eq. (6), we have

PQ = G(−x2),

where G(x) = F (x, 1). Since F (x,−1) = P = 1+ x(PQ)t+1 = 1+ x(PQ)
s+1
2 , f (s)

n+1(−1) =

[xn](PQ)
s+1
2 . Thus f (s)

n+1(−1) = 0 if n is odd, and f (s)
n+1(−1) = [xn]G(−x2)

s+1
2 otherwise.

By the proof of Proposition 2.3, for n even we have

f (s)
n+1(−1) = (−1)

n
2

s+ 1

sn+ s+ 1

( (s+1)n+s−1
2
n
2

)
.

By Eq. (4), the assertion (i) follows from X(−1) = (−1)
sn(n+1)

2 f (s)
n+1(−1).
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Case II. For s even, say s = 2t. By Lemma 2.2, we have P = 1 + xP t+1Qt and
Q = 1 − xP tQt+1. Then P = (1 − x(PQ)t)−1 and Q = (1 + x(PQ)t)−1. It follows that
PQ = 1+ x2(PQ)s+1, consisting only of the even degree terms. Comparing this equation
with Eq. (6), we have

PQ = G(x2).

Moreover, multiplying both sides of Q = 1− xP tQt+1 by P , we have

F (x,−1) = P = PQ+ x(PQ)
s
2+1.

Hence f (s)
n+1(−1) = [xn+1]PQ = [xn+1]G(x2) if n is odd; and f (s)

n+1(−1) = [xn](PQ)
s
2+1 =

[xn]G(x2)
s
2+1 otherwise. By the proof of Proposition 2.3, we have

f (s)
n+1(−1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s+ 2

sn+ s+ 2

( (s+1)n+s
2
n
2

)
if n is even

2

s(n+ 1) + 2

( (s+1)(n+1)
2

n+1
2

)
if n is odd.

Since s is even, by Eq. (4), X(−1) = f (s)
n+1(−1) and the assertion (ii) follows.

3 Evacuation on maximal chains of (P(s)
n ,!)

In this section we analyze the behavior of the maximal chains C ∈ X (s)
n of (P(s)

n ,!) under
evacuation. We found that the operator ϵn can be decomposed in a way depending on
C such that the maximal chain Cϵn has a factor-swapping property (see Lemma 3.6 and
Proposition 3.7).

Recall that the rank of (P(s)
n ,!) is p = (s+ 1)n. We consider the following operators

on the maximal chains of (P(s)
n ,!), generated by τ1, . . . , τp−1. For a positive integer t,

define

δt = τ1τ2 · · · τt
δ∗t = τtτt−1 · · · τ1.

Note that δ−1
t = δ∗t . The operator ϵn of evacuation can be expressed in terms of δ1, . . . , δp−1

(resp. δ∗1 , . . . , δ
∗
p−1) as follows.

Lemma 3.1. We have

ϵn = δp−1δp−2 · · · δ1 = δ∗1δ
∗
2 · · · δ∗p−1.

Proof. By the definition of ϵn in Eq. (5), ϵn = δp−1δp−2 · · · δ1. Since ϵn is an involution,
ϵn = ϵ−1

n = δ−1
1 δ−1

2 · · · δ−1
p−1 = δ∗1δ

∗
2 · · · δ∗p−1.
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For convenience, members of X (s)
n are also referred to as paths, with north steps and

east steps. Given a path C ∈ X (s)
n , let E1, E2, . . . , En be the east steps of C from left

to right. The east step Ek is also said to be in the kth column. Let y(Ek) denote the
y-coordinate of the endpoint of Ek (1 ! k ! n). Note that sk − s ! y(Ek) ! sn. We
encode the path C by a sequence Π(C) = (d1, d2, · · · , dn), called the depth-code of C,
defined by

dk = sk − y(Ek)

for 1 ! k ! n, which indicates the vertical depth of the endpoint of Ek from the line
y = sx. Note that 0 ! dk ! s (resp. dk < 0) if the endpoint of Ek is weakly under (resp.
strictly above) the line y = sx. For example, with s = 3 and n = 3, the first path shown
in Figure 4 is encoded (1,−1, 2).

We have the following observation about the operators δ1, . . . , δp−1 applied to the paths

in X (s)
n . Sometimes we write Nℓ for a consecutive ℓ north steps.

Lemma 3.2. Let C = z1 · · · zp ∈ X (s)
n be a path with depth-code Π(C) = (d1, . . . , dn).

Then the following results hold.

(i) If z1 = E then Cδp−1 = z2 · · · zpE with Π(Cδp−1) = (d2 − s, d3 − s, . . . , dn − s, 0).

(ii) If zp = E and dj ! 0 for all j ∈ [1, n−1] then Cδ∗p−1 = Ez1 · · · zp−1 with Π(Cδ∗p−1) =
(0, d1 + s, . . . , dn−1 + s).

(iii) For any positive integer ℓ ! s, if dj ! s − ℓ for all j ∈ [1, n] then Cδp−1 · · · δp−ℓ =
zℓ+1 · · · zpNℓ with depth-code Π(Cδp−1 · · · δp−ℓ) = (d1 + ℓ, . . . , dn + ℓ).

(iv) For any positive integer ℓ ! s, if dn " ℓ then Cδ∗p−ℓ · · · δ∗p−1 = Nℓz1 · · · zp−ℓ with
depth-code Π(Cδ∗p−ℓ · · · δ∗p−1) = (d1 − ℓ, . . . , dn − ℓ).

Proof. (i) Note that δp−1 = τ1 · · · τp−1 and τi interchanges the ith and (i + 1)th steps of

a path C ∈ X (s)
n . Since z1 = E, the path Cδp−1 is obtained from C by moving z1 all the

way to the end. As a result, the segment z2 · · · zp of C is moved to the left by one column
and hence the code Π(Cδp−1) is obtained as asserted.

(ii) Note that δ∗p−1 = τp−1 · · · τ1 is the reverse operation of δp−1. Since zp = E, we
observe that the last step can be moved all the way to the first position subject to the
condition dj ! 0 for all j ! n − 1. As a result, the segment z1 · · · zp−1 of C is moved to
the right by one column.

(iii) Since d1 ! s− ℓ, the first ℓ steps of C are north steps. First, we compute Cδp−1.
Note that z1 = N can be moved all the way to end subject to the condition dj ! s − 1
for all j ∈ [2, n]. As a result, the segment z2 · · · zp of C is moved down one row and hence
Π(Cδp−1) = (d1 + 1, . . . , dn + 1). Next, apply δp−2 to the segment z2 · · · zp, leaving z1
frozen in the last position. Continue in this way until z1, . . . , zℓ are frozen in the back.
The assertion follows.

(iv) Since dn " ℓ, the last ℓ steps of C are north steps. Note that δ∗p−ℓ · · · δ∗p−1 is the
reverse operation of δp−1 · · · δp−ℓ and that the operator δ∗p−ℓ moves the step zp−ℓ+1 = N all
the way to the first position subject to no restriction on Π(C). As a result, the segment
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z1 · · · zp−ℓ of C is moved up one row. The assertion follows from the similar operations of
δ∗p−ℓ+1, . . . , δ

∗
p−1.

We consider two restrictions on the depth-codes of the paths C ∈ X (s)
n . These restric-

tions will be used in the factorization of C with factor-swapping property. For 0 ! ℓ ! s,
let An(ℓ) ⊆ X (s)

n be the set of paths with code (d1, . . . , dn) such that dn " ℓ, and let

Bn(ℓ) ⊆ X (s)
n be the set of paths with code (d1, . . . , dn) such that dj ! ℓ for all j ∈ [1, n].

The following result is a property of the operator ϵn, carrying paths with one restriction
to paths with the other.

Lemma 3.3. The operator ϵn establishes a bijection between An(ℓ) and Bn(s− ℓ).

Proof. The case ℓ = 0 is trivial since An(0) = Bn(s) = X (s)
n . For ℓ > 0 and a path C ∈

An(ℓ), notice that the last ℓ steps of C are north and that they remain unaffected under
the operations of δ∗1 , · · · , δ∗p−ℓ−1. Applying δ∗1, · · · , δ∗p−ℓ−1 to C, let Cδ∗1 · · · δ∗p−ℓ−1 = DNℓ,
where D is the resulting path of the first p − ℓ steps. Then applying δ∗p−ℓ, . . . , δ

∗
p−1 to

DNℓ, by Lemma 3.2(iv) we have (DNℓ)δ∗p−ℓ · · · δ∗p−1 = NℓD, moving D up ℓ rows. Hence

Cϵn = Cδ∗1 · · · δ∗p−1 = NℓD ∈ Bn(s− ℓ).
On the other hand, given a path C ∈ Bn(s − ℓ), notice that dj ! s − ℓ for all

j ∈ [1, n]. By Lemma 3.2(iii), we have Cδp−1 · · · δp−ℓ = zℓ+1 · · · zpNℓ. Then apply the
operators δp−ℓ−1, · · · , δ1 to zℓ+1 · · · zpNℓ, leaving the ℓ north steps in the back frozen.
Hence Cϵn = (zℓ+1 · · · zpNℓ)δp−ℓ−1 · · · δ1 ∈ An(ℓ).

For any positive integer m < n, if dm " 0 then C can be factorized into two paths C1C2

with C1 ∈ X (s)
m and C2 ∈ X (s)

n−m, where C1 = z1 · · · z(s+1)m and C2 = z(s+1)m+1 · · · z(s+1)n.
We define an operator γn;m that swaps C1 with C2, under certain restriction. Define

γn;m = (τ(s+1)m · · · τp−1)(τ(s+1)m−1 · · · τp−2) · · · (τ1 · · · τp−(s+1)m).

In fact, γn;m appears in a decomposition of the operator ϵn (see Lemma 3.6).

Lemma 3.4. Let C = C1C2 with C1 ∈ X (s)
m and C2 ∈ X (s)

n−m. If Π(C) = (d1, . . . , dn)
satisfies the following conditions (i)-(iii) for some ℓ ! s, then Cγn;m = C2C1.

(i) 0 ! dm ! s− ℓ,

(ii) dj ! s− ℓ for all j ∈ [1, m− 1],

(iii) dj ! ℓ for all j ∈ [m+ 1, n].

Proof. Regarding the east steps E1, . . . , Em of C1, we factorize C1 as N
t0E1N

t1 · · ·EmN
tm .

Then the depth-code of C1 can be expressed as

dj = tj + · · ·+ tm − s(m− j). (7)

for 1 ! j ! m. Let γn:m be written as γn:m = ρ1 · · ·ρ(s+1)m, where ρi = τ(s+1)m−i+1 · · · τp−i

for 1 ! i ! (s + 1)m. When γn;m applies to C, by (i) and (iii) of Lemma 3.2, we
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observe that from z(s+1)m to z1 the steps of C1 are moved one by one to the back of C2

by the operators ρ1, . . . , ρ(s+1)m accordingly and freeze in place afterwards, subject to the
condition that the depth-code of C2 meets the requirement in Lemma 3.2(iii) throughout
the way. Notice that this is the case since Π(C1) satisfies conditions (i) and (ii) and Π(C2)
satisfies condition (iii).

Example 3.5. Take s = 3, n = 3, m = 1 and ℓ = 2. Then p = (s + 1)n = 12. Let
C = C1C2 be the first path shown in Figure 4, where C1 = NNEN and C2 goes from
Y to Z. Note that C2 ∈ B2(2), whose E’s are in the shaded area. For 1 ! i ! 4, let
ρi = τ4−i+1 · · · τ12−i. Applying operator γ3;1 = ρ1ρ2ρ3ρ4 on C swaps C1 with C2, as shown
in Figure 4.

Y

V

W X

Z

YW

V

Z
X

V
Z

XW

V

Y

W X
Z

Y

ρ1 ρ2 ρ3ρ4

Figure 4: The operator γ3;1 swaps the two factors of a path C = C1C2 ∈ X (3)
3 .

Lemma 3.6. For any positive integer m < n, the operator ϵn can be decomposed as

ϵn = ϵmγn;mϵn−m.

Proof. For convenience, let q := (s + 1)m and r := p − q = (s + 1)(n − m). Following
the relations (1), the operator ϵn is rearranged as follows. Note that ϵn−m = δr−1 · · · δ1.
It suffices to consider the initial factor δp−1 · · · δr of ϵn. Let δr be fixed. From right to
left, move the τ1 of δr+1 to the right of the τ2 of δr+2. Then move this τ1, along with the
factor τ1τ2 of δr+2, to the right of the τ3 of δr+3. Repeat this process, moving the factor
(τ1 · · · τj−1) · · · (τ1τ2)(τ1) to the right of the τj of δr+j for all j ! q − 1. Now, we have the
initial factor (τ1 · · · τq−1) · · · (τ1τ2)(τ1) = δq−1 · · · δ2δ1 = ϵm. The stages of the operation is
given below.

ϵn = δp−1 · · · δrϵn−m

= δp−1 · · · δr+3(τ1τ2)(τ1)(τ3 · · · τr+2)(τ2 · · · τr+1)δrϵn−m

= δp−1 · · · δr+4(τ1τ2τ3)(τ1τ2)(τ1)(τ4 · · · τr+3)(τ3 · · · τr+2)(τ2 · · · τr+1)δrϵn−m

= (τ1 · · · τq−1) · · · (τ1τ2)(τ1)(τq · · · τp−1) · · · (τ2 · · · τr+1)(τ1 · · · τr)ϵn−m

= ϵmγn;mϵn−m,

as required.
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On the basis of Lemmas 3.3, 3.4 and 3.6, we have the following fundamental property
of evacuation. With this property, the evacuation of the maximal chains of (P(s)

n ,!) can
be factorized into building blocks.

Proposition 3.7. For all integers m ∈ [1, n− 1] and ℓ ∈ [0, s], let C = z1 · · · zp ∈ X (s)
n be

a path whose depth-code Π(C) = (d1, . . . , dn) satisfies the condition dm " ℓ and dj ! ℓ for
all j ∈ [m+1, n]. Factorize C as C1C2, where C1 = z1 · · · z(s+1)m and C2 = z(s+1)m+1 · · · zp.
Then the following properties hold.

(i) Cϵn = C ′
2C

′
1, where C ′

1 = C1ϵm and C ′
2 = C2ϵn−m.

(ii) If Π(Cϵn) = (d′1, . . . , d
′
n) then d′n−m " s− ℓ and d′j ! s− ℓ for all j ∈ [n−m+1, n].

Proof. Note that C1 ∈ Am(ℓ) and C2 ∈ Bn−m(ℓ). We compute the evacuation Cϵn using
the decomposition ϵn = ϵmγn;mϵn−m of ϵn in Lemma 3.6. We observe that the operator
ϵm applies to C1, say C ′

1 = C1ϵm. By Lemma 3.3, we have C ′
1 ∈ Bm(s − ℓ). Next, the

operator γn:m applies to C ′
1C2, leading to C ′

1C2γn;m = C2C ′
1. Then the operator ϵn−m

applies to C2, say C ′
2 = C2ϵn−m. By Lemma 3.3, we have C ′

2 ∈ Am(s− ℓ). The stages of
the operation is given below.

Cϵn = C1C2ϵmγn;mϵn−m

= C ′
1C2γn;mϵn−m

= C2C
′
1ϵn−m

= C ′
2C

′
1.

The assertions (i) and (ii) follow.

4 Primitive factorization of maximal chains of (P(s)
n ,!)

In this section we characterize the evacuation of the maximal chains of (P(s)
n ,!) in terms

of a specific factorization of the chains.
For any integer ℓ ∈ [0, s] and a path B ∈ X (s)

n with Π(B) = (d′1, . . . , d
′
n), the path

B is called a primitive ℓ-block of width n if d′n = ℓ and d′j ! ℓ − 1 for all j ∈ [1, n − 1].

Every path C ∈ X (s)
n can be uniquely factorized into primitive blocks of certain widths as

follows. Let Π(C) = (d1, . . . , dn). Find the sequence f1 < f2 < · · · < fb = n of integers
such that df1, df2, . . . , dfb are the right-to-left weak maxima of Π(C) for some integer b,
namely

(i) df1 " df2 " . . . " dfb " 0,

(ii) di < dfj for fj−1 < i < fj and for all j ∈ [1, b].

We assume f0 = 0. For 1 ! j ! b, let ej = fj − fj−1. Then the path C can be factorized
into primitive blocks C = B1B2 · · ·Bb, where Bj is a primitive dtj -block of width ej for
1 ! j ! b. This factorization is called the primitive factorization of C.
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Example 4.1. For s = 3 and n = 4, let C be the path shown on the left hand side of
Figure 5, with Π(C) = (d1, . . . , d4) = (3, 2,−1, 2). The right-to-left weak maxima of Π(C)
are d1, d2, d4. The primitive factorization B1B2B3 of C consists of one primitive 3-block
B1 = ENNN and two primitive 2-blocks B2 = NENN and B3 = NNNNEENN.

ϵ4

Figure 5: The primitive factorization of two paths in X (3)
4 in an orbit.

The evacuation of C ∈ X (s)
n can be determined by the evacuation of individual prim-

itive blocks of C (Theorem 4.5). The following decomposition of ϵn will be used in the
proof of a characterization of the evacuation of primitive blocks (Proposition 4.3).

Lemma 4.2. For any integer ℓ ∈ [0, s], the operator ϵn can be decomposed as

ϵn = (δp−1 · · · δp−s+ℓ)ϵn−1ρ1ρ2ρ3(δℓ · · · δ1),

where

ρ1 = τp−s−1 · · · τp−s+ℓ−1,

ρ2 = (τp−s−2 · · · τp−s+ℓ−3) · · · (τ2 · · · τℓ+1)(τ1 · · · τℓ),
ρ3 = τp−s+ℓ−2 · · · τℓ+1.

Proof. It suffices to consider the decomposition of the factor γ := δp−s+ℓ−1 · · · δℓ+1 of ϵn.
We describe the process of the decomposition.

(i) From right to left, move the τ1 of δℓ+2 to the right of the τ2 of δℓ+3 and then move
this τ1, along with the factor τ1τ2 of δℓ+3, to the right of the τ3 of δℓ+4.

(ii) Repeat this process, moving the factor (τ1 · · · τj−1) · · · (τ1τ2)(τ1) to the right of the
τj of δℓ+j+1 for 2 ! j ! p − s − 1 and let δ′ℓ+j = τj · · · τℓ+j denote the operator
obtained from δℓ+j with the factor τ1 · · · τj−1 removed. Now, the operator γ becomes
ϵn−1δ′p−s+ℓ−1 · · · δ′ℓ+2δℓ+1.
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(iii) Let ρ1 = δ′p−s+ℓ−1 be fixed. Factorize the remaining operator δ′p−s+ℓ−2 · · · δ′ℓ+2δℓ+1

into ρ2ρ3 as follows. To form ρ3, move the last element τℓ+2 of δ′ℓ+2 to the left of
the τℓ+1 of δℓ+1 and then move the last element τℓ+3 of δ′ℓ+3 to the left of the factor
τℓ+2τℓ+1 at the end.

(iv) Repeat this process, moving the last element τℓ+j of δ′ℓ+j to the left of the factor
τℓ+j−1 · · · τℓ+1 at the end for 2 ! j ! p− s− 2.

The stages of the decomposition are given below.

γ := δp−s+ℓ−1 · · · δℓ+1

= δp−s+ℓ−1 · · · δℓ+4(τ1τ2)(τ1)(τ3 · · · τℓ+3)(τ2 · · · τℓ+2)δℓ+1

= (τ1 · · · τp−s−2) · · · (τ1τ2)(τ1)δ′p−s+ℓ−1 · · · δ′ℓ+2δℓ+1

= ϵn−1δ
′
p−s+ℓ−1 · · · δ′ℓ+2δℓ+1

= ϵn−1δ
′
p−s+ℓ−1 · · · δ′ℓ+3(τ2 · · · τℓ+1)(τ1 · · · τℓ)(τℓ+2τℓ+1)

= ϵn−1δ
′
p−s+ℓ−1(τp−s−2 · · · τp−s+ℓ−3) · · · (τ2 · · · τℓ+1)(τ1 · · · τℓ)(τp−s+ℓ−2 · · · τℓ+2τℓ+1)

= ϵn−1ρ1ρ2ρ3,

as required.

For ℓ " 1 and a path C ∈ An(ℓ) with Π(C) = (d1, . . . , dn), let C⊥ = Cδ∗p−1 denote
the path obtained from C by moving the last step, which is a north step, all the way
to the beginning. As a result, the remaining part of C is moved up one row and hence
C⊥ ∈ An(ℓ− 1) and Π(C⊥) = (d1 − 1, . . . , dn − 1). The following result characterizes the
evacuation of a primitive block, which leads to necessary conditions for a primitive block
to be fixed by the operator ϵn; see Proposition 5.1.

Proposition 4.3. Let C = z1 · · · zp ∈ X (s)
n be a primitive ℓ-block for some ℓ ∈ [0, s].

Factorize C as Ns−ℓC∗ENℓ, where C∗ = zs−ℓ+1 · · · zp−ℓ−1. Then Cϵn = Nℓ(C∗ϵn−1)⊥EN
s−ℓ

is a primitive (s− ℓ)-block.

Proof. Since C is a primitive ℓ-block, we observe that the segment C∗ goes from the point
(0, s− ℓ) to the point (n− 1, p− ℓ) staying weakly above the line y = sx− ℓ, which is a

maximal chain of the subposet of (P(s)
n ,!) induced on the set of points

P(s;ℓ)
n−1 = {(x, y) : x ∈ [0, n− 1], y ∈ [s− ℓ, sn− ℓ], y " sx− ℓ}.

Let Π(Cϵn) = (d′1, . . . , d
′
n). Making use of the decomposition of ϵn in Lemma 4.2, we have

the evacuation
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Cϵn = Ns−ℓC∗ENℓ(δp−1 · · · δp−s+ℓ)ϵn−1ρ1ρ2ρ3(δℓ · · · δ1)
= C∗ENsϵn−1ρ1ρ2ρ3(δℓ · · · δ1)
= (C∗ϵn−1)EN

sρ1ρ2ρ3(δℓ · · · δ1)
= (C∗ϵn−1)N

ℓENs−ℓρ2ρ3(δℓ · · · δ1)
= Nℓ(C∗ϵn−1)EN

s−ℓρ3(δℓ · · · δ1)
= Nℓ(C∗ϵn−1)

⊥ENs−ℓ(δℓ · · · δ1)
= Nℓ(C∗ϵn−1)

⊥ENs−ℓ.

The stages of the evacuation are described below.

(i) The initial s − ℓ steps are moved to the end by the operator δp−1 · · · δp−s+ℓ. Now,
C∗ ∈ Bn−1(s− 1).

(ii) Applying the operator ϵn−1 to C∗ leads to C∗ϵn−1 ∈ An−1(1).

(iii) By the operation of ρ1, the east step E in the nth column is moved up ℓ rows and
hence d′n = s− ℓ.

(iv) By the operation of ρ2, the last step of C∗ϵn−1, which is north, and ℓ−1 north steps
behind C∗ϵn−1 are moved to the front. As an equivalent result, the path C∗ϵn−1 is
swapped with the ℓ north steps behind, and hence d′j ! s− ℓ for 1 ! j ! n− 1.

(v) By the operation of ρ3, the path C∗ϵn−1 becomes (C∗ϵn−1)⊥, and hence d′j ! s−ℓ−1
for 1 ! j ! n− 1.

(vi) Since d′1 ! s− ℓ− 1, the initial ℓ+ 1 steps are north and remain unchanged under
the operation of δℓ · · · δ1.

The proof is completed.

Example 4.4. Let s = 3 and n = 2. For the primitive 2-block C shown as (i) of Figure
6, the evacuation of C is obtained as follows. Factorize C as NC∗ENN, where C∗ is the
path from (0, 1) to (1, 4). By Lemma 4.2, the operator ϵ2 is factorized as δ7ϵ1ρ1ρ2ρ3δ2δ1.
Figure 6 shows the stages of computing Cϵ2 given in the proof of Proposition 4.3. (i)
The operator δ7 moves the first step to the end. (ii) The operator ϵ1 applies to C∗. (iii)
By the operation of ρ1 = τ4τ5τ6, the east step in the second column is moved up 2 rows.
(iv) By the operation of ρ2 = (τ3τ4)(τ2τ3)(τ1τ2), as an equivalent result the path C∗ϵ1 is
swapped with the two north steps behind. (v) By the operation of ρ3 = τ5τ4τ3, the path
C∗ϵ1 becomes (C∗ϵ1)⊥. (v) Applying the operator δ2δ1 to the initial three north steps
leaves the path unchanged. The requested path Cϵ2 is a primitive 1-block, shown as (vi)
of Figure 6.

Now, we characterize the evacuation of the paths in X (s)
n .
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(vi)(i) (ii) (iii) (iv) (v)

Figure 6: The evacuation of a primitive 2-block in X (3)
2 .

Theorem 4.5. For any path C ∈ X (s)
n , let C = B1B2 · · ·Bb be the primitive factorization

of C for some integer b, where Bj is a primitive ℓj-block of width ej for 1 ! j ! b. Then
the primitive factorization of Cϵn is of the form Cϵn = B′

bB
′
b−1 · · ·B′

1, where B′
j = Bjϵej

for 1 ! j ! b.

Proof. By Proposition 4.3, Bjϵej is a primitive (s− ℓj)-block for 1 ! j ! b. We prove the
assertion by induction on the number of blocks of the primitive factorization.

The case b = 1 follows from Proposition 4.3. For b > 1, by Lemma 3.6 the operator
ϵn can be decomposed as ϵn = ϵe1γn;e1ϵn−e1. To find the evacuation of C, the operator
ϵe1 applies to B1, leading to a primitive (s − ℓ1)-block B′

1 = B1ϵe1 . Next the operator
γn;e1 swaps B′

1 with B2 · · ·Bn. Then the operator ϵn−e1 applies to B2 · · ·Bb, leaving B′
1

frozen. By induction hypothesis, we have B2 · · ·Bbϵn−e1 = B′
b · · ·B′

2, where B′
j = Bjϵej

for 2 ! j ! b. The stages of operation are given below.

Cϵn = B1B2 · · ·Bnϵe1γn;e1ϵn−e1

= B′
1B2 · · ·Bbγn;e1ϵn−e1

= B2 · · ·BbB
′
1ϵn−e1

= B′
b · · ·B′

2B
′
1,

as required.

Example 4.6. Let s = 3 and n = 4. Given the path C shown on the left hand side of
Figure 5, let us construct the evacuation of C. As mentioned in Example 4.1, the primitive
factorization of C consists of one primitive 3-block B1 = ENNN and two primitive 2-
blocks B2 = NENN and B3 = NNNNEENN. Note that B′

1 = B1ϵ1 = NNNE is a primitive
0-block and B′

2 = B2ϵ1 = NNEN is a primitive 1-block. As shown in Example 4.4,
B′

3 = B3ϵ2 = NNNENNEN is a primitive 1-block. By Theorem 4.5, we have the primitive
factorization of Cϵ4 = B′

3B
′
2B

′
1, shown on the right hand side of Figure 5.
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5 Enumeration of fixed points of the operator ϵn

In this section we characterize and enumerate the maximal chains of P(s)
n fixed by the

operator ϵn. First, we study the necessary conditions for a primitive block to be fixed
under evacuation.

Proposition 5.1. Let C ∈ X (s)
n be a primitive ℓ-block for some ℓ ∈ [0, s]. If C = Cϵn

then the following properties hold.

(i) The integer s is even and ℓ = s
2 .

(ii) The integer n is odd and the path C passes the point (n−1
2 , s(n−1)

2 ) and the point
(n−1

2 , sn2 ).

(iii) If C is factorized as N
s
2D1D2EN

s
2 , where D1 goes from (0, s

2) to (n−1
2 , sn2 ), then

D2 = (D1ϵn−1
2
)⊥ and D1 = (D2ϵn−1

2
)⊥.

Proof. (i) By Proposition 4.3, Cϵn is a primitive s− ℓ block. If C = Cϵn then ℓ = s− ℓ
and hence s is even and ℓ = s

2 .

(ii) For n = 1, C = N
s
2EN

s
2 passes the point (0, s

2). For n > 1, factorize C as N
s
2C∗EN

s
2 .

By Proposition 4.3, Cϵn = N
s
2 (C∗ϵn−1)⊥EN

s
2 . Note that C∗ is a maximal chain of the

subposet of (P(s)
n ,!) induced on the set of points

P(s; s2 )
n−1 = {(x, y) : x ∈ [0, n− 1], y ∈ [ s2 , sn− s

2 ], y " sx− s
2}.

Let C∗ = B1B2 · · ·Bb be the primitive factorization of C∗ with respect to P(s; s2 )
n−1 , where

Bj a primitive ℓj-block of width ej for 1 ! j ! b and s − 1 " ℓ1 " · · · " ℓb " 0. If
C = Cϵn then C∗ = (C∗ϵn−1)⊥. Hence by Theorem 4.5, we have ℓj = s− ℓb−j+1 − 1 and
ej = eb−j+1 for 1 ! j ! b.

If b is odd, say b = 2a− 1, then ℓa = s− ℓa − 1. It follows that s = 2ℓa + 1 is against
the parity of s in (i). Thus b is even, say b = 2a. Then n− 1 = 2(e1 + · · ·+ ea). Hence n
is odd. Moreover, ℓa = s− ℓa+1 − 1 " s− ℓa − 1. Hence ℓa " s

2 . It follows that C
∗ passes

the point (n−1
2 , s(n−1)

2 ) and the point (n−1
2 , sn

2 ), and so does C.
(iii) For n = 1, the path D1D2 is trivial. For n > 1 and the factorization C∗ =

B1 · · ·B2a, let D1 = B1 · · ·Ba and D2 = Ba+1 · · ·B2a. Note that D1, D2 ∈ Bn−1
2
(s − 1).

By Lemma 3.4, D1D2ϵn−1 = D′
2D

′
1, where D′

1 = D1ϵn−1
2

and D′
2 = D2ϵn−1

2
are members

of An−1
2
(1). Both of the last step of D′

1 and D′
2 are north. It follows from C∗ = (C∗ϵn−1)⊥

that D1D2 = (D′
2D

′
1)

⊥ = D′
2D

′
1δ

∗
p′−1, where p′ = (s+ 1)(n− 1), and hence

D1D2 = D′
2D

′
1τp′−1 · · · τ1

= D′
2(D

′
1)

⊥τ p′
2
· · · τ1

= D′
2(D

′
1)

⊥τ p′
2 −1

· · · τ1
= (D′

2)
⊥(D′

1)
⊥.
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We describe the process as follows. The operator τp′−1 · · · τ p′
2 +1

moves the last step of

D′
1 to the first position of D′

1. Next, τ p′
2
applies to the two north steps in the middle of

D′
2(D

′
1)

⊥, leaving the path unchanged. Then the operator τ p′
2 −1

· · · τ1 moves the last step

of D′
2 to the first position of D′

2. The assertion follows.

It turns out that any primitive s
2-block C ∈ X (s)

n fixed by the operator ϵn is uniquely

determined by the segment from the origin through (n−1
2 , s(n−1)

2 ) to (n−1
2 , sn

2 ).

Corollary 5.2. Let D be a lattice path from the origin through (n−1
2 , s(n−1)

2 ) to (n−1
2 , sn

2 )
with Π(D) = (d1, . . . , dn−1

2
). If dj ! s

2 − 1 for all j ∈ [1, n−1
2 ] then D determines a unique

primitive s
2-block in X (s)

n fixed by the operator ϵn.

Proof. For n = 1, D = N
s
2 . The requested primitive s

2-block is C = N
s
2EN

s
2 ∈ X (s)

1 . For

n > 1, factorize D as N
s
2D∗. With respect to the poset (P(s; s2 )

n−1 ,!), the segment D∗ is a
member of Bn−1

2
(s − 1) and hence the segment D∗ϵn−1

2
is a member of An−1

2
(1). Create

a path C = N
s
2D∗(D∗ϵn−1

2
)⊥EN

s
2 . By Proposition 5.1(iii), the path C is the requested

primitive s
2 -block in X (s)

n determined by D.

Example 5.3. Let s = 4 and n = 3. Given the lattice path D shown as Figure 7(i), let
us construct the primitive 2-block fixed by ϵ3 determined by D. Factorize D = NND∗.
Then D∗ = NENNN is a member of B1(3) in the subposet (P(4;2)

2 ,!); see Figure 7(ii).
Then the evacuation of D∗ is D∗ϵ1 = NNNEN and hence (D∗ϵ1)⊥ = NNNNE. The path
NND∗(D∗ϵ1)⊥ is shown in Figure 7(iii). Finally, we obtain the requested primitive 2-block

NND∗(D∗ϵ1)⊥ENN ∈ X (4)
3 , shown as Figure 7(iv).

The following result characterizes the maximal chains of (P(s)
n ,!) fixed by evacuation.

Theorem 5.4. For any path C ∈ X (s)
n , the following results hold.

(i) For n even, if C = Cϵn then C passes the point (n2 ,
sn
2 − ⌈ s

2⌉) and the point (n2 ,
sn
2 ).

Moreover, every path from the origin through (n2 ,
sn
2 −⌈ s

2⌉) to (n2 ,
sn
2 ) staying weakly

above the line y = sx− s determines a unique path in X (s)
n fixed by the operator ϵn.

(ii) For n odd, if C = Cϵn then the integer s is even and C passes the points (n−1
2 , s(n−1)

2 )

and (n−1
2 , sn

2 ). Moreover, every path from the origin through (n−1
2 , s(n−1)

2 ) to the point

(n−1
2 , sn2 ) staying weakly above the line y = sx− s determines a unique path in X (s)

n

fixed by the operator ϵn.

Proof. Let C = B1 · · ·Bb be the primitive factorization of C, where Bj a primitive ℓj-block
of width ej for 1 ! j ! b. By Theorem 4.5, Cϵn = B′

b · · ·B′
1, where B′

j is the evacuation
of Bj for 1 ! j ! b. If C = Cϵn then ℓj = s− ℓb−j+1 and ej = eb−j+1 for 1 ! j ! b.

(i) For n even, if b is odd, say b = 2a− 1, then Ba = B′
a = Baϵea , which is fixed under

evacuation. By Proposition 5.1, ea is odd. It follows that n = 2(e1 + · · ·+ ea−1) + ea is
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(iv)(i) (ii) (iii)

Figure 7: A primitive 2-block in X (4)
3 determined by a path NNNENNN.

against the parity of n. Hence b is even, say b = 2a. Then ℓa = s − ℓa+1 " s − ℓa and
hence ℓa " s

2 . It follows that C passes the point (n2 ,
sn
2 − ⌈ s

2⌉) and the point (n2 ,
sn
2 ).

On the other hand, suppose D is a path from the origin through (n2 ,
sn
2 − ⌈ s

2⌉) to the
point (n2 ,

sn
2 ). Then D has a unique primitive factorization, say with abuse of notation

D = B1 · · ·Ba′ for some a′, where Bj is a primitive ℓj-block of width ej and ℓ1 " · · · "
ℓa′ " ⌈ s

2⌉. Then the evacuation of D is Dϵn
2
= B′

a′ · · ·B′
1, where B′

j = Bjϵej is a primitive
(s− ℓj)-block for 1 ! j ! a′. Create a path C = D(Dϵn

2
). Then C is the requested path

in X (s)
n fixed by the operator ϵn.
(ii) For n odd, if b is even, say b = 2a then n = 2(e1 + · · ·+ ea) is against the parity

of n. Hence b is odd, say b = 2a − 1. Then Ba = Baϵea is fixed under evacuation. By
Proposition 5.1, it follows that the path Ba passes the points (n−1

2 , s(n−1)
2 ) and (n−1

2 , sn
2 ),

and so does C.
On the other hand, suppose D is a path from the origin through (n−1

2 , s(n−1)
2 ) to

the point (n−1
2 , sn2 ). Then D has a unique factorization D = B1B2 · · ·Ba′ , for some a′,

satisfying the following conditions.

• Bj is a primitive ℓj-block of width ej for 1 ! j ! a′ − 1 and ℓ1 " · · · " ℓa′−1 " s
2 .

• Ba′ is either N
s
2 or a path of width ea′ with Π(Ba′) = (d1, . . . , dea′) such that di ! s

2−1
for 1 ! i ! ea′ .

For 1 ! j ! a′ − 1, create a path B′
j = Bjϵej . By Corollary 5.2, Ba′ determines a unique

primitive s
2 -block B′

a′ of width 2ea′ + 1. Then the path C = B1 . . . Ba′−1B′
a′B

′
a′−1 · · ·B′

1 is

the requested path in X (s)
n fixed by the operator ϵn.

Now, we enumerate the fixed points of the map ϵn : X (s)
n → X (s)

n .
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Corollary 5.5. The following results hold.

(i) For n even, the number of paths in X (s)
n fixed by the operator ϵn is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s+ 2

sn+ s+ 2

( (s+1)n+s
2
n
2

)
if s is even

s+ 1

sn+ s+ 1

( (s+1)n+s−1
2
n
2

)
if s is odd.

(ii) For n odd, the number of paths in X (s)
n fixed by the operator ϵn is

⎧
⎪⎪⎨

⎪⎪⎩

2s+ 2

sn+ s+ 2

( (s+1)n+s−1
2

n−1
2

)
if s is even

0 if s is odd.

Proof. (i) For n even, let U (s)
n be the set of lattice paths from the origin to the point

(n2 ,
sn
2 − ⌈ s

2⌉) staying weakly above the line y = sx − s. By Theorem 5.4(i), the number

of paths in X (s)
n fixed by the operator ϵn is |U (s)

n |. For every path in U (s)
n , add a prefix of

s north steps and move up s rows. This establishes a one-to-one correspondence between
U (s)
n and the set of lattice paths from the origin to the point (n2 ,

sn
2 + ⌊ s

2⌋) staying weakly
above the line y = sx. By Proposition 2.3, we have

|U (s)
n | =

⌊ s
2⌋ + 1

sn
2 + ⌊ s

2⌋+ 1

(sn+n
2 + ⌊ s

2⌋
n
2

)
,

as require.
(ii) For n odd, let V (s)

n be the set of lattice paths from the origin to the point
(n−1

2 , s(n−1)
2 ) staying weakly above the line y = sx − s. By Theorem 5.4(ii), the num-

ber of paths in X (s)
n fixed by the operator ϵn is |V (s)

n | if s is even, and 0 otherwise. For

every path in V (s)
n , add a prefix of s north steps and move up s rows. This establishes

a one-to-one correspondence between V (s)
n and the set of lattice paths from the origin to

the point (n−1
2 , s(n−1)

2 + s) staying weakly above the line y = sx. By Proposition 2.3, for
s even we have

|V (s)
n | = 2s+ 2

sn+ s+ 2

( (s+1)n+s−1
2

n−1
2

)
,

as required.

Since the results in Corollary 5.5 agree with that in Proposition 2.4, the proof of
Theorem 2.1 is completed.
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6 CSP for the posets of a rectangular shape

For positive integers m,n, consider the lattice paths from the origin to (n,m) using N
and E steps staying within the m × n rectangle. Recall that the q-binomial coefficients
are polynomials defined as [

n

k

]

q

:=
[n]!q

[k]!q[n− k]!q
,

where [n]!q = [1]q[2]q · · · [n]q and [i]q = 1+ q+ · · ·+ qi−1. By a known result [9, p. 30], the
area-enumerator X(q) of the lattice paths within the m× n rectangle is given by

X(q) =

[
m+ n

n

]

q

. (8)

In this section we shall prove the following result.

Theorem 6.1. For positive integers m and n, let (P,!) be the poset associated with
λ = (nm). Let X be the set of maximal chains of (P,!). Let X(q) be the polynomial
defined in Eq. (8). Let the group ⟨ϵ⟩, generated by the operator ϵ of evacuation, act on X .
Then (X , X(q), ⟨ϵ⟩) exhibits the cyclic sieving phenomenon.

Proof. We shall prove that the evaluation X(−1) coincides with the number of maximal
chains in X fixed by the operator ϵ.

For positive integers k1, k2 and k, we have the following facts. (i) [k]q=−1 = 0 if and
only if k is even. (ii) If k1, k2 have the same parity, then

lim
q→−1

[k1]q
[k2]q

=

{
k1
k2

if k1, k2 are even
1 if k1, k2 are odd.

Making use of the facts (i) and (ii), we observe that

X(−1) = lim
q→−1

[m+ 1]q[m+ 2]q · · · [m+ n]q
[1]q[2]q · · · [n]q

=

⎧
⎨

⎩

0 if m,n are odd(
⌊m+n

2 ⌋
⌊n
2 ⌋

)
otherwise.

On the other hand, for a path C = z1 · · · zmn ∈ X , note that since λ is a rectangular
shape, interchanging any two consecutive steps of C remains to be a path in X . So
applying the elementary operator τi on C always interchanges zi and zi+1 (1 ! i ! mn−1).
Then the evacuation of C is obtained from C by reversing the order of the steps, i.e.,
Cϵ = zmn · · · z1. Hence Cϵ = C if and only if C is centrally symmetric, i.e., has 2-fold
rotational symmetry. Note that the number of centrally symmetric paths in the m × n

rectangle is 0 if m,n are odd, and
(⌊m+n

2 ⌋
⌊n
2 ⌋

)
otherwise. The proof is completed.
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7 Concluding Remarks

Note that the poset (P(s)
n ,!) associated with the partition λ = (ns, (n− 1)s, . . . , 1) is the

poset J(P ) constructed from the order ideals of a poset P . Stanley’s result [8, Theorem
3.1] gives an alternative CSP for Fuss shapes of type A, which involves the q-polynomial
W (q) in Eq. (2), the enumerator of linear extensions of P respecting the comajor index.
For example, the poset associated with λ = (2, 1) ⊢ 3 can be constructed from the order
ideals of the poset shown on the left hand side in Figure 8, with W (q) = 1+q+q2+q3+q4

independent of the labeling of its elements (see Figure 9).

13

2

124

1234
123

12
1 2

3 4
1

0̂

P J(P )

Figure 8: The paths in X4 fixed by evacuation.

However, the evacuation ϵ does not necessarily reverse the parity of the comajor index
of linear extensions of P ; see Figure 9 (sometimes self-evacuating linear extensions have
an odd comajor index). He proved that the evaluation W (−1) coincides with the number
of domino linear extensions of P , i.e., the linear extensions ω ∈ L(P ) with the property
ωτp−1τp−3τp−5 · · · τh = ω, where h = 1 if p is even, and h = 2 otherwise. To determine
the self-evacuating linear extensions of P , he established a bijection ω → ω̃ between the
domino linear extensions ω and the self-evacuating linear extensions ω̃ of P by

ω̃ = ωτ1 · τ3τ2τ1 · τ5τ4τ3τ2τ1 · · · τgτg−1 · · · τ1,

where g = p− 1 if p is even, and g = p− 2 otherwise. For the poset P shown on the left
hand side in Figure 8, the only domino linear extension ω corresponds to the maximal
chain NNEE of J(P ) and the self-evacuating linear extension ωτ1 ·τ3τ2τ1 corresponds to the
maximal chain ENNE of J(P ). However, it is still unclear how to describe self-evacuating
linear extension of a poset P explicitly. We contribute a neat characterization of the
maximal chains of J(P ) fixed under evacuation for J(P ) = (P(s)

n ,!).
As mentioned earlier, the map ϵn does not necessarily reverse the parity of the statistic

area of maximal chains of (P(s)
n ,!). This suggests the following problem.

Problem 1. Find a statistic of s-Dyck paths (linear extensions of a poset, respectively)
equidistributed with area (comaj, respectively) so that the evacuation is parity-reversing.

Among various cyclic sieving results on Catalan objects (e.g. [4, Theorem 7.1], [5,
Theorem 8]), the case s = 1 in Theorem 2.1 gives an instance of CSP on a Catalan object,
the triple (Xn, X(q), ⟨ϵn⟩) of the poset associated with the partition λ = (n, n− 1, . . . , 1).
Note that |Xn| = cn+1 is the number of truncated Dyck paths of width n, where cn =
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1 2

4 3

2 1

3 4

2 1

4 3

1 3

2 4

ϵϵϵ

1

1

1

1

1

q

q

q

q

q

q2

q2

q2

q2

q2

q3

q3

q3

q3

q3

q4

q4

q4

q4

q4

Figure 9: The comaj-enumerator W (q) of linear extensions of the poset shown on the left hand
side of Figure 8, regarding labeling of its elements.

1
n+1

(
2n
n

)
is the nth Catalan number. It is worth mentioning that to our knowledge this

result is the first instance using the area-enumerator X(q) as the q-polynomial while other
known results using the q-analogue of Catalan number 1

[n+1]q

[
2n
n

]
q
.

By Theorem 5.4, for n even the paths C ∈ Xn fixed by evacuation can be factorized
as C = C1C2, where C1 goes from the origin through (n2 ,

n
2 − 1) to (n2 ,

n
2 ). Moreover,

Cϵn = C ′
2C

′
1, where C ′

1 = C1ϵn
2
and C ′

2 = C2ϵn
2
. For example, inspecting the orbits of

X2 under evacuation shown in Figure 3, one can predict the two paths in X4 fixed by
evacuation, as shown in Figure 10.

Figure 10: The paths in X4 fixed by evacuation.

Recall that not all partitions λ of an integer n are good shapes, i.e., the triple
(X , X(q), ⟨ϵ⟩) of the poset associated with λ exhibits CSP. Let gn be the number of
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good shapes λ ⊢ n. We obtain the initial terms of the sequence {gn}n"0 by computer

1, 1, 2, 3, 5, 6, 11, 13, 21, 24, 40, 45, 71, 78, 122, 135, 202.

A question might arise.

Problem 2. Determine gn and characterize good shapes λ ⊢ n, with an explicit charac-
terization of the fixed points under evacuation.
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